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ABSTRACT
Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-
Source BFS (MS-BFS), an algorithm designed for running
multiple concurrent BFSs over the same graph on a single
CPU core that scales up as the number of cores increases.
MS-BFS leverages the properties of small-world networks,
which apply to many real-world graphs, and enables effi-
cient graph traversal that: (i) shares common computation
across concurrent BFSs; (ii) greatly reduces the number of
random memory accesses during BFS; and (iii) does not in-
cur synchronization costs. We demonstrate how the graph
analytics application of computing the closeness centrality
value of entities in a graph can be efficiently solved with
MS-BFS. We also present an extensive experimental evalu-
ation with both synthetic and real datasets, including Twit-
ter and Wikipedia, showing that MS-BFS provides almost
linear scalability with respect to the number of cores and
excellent scalability for increasing graph sizes, outperform-
ing state-of-the-art BFS algorithms by more than one order
of magnitude when running a large number of BFSs.

1. INTRODUCTION
An ever-growing amount of information has been stored

and manipulated as graphs. To better comprehend and
assess the relationships between entities in this data, and
to uncover patterns and new insights, graph analytics has
become essential. Numerous applications have been exten-
sively using graph analytics, including social network analy-
sis, road network analysis, Web mining, and computational
biology. A typical example in the field of social networks
is identifying the most central entities, as these potentially

have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20].

In a wide range of graph analytics algorithms, includ-
ing shortest path computation [14], graph centrality cal-
culation [10, 27], and k-hop neighborhood detection [13],
breadth-first search (BFS)-based graph traversal is an ele-
mentary building block used to systematically traverse a
graph, i.e., to visit all the vertices and edges of the graph
from a given start vertex. Because of the volume and nature
of the data, BFS is a computationally expensive operation,
leading to long processing times, in particular when exe-
cuted in large datasets that are commonplace in the afore-
mentioned fields.

To speed up BFS-based graph analytics, significant re-
search has been done to develop efficient BFS algorithms
that can take advantage of the parallelism provided by mod-
ern multi-core systems [2, 6, 8, 15, 19]. They optimize the
execution of a single traversal, i.e., a single BFS, mostly by
visiting and exploring vertices in a parallel fashion. Hence,
previous work had to address not only parallelization-specific
issues, such as thread synchronization and the presence of
workload imbalance caused by skew, but also fundamental
challenges in graph processing, including poor spatial and
temporal locality in the memory access pattern [24]. Recent
work on processing graphs in distributed environments—
including scalable approaches [11, 12, 28, 30] as well as graph
databases [33], and platforms for distributed analytics [16,
23, 25, 31]—can be used to span the execution of parallel
graph traversals to multiple machines, improving the overall
performance and coping with data that is partitioned across
different nodes.

Although many graph analytics algorithms (e.g., shortest
path computation on unweighted graphs) involve executing
single BFSs and can make good use of the existing paral-
lel implementations, there is a plethora of other applica-
tions that require hundreds (or even millions) of BFSs over
the same graph—in many cases, one BFS is needed from
each vertex of the graph; examples of such applications in-
clude calculating graph centralities, enumerating the neigh-
borhoods for all vertices, and solving the all-pairs shortest
distance problem. These scenarios do not fully benefit from
current parallel BFS approaches. Often, the best one can
do with existing approaches in order to reduce the overall
runtime is to execute multiple single-threaded BFSs in par-
allel, instead of running parallel BFSs sequentially, because
the former avoids synchronization and data transfer costs,
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as we discuss in Section 6. Doing so, however, misses op-
portunities for sharing computation across multiple BFSs
when the same vertex is visited by various traversals, which
becomes inefficient for large graphs and hampers scalability.

In this paper, we propose Multi-Source BFS (MS-BFS),
a new BFS algorithm for modern multi-core CPU architec-
tures designed for graph analytics applications that run a
large number of BFSs from multiple vertices of the same
graph. MS-BFS takes an orthogonal approach from previ-
ous work: instead of parallelizing a single BFS, we focus on
processing a large number of BFSs concurrently in a sin-
gle core, while still allowing to scale up to multiple cores.
This approach allows us to share the computation between
different BFSs without paying the synchronization cost.

This work leverages properties of small-world networks [3]:
the distance between any two vertices is very small compared
to the size of the graph, and the number of vertices discov-
ered in each iteration of the BFS algorithm grows rapidly.
Concretely, this means that a BFS in such a network dis-
covers most of the vertices in few iterations, and concurrent
BFSs over the same graph have a high chance of having
overlapping sets of discovered vertices in the same iteration.
Based on these properties, in MS-BFS we combine accesses
to the same vertex across multiple BFSs, which amortizes
cache miss costs, improves cache locality, avoids redundant
computation, and reduces the overall runtime. Note that
small-world networks are commonplace as these properties
apply to many real-world graphs, including social networks,
gene networks, and Web connectivity graphs, which are of
interest for many graph analytics applications.

MS-BFS executes concurrent BFSs in a data-parallel fash-
ion that requires neither locks nor atomic operations, and it
can be efficiently implemented using bit fields in wide CPU
registers. We assume that the graph fits in main memory,
which is a realistic assumption for many real-world graphs
and applications (e.g., the Who to Follow service at Twit-
ter [18]) as modern servers can store up to hundreds of bil-
lions of edges in memory. This design choice avoids over-
heads from disk accesses and network roundtrips, allowing
unprecedented analytics performance. Nevertheless, the op-
timized variants of our algorithm as described in Sections 3.2
and 4.1.1 allows data to be scanned sequentially and thus
can be easily adapted to provide good performance for disk-
resident graphs as well.

MS-BFS is a generic BFS algorithm that can be applied
to many graph problems that run multiple traversals from
different start vertices; as an example of a real application,
we demonstrate how it can be used to compute the closeness
centrality value for all the graph vertices, a computationally
expensive problem. We also present an extensive experi-
mental evaluation using synthetic datasets generated with
the LDBC Social Network Data Generator [9, 21], as well as
real-world graphs from Twitter and Wikipedia, showing that
MS-BFS (i) outperforms existing BFS algorithms by more
than one order of magnitude when running multiple BFSs,
and (ii) scales almost linearly with respect to graph size and
number of cores. It is worth noting that the approach pre-
sented here was successfully used by the two leading teams—
first and second place—in the 2014 SIGMOD Programming
Contest.

Overall, our contributions are as follows:
• We propose Multi-Source BFS (MS-BFS), a graph traver-

sal algorithm that can efficiently execute multiple con-

current BFSs over the same graph using a single CPU
core (Section 3). MS-BFS is most efficient in small-world
networks, where MS-BFS combines the execution of mul-
tiple BFSs in a synchronization-free manner, improving
the memory access pattern and avoiding redundant com-
putation. We also discuss additional tuning strategies to
further improve the performance of the algorithm (Sec-
tion 4).

• To demonstrate the feasibility of our approach, we show
how a real graph analytics application—the computation
of vertices’ closeness centrality values—can be efficiently
implemented using MS-BFS (Section 5).

• We present an extensive experimental evaluation with syn-
thetic and real datasets, showing that MS-BFS scales al-
most linearly with an increasing number of CPU cores and
that it exhibits excellent scalability with changes to the in-
put graph size. We further show that MS-BFS greatly out-
performs existing state-of-the-art BFS algorithms when
running multiple BFSs (Section 6). We provide the full
source code of all our implementations online.1

2. BACKGROUND
In this paper, we consider an unweighted graph G =
{V, E}, where V = {v1, . . . , vN} is the set of vertices; E =
{neighborsvi

|Ni=1} is the set of edges; neighborsv is the set
of vertices to which v connects (neighbor vertices of v); and
N is the number of vertices in the graph, i.e., N = |V |.
We further assume that G exhibits properties of small-world
networks (Section 2.1), and that the graph analytics algo-
rithms to be used over G use BFS-based graph traversal
(Section 2.2).

2.1 Small-World Networks
In small-world networks, as the graph size increases, the

average distance—the number of edges—between vertices
increases logarithmically. In other words, we say that a
graph G has small-world properties if its diameter, i.e., the
longest distance between any two vertices in G, is low even
for a large N [3]. Another property of many small-world
graphs is that their distribution of degree, i.e., the number of
neighbors of a vertex, follows the power law: concretely, few
vertices have a very high number of neighbors, while most
of the vertices have few connections. Graphs exhibiting the
latter property are also known as scale-free networks [3].

A famous example of these properties is the six degrees
of separation theory, suggesting that everyone is only six
or fewer steps away from each other. Recent study shows
that 92% of Facebook users (N ≈ 720 million) are con-
nected by only 5 steps, and that the average distance be-
tween users is 4.74 [5]. In fact, besides social networks,
many other real-world graphs that are of critical interest
for both academia and industry—including gene and neu-
ral networks, the world-wide web, wikis, movie-actor and
scientific collaboration networks, as well as electrical power
grids—exhibit small-world properties [3].

As we show in Section 3, we exploit small-world graph
properties to provide an efficient implementation for our
BFS approach.

1Source code available at http://bit.ly/1B8u4uX
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2.2 Breadth-First Search Overview
Breadth-first search (BFS) traverses a graph G from a

given start vertex, or source, s ∈ V . We present the original
BFS algorithm, to which we refer as textbook BFS, in List-
ing 1. There are two main states for a vertex during a BFS
traversal: discovered, which means that the BFS has already
visited the vertex, and explored, which means that not only
the vertex but also its edges and neighbors have been vis-
ited. The algorithm starts by adding s to seen, which is
the set of vertices that have been discovered. It also adds
the source vertex to visit, which is the set of vertices yet
to be explored. By iterating over visit in Line 7, vertices
in visit are explored to find new reachable vertices: vertices
connected to v (Line 8) that have not been discovered yet
(Line 9) are added to both seen and visitNext. Furthermore,
newly discovered vertices are processed by the graph analyt-
ics application that uses the BFS (Line 12), e.g., a shortest
path algorithm stores the distance between s and n. The
visitNext set becomes the next visit set after all the vertices
in the current one have been explored (Lines 13 and 14).

Note that, for every iteration in Line 6, visit only con-
tains vertices that have the same distance, in number of
edges, from the source s: we say that these vertices are in
the same BFS level. The maximum number of levels that
any BFS can have in G is equivalent to the diameter of G.
Since G is a small-world network, its diameter is low, which
means that a BFS will have a small number of levels as well:
all vertices are discovered in few iterations, and the number
of vertices discovered in each level grows rapidly. Table 1
shows this behavior in a synthetic dataset of 1 million ver-
tices (generated with the data generator from LDBC), where
a BFS is run over a connected component that comprises
over 90% of the vertices of the graph. Note that the number
of BFS levels is small compared to the size of the graph, and
that nearly 95% of the vertices are discovered in two levels.

In a traditional implementation of the BFS algorithm,
queue data structures are often used for visit and visitNext,
while seen is represented by either a list or a hash set.
The set E of edges is usually implemented as an adjacency
list, where each vertex has its own list of neighbors, i.e.,
neighborsv is a list composed by all the neighbor vertices of
v.

Optimizing BFS. Small-world graphs tend to have few
connected components; often, the entire graph is a single
component, which means that every vertex is reachable from
every other vertex. As a consequence, the larger the tra-
versed graph is, the more vertices and edges need to be
visited by the BFS, which becomes a significantly time-
consuming operation. This issue is exacerbated by its lack
of memory locality, as shown in the random accesses to seen
and to the adjacency list (Lines 8 and 9), reducing the use-
fulness of CPU caches. Furthermore, towards the end of the
BFS execution, most of the vertices will have been already
discovered (see Table 1), and there will be much fewer non-
discovered vertices than vertices in the visit set; as a conse-
quence, there will be a significant number of failed checks to
seen (Line 9), which consumes resources unnecessarily [8].
Last, searching for vertices in seen and adding new ones
become expensive if more efficient data structures are not
used.

Optimizing the execution of the BFS algorithm for large
datasets is essential for graph analytics, and there has been

Listing 1: Textbook BFS algorithm.
1 Input: G, s
2 seen ← {s}
3 visit ← {s}
4 visitNext ← ∅
5
6 while visit 6= ∅
7 for each v ∈ visit do
8 for each n ∈ neighborsv do
9 if n /∈ seen then

10 seen ← seen ∪ {n}
11 visitNext ← visitNext ∪ {n}
12 do BFS computation on n
13 visit ← visitNext
14 visitNext ← ∅

substantial work in this direction. Most of this work is fo-
cused on implementing a single parallel BFS, i.e., paralleliz-
ing a single BFS execution, mainly by making use of the
level-synchronous approach: vertices are explored and dis-
covered in parallel for each BFS level, i.e., Lines 7 and 8 are
executed in parallel for each level. The main idea of this ap-
proach is to divide the work across multiple cores and thus
speed up the execution of one BFS. However, this comes at
a cost: visit and visitNext must be synchronized at the end
of each BFS level (before a new iteration at Line 6 starts),
and race conditions must be avoided when multiple threads
are accessing seen.

For shared-memory and multi-core CPUs, numerous op-
timizations have been proposed to efficiently implement the
level-synchronous approach and to address the foregoing
challenges [2, 6, 7, 8, 15, 19], including the use of more
efficient data structures, mechanisms to improve memory
locality (e.g., sequential access to data structures [19]), and
further optimizations specific to certain hardware architec-
tures. Notably, Beamer et al. [8] propose a bottom-up ap-
proach to avoid many failed checks to seen as mentioned
before. Instead of visiting new vertices by looking at the out-
going edges of discovered vertices, the approach iterates over
non-discovered vertices, looking for an edge that connects it
to a vertex that has already been discovered (i.e., that is
in visit). The authors combine the textbook BFS with the
bottom-up approach in a hybrid direction-optimized tech-
nique. Although their implementation is for single parallel
BFSs, the optimization is mostly orthogonal to paralleliza-
tion and can be used for sequential execution. We further
use this technique to optimize our algorithm (Section 4.1.2)
and for comparison purposes (Section 6).

Executing the BFS algorithm in distributed memory sys-
tems has also been extensively studied before [11, 12, 30],
as this raises a new range of issues, including the need to

Table 1: Number of discovered vertices in each BFS
level for a small-world network.

Level N. Discovered Vertices ≈ Fraction (%)
0 1 < 0.01
1 90 < 0.01
2 12,516 1.40
3 371,638 41.20
4 492,876 54.60
5 25,825 2.90
6 42 < 0.01
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Figure 1: Percentage of vertex explorations that can
be shared per level across 512 concurrent BFSs.

manage communication between CPUs and to partition the
graph among processors, which is challenging and can deeply
impact performance. Frameworks such as Parallel BGL [17],
Pregel [25], Trinity [31], GraphLab [23], Giraph [4], and
Teradata Aster [32] provide APIs to facilitate the scale-out
of graph traversal and other graph algorithms to multiple
nodes. Distributed graph databases, e.g., Titan [33], allow
users to store and query graphs that are partitioned in multi-
machine clusters, and engines such as Faunus [16] can be
used on top of these databases to optimize the performance
when doing large-scale graph analytics. Recently, there has
also been an increasing interest in traversing and processing
graphs using MapReduce [28].

3. MULTI-SOURCE BFS
As mentioned before, numerous graph analytics algorithms

rely on executing multiple BFS traversals over the same
graph from different sources. Often, a BFS traversal is run
from every vertex in the graph. Clearly, this is very ex-
pensive, in particular for large real-world graphs that often
have millions of vertices, and hence, require the execution
of millions of BFSs. Our prime goal is then to optimize the
execution of multiple BFSs on the same graph in order to
improve the performance of such graph analytics applica-
tions. We focus on a non-distributed environment—a single
server—and in-memory processing to exploit the capabilities
of modern multi-core servers with large memories. This is
reasonable even for graphs with hundreds of billions of edges,
as shown by Gupta et al. [18], and provides a better perfor-
mance per dollar for workloads that process multi-gigabyte
datasets [29]. Note that these are not limitations of our
algorithm, which can be extended to handle disk-resident
graphs.

To the best of our knowledge, Multi-Source BFS (MS-BFS)
is the first approach for efficiently executing a large num-
ber of BFSs over the same graph. Most of the existing ap-
proaches for multi-core CPUs, presented in the previous sec-
tion, are orthogonal to our goal: they optimize the runtime
execution of a single BFS, while we want to optimize the run-
time execution for multiple BFSs. This brings a new range
of requirements: (i) executing multiple traversals over the
same graph exacerbates memory locality issues because the
same vertices need to be discovered and explored for mul-
tiple BFSs, resulting in a higher number of cache misses;
(ii) resource usage should be kept to a minimum to make
the approach scalable for a large number of BFSs and as the

Listing 2: The MS-BFS algorithm.
1 Input: G,B, S
2 seensi ← {bi} for all bi ∈ B
3 visit ←

⋃
bi∈B
{(si, {bi})}

4 visitNext ← ∅
5
6 while visit 6= ∅
7 for each v in visit
8 B′v ← ∅
9 for each (v′,B′) ∈ visit where v′ = v

10 B′v ← B′v ∪ B′
11 for each n ∈ neighborsv

12 D← B′v \ seenn

13 if D 6= ∅
14 visitNext ← visitNext ∪ {(n,D)}
15 seenn ← seenn ∪ D
16 do BFS computation on n
17 visit ← visitNext
18 visitNext ← ∅

number of cores increases; and (iii) synchronization costs of
any kind should be avoided as their overheads become sig-
nificantly apparent when executing vast amounts of BFSs.

To address these requirements, we (i) share computation
across concurrent BFSs, exploiting the properties of small-
world networks; (ii) execute hundreds of BFSs concurrently
and using a single core, which scales up better than pre-
vious approaches; and (iii) use neither locking nor atomic
operations, which makes the execution more efficient and
also improves scalability.

In this section, we describe in detail our novel approach.
We begin by introducing the algorithm in Section 3.1, and
Section 3.2 shows how this algorithm can be mapped to
efficient bit operations.

3.1 The MS-BFS Algorithm
An important observation about running multiple BFSs

from different sources in the same graph is that every ver-
tex is discovered multiple times—once for every BFS if we
assume the graph has a single connected component—and
every time the vertex is explored, its set of neighbors must
be traversed, checking if each of them has already been dis-
covered. This leads to many random memory accesses and
potentially incurs a large number of cache misses.

To decrease the amortized processing time per vertex and
to reduce the number of memory accesses, we propose an
approach to concurrently run multiple BFSs and to share the
exploration of vertices across these BFSs by leveraging the
properties of small-world networks. Recall that the diameter
of the graph is low—which means that the number of BFS
levels is also small compared to the size of the graph—and
that the number of discovered vertices in each level grows
rapidly; since in few steps, all the vertices of the graph are
discovered, we expect the likelihood of multiple concurrent
BFSs having to explore the same vertices at the same level
to be high. For a concrete example of this behavior, we
analyze the LDBC graph with 1 million vertices introduced
in the previous section. Figure 1 depicts, for every BFS level,
the percentage of vertex explorations that can be shared by
at least 2, 50, 100, and 250 BFSs out of 512 concurrent
BFSs as indicated by the bar height and color. Note that
the exploration of more than 70% of the vertices in levels 3
and 4 can be shared among at least 100 BFSs, and in level
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Figure 2: An example of the MS-BFS algorithm, where vertices 3 and 4 are explored once for two BFSs.

4, more than 60% of them can be shared by at least 250
BFSs. Concretely, this means that, in level 4, more than
60% of the vertices can be explored only once for 250 or
more BFSs, instead of exploring them individually for each
BFS. This can significantly reduce the number of memory
accesses and speed up the overall processing.

We present the MS-BFS algorithm in Listing 2. In addi-
tion to the graph G, MS-BFS also receives as input the set of
BFSs B = {b1, . . . , bω}, where each bi represents a BFS, and
ω is the total number of BFSs to be executed. Another input
is the set S = {s1, . . . , sω} that contains the source vertex si

for each BFS bi. MS-BFS marks discovered vertices and ver-
tices yet to be explored differently from the textbook BFS
(Listing 1). Instead of having a single set seen of discovered
vertices, each vertex v has its own set seenv ⊆ B of BFSs
that have already discovered it; furthermore, the sets visit
and visitNext comprise tuples (v′,B′), where the set B′ ⊆ B
contains the BFSs that must explore v′.

Similar to the textbook BFS, MS-BFS initially marks the
source of each BFS as discovered (Line 2), and includes in
visit each source with its corresponding BFS identifier to
indicate which vertex needs to be explored for which BFS
(Line 3). Next, for each BFS level (Line 6), the algorithm
repeatedly selects a vertex v to be explored (Line 7) and
merges all BFS sets from visit that refer to v into a set B′v
(Line 10). Thus, B′v contains all BFSs that will explore v in
the current level, and v can then be explored only once for
all of them.

This shared exploration process is shown in Lines 11–16.
For each neighbor n of v, the algorithm first identifies the
set D of all the BFSs that need to explore n in the next
level (Line 12). A BFS bi must explore n if it belongs to the
current level (bi ∈ B′v) and if it has not discovered n yet (bi /∈
seenn). If D is not empty, there are one or more BFSs that
need to explore n in the next level. Hence, we add a tuple
(n,D) to visitNext (Line 14). Furthermore, we mark n as
discovered (Line 15) and process it in the BFS computation
(Line 15) for all BFSs in D. Note that neighborsv is traversed
only once for all bi ∈ D, and in the next level, each vertex
n will be explored only once for these BFSs as well, which
significantly reduces the number of memory accesses when
running a large number of BFSs. Similar to the textbook
BFS, visitNext is used as the visit set for the next BFS level
(Lines 17 and 18).

Figure 2 shows an example of running MS-BFS for two
BFSs, b1 and b2, starting from vertices 1 and 2 of graph G,
respectively. At the beginning of the algorithm, all seen sets
are initialized (we omit the empty ones), and visit contain

the information that b1 needs to explore vertex 1, and that
b2 needs to explore vertex 2. In the first BFS level, vertices
1 and 2 are explored, and since they are both adjacent to
vertices 3 and 4, the visit set for the next level contains tu-
ples for vertices 3 and 4 in BFSs b1 and b2. In the second
BFS level, vertices 3 and 4 are explored. When picking ver-
tex 3, Line 10 of the algorithm merges the sets of BFSs that
need to explore 3 (see the highlighted section in Figure 2),
resulting in B′3 = {b1, b2}. Therefore, 3 is explored only once
for b1 and b2, and vertex 5 is discovered simultaneously by
both BFSs as shown by the tuple (5, {b1, b2}) in visit. A
similar process happens for vertex 4, as it is explored for
both BFSs (B′4 = {b1, b2}), and for vertex 6, which is dis-
covered simultaneously for both of them, adding the tuple
(6, {b1, b2}) to the next visit. Note that during the second
BFS level, vertex 1 is also discovered for b2, and vertex 2 for
b1. Since all the vertices are already discovered at this point
(i.e., all the seen sets contain the two BFSs), no tuples are
added to visit in the third level, and the algorithm finishes.

Note that this approach differs from parallelizing a sin-
gle BFS since MS-BFS still discovers and explores vertices
sequentially. However, with MS-BFS, multiple BFSs are ex-
ecuted concurrently and share the exploration of vertices.

3.2 Leveraging Bit Operations
In practice, it is inefficient to run MS-BFS using set data

structures as presented in Listing 2, since set operations are
expensive when large numbers of concurrent BFSs are taken
into account. In addition, visit needs to be entirely scanned
every time a vertex v is picked in order to merge the sets of
BFSs, which is prohibitively expensive for large graphs.

To solve these issues, we leverage bit operations to create
a more efficient version of MS-BFS. In order to do so, we fix
the maximum number of concurrent BFSs ω to a machine-
specific parameter as elaborated in Section 4.2.1. This al-
lows us to represent a set B′ ⊆ B of BFSs as a fixed-size bit
field f1 . . . fω where fi = 1 if bi ∈ B′, and fi = 0 otherwise.
Thus, we represent seen for a vertex v as seenv = f1 . . . fω,
where fi = 1 if bi has discovered v. Furthermore, visit for v
is represented by visitv = f1 . . . fω, where fi = 1 if v needs
to be explored by bi; the same applies for visitNext.

The main advantage of representing BFS sets as bit fields
is that MS-BFS can use efficient bit operations instead of
complex set operations. Set unions A∪B become binary or
operations A | B. Similarly, a set difference A \B becomes
a binary and operation of A with the negation of B, i.e.,
A & ∼B. We further denote an empty bit field as B∅ and a
bit field that only contains BFS bi as 1 << bi.
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Listing 3: MS-BFS using bit operations.
1 Input: G,B, S
2 for each bi ∈ B
3 seen[ si ]← 1 << bi

4 visit[ si ]← 1 << bi

5 reset visitNext
6
7 while visit 6= ∅
8 for i = 1, . . . , N
9 if visit[vi] = B∅, skip

10 for each n ∈ neighbors[vi]
11 D← visit[vi] & ∼seen[n]
12 if D 6= B∅
13 visitNext[n]← visitNext[n] | D
14 seen[n]← seen[n] | D
15 do BFS computation on n
16 visit ← visitNext
17 reset visitNext

To provide constant access to the bit fields of visit, visitNext,
and seen, we store them in arrays sized to the number of
vertices N in the graph. Thus, we have: visitv = visit[v],
visitNextv = visitNext[v], and seenv = seen[v]. In addition,
we write visit = ∅ to represent the fact that visit[vi] = B∅
for all i = 1, . . . , N .

Listing 3 presents the MS-BFS algorithm from Listing 2
using bit operations and array data structures. Note that
the overall logic of MS-BFS does not change: Lines 7, 11, 13,
and 14 from Listing 3 are equivalent to Lines 6, 12, 14, and
15 from Listing 2, respectively. A significant improvement
from using bit fields to represent BFS sets and arrays for
visit is that it avoids the expensive merging loop of Lines 9
and 10 from Listing 2.

We assume that the neighbors adjacency list is imple-
mented as a single array that contains all the neighbors
for all vertices, and that neighbors[vi] points to the mem-
ory block in neighbors that encompasses the neighbors of
vi. Also, these memory blocks are stored in order, i.e.,
neighbors[vi−1] precedes neighbors[vi] for all i = 2, . . . , N .
This representation improves memory locality for the algo-
rithm: vertices are explored in order (Line 8), and as a con-
sequence, the neighbors array can be retrieved in order as
well (Line 10), which maximizes opportunities for sequential
reads and makes a better use of caching [19].

Figure 3 shows the example presented in Figure 2 using
arrays of bit fields for visit and seen. As in the previous
figure, the visitNext array is similar to the visit array of
the next BFS level and is then omitted for clarity. Each
row represents the bit field for a vertex, and each column
corresponds to one BFS. The symbol X indicates that the
bit value is 1; otherwise, the value is 0.

Processing the initial visit array in the first BFS level,
vertices 3 and 4 are discovered for both BFSs, since both of
them are neighbors of sources 1 and 2. Hence, seen[3] and
seen[4] have a bit field of value 11, indicating that both BFSs
have discovered the vertices. The bit fields in visit[3] and
visit[4] have this value as well, indicating that these vertices
need to be explored for both BFSs in the next level. During
the second BFS level, vertices 3 and 4 are explored only once
for both b1 and b2 (since visit[3] = visit[4] = 11 at the end
of the initial level), leading to the discovery of vertices 5 and
6 for both BFSs. As the seen array does not contain bits of
value 0 anymore, no new vertices are discovered in the third
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Figure 3: An example showing the steps of MS-BFS
when using bit operations. Each row represents the
bit field for a vertex, and each column corresponds
to one BFS. In addition, the symbol X indicates that
the value of the bit is 1.

BFS level.
Note that our algorithm can leverage efficient native bit

instructions, in particular when ω is a multiple of the ma-
chine’s register width (see Section 4.2.1). This brings mainly
two advantages: (i) our approach does not need explicit syn-
chronization, as there is no competition for resources—the
algorithm can run multiple concurrent BFSs in a lock-free
and atomic-free fashion; and (ii) our approach is nearly lin-
ear scalable as more cores are added to execute a higher
number of concurrent BFSs (Section 6.2 presents some re-
sults on this subject).

4. ALGORITHM TUNING
In this section, we discuss techniques to further improve

the performance of MS-BFS, including techniques to im-
prove memory locality and to avoid—even more—the im-
pact of random memory accesses (Section 4.1), as well as
efficient strategies to execute a number of BFSs greater than
the size ω of the used bit fields (Section 4.2). In Section 6.2,
we evaluate the performance impact of the presented opti-
mizations.

4.1 Memory Access Tuning

4.1.1 Aggregated Neighbor Processing
Sequentially checking the elements in the visit array in

Line 8 of Listing 3 improves the memory locality of MS-BFS
and results in fewer caches misses, as mentioned earlier.
However, there are still random accesses to the visitNext and
seen arrays (Lines 11, 13, and 14) as the same neighbor ver-
tex n can be discovered by different vertices and BFSs in the
same level, i.e., visitNext[n] and seen[n] may be accessed in
different iterations of Line 8. In addition, the application-
specific BFS computation (Line 15) for n may have to be
executed multiple times as well, which worsens the issue.

To provide further improvements in memory locality, we
propose the aggregated neighbor processing (ANP) technique.
The main idea is to reduce the number of both BFS com-
putation calls and random memory accesses to seen by first
collecting all the vertices that need to be explored in the
next BFS level, and then by processing in batch the remain-
der of the algorithm, removing the dependency between visit
and both seen and the BFS computation.

Listing 4 shows the MS-BFS algorithm using ANP. Con-
cretely, when using ANP, we process a BFS level in two
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Listing 4: MS-BFS algorithm using ANP.
1 Input: G,B, S
2 for each bi ∈ B
3 seen[ si ]← 1 << bi

4 visit[ si ]← 1 << bi

5 reset visitNext
6
7 while visit 6= ∅
8 for i = 1, . . . , N
9 if visit[vi] = B∅, skip

10 for each n ∈ neighbors[vi]
11 visitNext[n]← visitNext[n] | visit[vi]
12
13 for i = 1, . . . , N
14 if visitNext[vi] = B∅, skip
15 visitNext[vi]← visitNext[vi] & ∼seen[vi]
16 seen[vi]← seen[vi] | visitNext[vi]
17 if visitNext[vi] 6= B∅
18 do BFS computation on vi

19 visit ← visitNext
20 reset visitNext

stages. In the first stage (Lines 8–11), we sequentially ex-
plore all vertices in visit to determine in which BFSs their
neighbors should be visited, updating visitNext. In the sec-
ond stage (Lines 13–18), we sequentially iterate over visitNext.
Then, we update the bit fields of visitNext based on seen,
and execute the BFS computation. Note that we only per-
form these steps once for every newly discovered vertex: we
aggregate the neighbor processing.

ANP leverages the fact that visitNext is reset for every
new BFS level. In addition, Lines 11 and 15 from Listing 4
are equivalent to Lines 11 and 13 from Listing 3 by means of
the distributive property of binary operations; for a vertex
n and vertices v1, . . . , vk of which n is neighbor:(

visit[v1] | . . . | visit[vk]
)

& ∼seen[n] ≡(
visit[v1] & ∼seen[n]

)
| . . . |

(
visit[vk] & ∼seen[n]

)
Note that random memory accesses to visitNext in Line 11

are inevitable and we discuss how to mitigate this issue in
Section 4.1.3. Nevertheless, this technique brings a range of
advantages. Notably, it: (i) reduces the number of mem-
ory accesses to seen, since the array is only retrieved once
for every discovered vertex v, independent of the number of
vertices of which v is a neighbor; (ii) replaces random access
with sequential access to seen, which improves memory lo-
cality; and (iii) reduces the number of times that the BFS
computation is executed. With these advantages, ANP im-
proves the usage of low cache levels, prevents stalls caused
by cache misses, and thus, reduces the overall execution
MS-BFS time. As reported in Section 6.2, ANP speeds up
MS-BFS by 60 to 110%.

4.1.2 Direction-Optimized Traversal
As we focus on small-world graphs, it is further beneficial

to apply the direction-optimized BFS technique, introduced
by Beamer et al. [8], to MS-BFS. The technique chooses at
runtime between two BFS strategies: top-down and bottom-
up. The former strategy is a conventional BFS, discovering
new vertices by exploring the ones found in the previous

level, i.e., by exploring the visit array in Lines 8–10 in List-
ing 3. In contrast, the bottom-up approach, when applied
to MS-BFS, avoids traversing the visit array, and instead
scans the seen array for vertices that have not been discov-
ered by all BFSs yet. When such a vertex v is found, the
approach traverses its edges and processes the visit entries
of the neighbor vertices n that are adjacent to v:

visitNext[v]← visitNext[v] | visit[n]

Note that, as suggested by the technique name, the two
strategies work in different directions: the top-down one
goes from discovered to non-discovered vertices, while the
bottom-up one goes in the opposite direction. Direction-
optimized traversal uses an heuristic based on the number of
non-traversed edges during the BFS and a threshold to per-
form either the top-down or the bottom-up strategy. Con-
cretely, the heuristic often chooses the top-down approach
for the initial BFS levels, and the bottom-up approach for
the final steps (where most of the vertices have already been
discovered). The reader is referred to Beamer et al. [8] for
further details.

Our experiments show that with both this hybrid ap-
proach and ANP, MS-BFS can significantly reduce the num-
ber of random accesses to visit and visitNext, improving the
performance by up to 30%, see Section 6.2.

4.1.3 Neighbor Prefetching
Recall that the ANP technique reduces the number of ran-

dom accesses to the seen array. However, many random ac-
cesses are still unavoidable when discovering neighbors and
updating visitNext (Lines 10 and 11 in Listing 4).

To mitigate the high latency of these memory accesses, it
is beneficial to use prefetching: once the vertex vi is picked
from visit, we detect its neighbors and the memory addresses
of their entries in visitNext. We can then explicitly prefetch
some of these entries before processing visitNext in the it-
eration of Line 10. As a consequence, this iteration is less
prone to execution stalls because the prefetched visitNext
entries are likely to be in the CPU cache when they are re-
quired, which provides an additional speedup to MS-BFS.
Instead of doing the prefetching interleaved with the algo-
rithm execution, it is also beneficial to do it asynchronously
in simultaneous multithreading cores [22]. We identified ex-
perimentally that, by prefetching tens or even hundreds of
neighbors, the performance of MS-BFS can be improved by
up to 25%, as elaborated in Section 6.2.

4.2 Execution Strategies

4.2.1 How Many BFSs?
Conceptually, the MS-BFS algorithm can be used to run

any number of concurrent BFSs by using bit fields of ar-
bitrary sizes. However, our approach is more efficient when
the bit operations are implemented using native machine in-
structions, which means that ω should be set according to
the register and instruction width of the used CPU for op-
timal performance. As an example, on modern Intel CPUs,
there are instructions and registers with a width of up to 256
bits, thus allowing MS-BFS to efficiently execute 256 con-
current BFSs; in CPUs supporting the AVX-512 extension,
instructions exist that operate on 512 bits, which doubles
the number of concurrent BFSs that can be executed using
a single CPU register per vertex and data structure.
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Table 2: Memory consumption of MS-BFS for N
vertices, size ω of bit fields, and P parallel runs.

N ω P Concurrent BFSs Memory
1,000,000 64 1 64 22.8 MB
1,000,000 64 16 1,024 366.2 MB
1,000,000 64 64 3,840 1.4 GB
1,000,000 512 1 512 183.1 MB
1,000,000 512 16 8,192 2.9 GB
1,000,000 512 64 30,720 11.4 GB

50,000,000 64 64 3,840 71.5 GB
50,000,000 512 64 30,720 572.2 GB

Nevertheless, it is often the case that applications need to
run BFSs for a number of sources greater than the size of
any CPU-optimized ω. In this case, there are three different
strategies that can be used: (1) increase ω by using mul-
tiple CPU registers for the bit fields, (2) execute multiple
MS-BFS runs in parallel, and (3) execute multiple MS-BFS
runs sequentially. In the first approach, multiple CPU reg-
isters are used to represent the bit fields in seen, visit, and
visitNext, i.e., ω is set to a multiple of the register width.
As an example, we can leverage two 128-bit registers to have
256-bit fields, which, in turn, enables us to run 256 BFSs
concurrently. The main advantage of this approach is that,
clearly, the graph needs to be traversed less often as more
BFSs are executed simultaneously, thus allowing additional
sharing of vertex explorations. Moreover, when these reg-
isters are stored adjacent in memory, they can be aligned
to cache line boundaries so that accessing part of the bit
field ensures that its other parts are in the CPU cache as
well. Thus, we further reduce the number of main memory
accesses during a MS-BFS run. In Section 6.2, we show that
having bit fields that are exactly sized to fit a cache line ex-
hibit the best performance. On current Intel CPUs, cache
lines are 64 bytes wide, allowing efficient processing of 512
sources per MS-BFS run.

A second approach for executing a larger number of BFSs
is to make use of parallelism. While the presented MS-BFS
algorithm runs in a single core, multiple cores can be used to
execute multiple MS-BFS runs in parallel since these runs
are independent from each other. As a result, MS-BFS scales
almost linearly with an increasing number of cores.

The drawback of the first two approaches is their poten-
tially high memory consumption: for P parallel runs and N
vertices, MS-BFS requires P × 3×N ×ω bits of memory to
store the fields for seen, visit and visitNext. Table 2 gives
some examples of the total memory consumption for differ-
ent graph sizes and numbers of parallel runs, running from
hundreds to tens of thousands of BFSs concurrently.

Last, it is possible to execute multiple MS-BFS runs se-
quentially, since, again, runs are independent. This is par-
ticularly interesting when memory becomes an issue. Based
on the available memory and to adapt to different situa-
tions, we can choose the best strategy and combine the three
approaches. For instance, multiple threads, each using bit
fields that are several registers wide, can be used to execute
sequences of MS-BFS runs.

4.2.2 Heuristic for Maximum Sharing
When executing a number of BFSs greater than ω, it is

useful to group BFSs in the same MS-BFS run (i.e., in the
same set B) that will share most computations at each level.

Recall that the main idea of MS-BFS is to share vertex ex-
plorations across concurrent BFSs. As a consequence, the
more BFSs explore the same vertex v in a given level, the
less often v will have to be explored again in the same run,
and the faster MS-BFS becomes.

The first clear approach to allow sharing of vertex explo-
rations is to group BFSs based on their connected compo-
nents: BFSs running in the same component should be in
the same MS-BFS run, as different components do not share
any vertices or edges. To optimize the sharing in a single
connected component, we propose a heuristic to group BFSs
based on ordering their corresponding source vertices by de-
gree. Recall that small-world networks are often scale-free
as well, which means that there are few vertices with a high
degree, while most of the vertices have a significantly smaller
number of neighbors. Based on this property and the fact
that small-world networks have a low diameter, our intuition
is that vertices with higher degrees will have a significant
number of neighbors in common. Therefore, this heuristic
comprises sorting the source vertices by descending order of
degree, and then grouping BFSs according to this order to
improve the sharing of vertex explorations. We expect that
a MS-BFS run starting from the highest degree vertices will
have a very efficient execution. In fact, our evaluation in
Section 6.2 shows that, compared with a random assign-
ment of BFSs to MS-BFS runs, this heuristic can improve
the performance by up to 20%.

5. APPLICATION: COMPUTING
CLOSENESS CENTRALITY

Since our approach executes multiple concurrent BFSs,
MS-BFS must handle the application-specific computation
(Line 15 in Listing 3) for multiple BFSs as well, which needs
to be implemented efficiently. As many algorithms are based
on determining the number of neighbors found in a BFS
level, we elaborate how this is done in MS-BFS and de-
scribe a BFS computation to solve a real-world graph an-
alytics problem—calculating the closeness centrality value
for all the vertices in a graph. i.e., the all-vertices closeness
centrality problem.

Closeness Centrality. Computing vertex centrality met-
rics is an important application in graph analytics. Cen-
trality metrics can be used, for instance, to gain knowledge
about how central persons are distributed in a social net-
work, which can, in turn, be used for marketing purposes or
research in the network structure. In the literature, many
centrality metrics have been proposed, including closeness
centrality [27] and betweenness centrality [10]; for this sec-
tion, we focus on the former.

The closeness centrality value of a vertex v measures how
close v is, in terms of shortest path, from all other vertices
in the graph. Essentially, it is based on the inverse of the
sum of the distances between v and all other vertices. From
Wasserman and Faust [35]:

ClosenessCentralityv = (Cv − 1)2

(N − 1) ∗ Σu∈V d(v, u)
where Cv is the number of vertices in the connect compo-
nent of v, and d(v, u) denotes the geodesic distance (i.e.,
the length of the shortest path) between v and u. To com-
pute d(v, u) for all u ∈ V in an unweighted graph, a BFS-
based traversal from v is required to calculate and maintain
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the geodesic distance in the BFS computation. For the all-
vertices closeness centrality problem, a BFS must be run for
every vertex in the graph, which makes this computation-
ally expensive. We use this problem as an example of the
applicability of MS-BFS in a real-world application.

Using MS-BFS. We can leverage MS-BFS to efficiently
solve the all-vertices closeness centrality problem as it en-
ables running hundreds of concurrent BFSs per core to cal-
culate the required geodesic distances. Note that the algo-
rithm does not need to store each distance d(v, u) since it
suffices to find the sum of all distances computed during the
BFSs. An approach to find this sum is to count the num-
ber of discovered vertices for each BFS level, multiply this
number by the current distance from the source, and then
to finally sum all obtained multiplication results. Note that
this needs to be done for each concurrent BFS.

Performing such counting of discovered vertices arises as
an issue when using MS-BFS. For every discovered vertex,
each BFS must determine whether this vertex belongs to it
by detecting if the bit field visitNext[v] contains a bit of value
1 for it. If so, a BFS-local counter must be incremented.
This approach takes time O(n ∗ ω), where n is the number
of discovered vertices in the level.

An alternative is to use hardware operations that count
the number of leading or trailing bits 0 in a bit field: we
continuously find the position of a bit 1 using such an op-
eration, increase the respective BFS-local counter, and set
the bit to 0, until there are no more bits 1 in the bit field.
This approach results in O(n ∗m) time, where m ≤ ω is the
number of BFSs that discovered the vertices in that level,
i.e., the number of bits 1 in the visitNext bit fields. How-
ever, this is still inefficient when most of the bits in a field
have value 1, and also because this operation is sensitive to
branch mispredictions, since the CPU cannot predict well
whether there will be a new iteration over the bit field.

In order to provide a more efficient solution, we designed
a O(n) algorithm that efficiently updates BFS-local neigh-
bor counters in a branch-free manner. Our general idea is to
use a space-efficient 1 byte wide neighbor counter for every
BFS. We update these counters every time the BFS com-
putation is executed and copy their information to wider
fields once they overflow. The main difference to the pre-
vious approaches is that we update 1-byte counters using
SIMD instructions available in modern CPUs: by masking
the visitNext[v] bit field, we add 1 to every counter belong-
ing to a BFS that discovered v in the current level and leave
other counters unmodified. Note that, since the runtime of
this BFS computation step is independent from the number
of BFSs that discover v, it optimally leverages the benefits of
ANP as presented in Section 4.1.1, which reduces the num-
ber of executions of the BFS computation. Due to the lack
of space, we omit further details of our BFS-computation
approach.

6. EXPERIMENTAL EVALUATION
To assess the efficiency of our approach and the presented

optimizations, we study the performance of MS-BFS using
both synthetic and real datasets. Notably, we report ex-
periments on scalability with respect to input size, number
of cores, and number of BFSs (source vertices), and discuss
the impact of the tuning techniques introduced in Section 4.

Table 3: Properties of the evaluated datasets.
Graph Vertices (k) Edges (k) Diameter Memory
LDBC 50k 50 1,447 10 5.7 MB
LDBC 100k 100 5,252 6 20.4 MB
LDBC 250k 250 7,219 10 28.5 MB
LDBC 500k 500 14,419 11 56.9 MB
LDBC 1M 1,000 81,363 8 314 MB
LDBC 2M 2,000 57,659 13 228 MB
LDBC 5M 5,000 144,149 13 569 MB
LDBC 10M 10,000 288,260 15 1.14 GB
Wikipedia 4,314 112,643 17 446 MB
Twitter 41,652 2,405,026 19 9.3 GB

Also, we compare the performance of MS-BFS with the text-
book BFS and a state-of-the-art BFS algorithm.

6.1 Experimental Setup
BFS Algorithms. In our experimental evaluation we use
a number of different BFS implementations for comparison
purposes: (i) MS-BFS for the CPU register widths 64, 128,
and 256 bits; (ii) a non-parallel version of the Direction-
Optimized BFS (DO-BFS) [8], a state-of-the-art BFS algo-
rithm; and (iii) Textbook BFS (T-BFS) as shown in List-
ing 1.

For each MS-BFS variant we assess the performance when
using a single register as well as using multiple registers for
a single bit field to fill an entire cache line. We indicate the
latter using the suffix CL and follow the approach explained
in Section 4.2.1. We enable all other optimizations from
Section 4 in our experiments with MS-BFS unless otherwise
noted.

We performed our comparisons by using each of the al-
gorithms to compute all-vertices closeness centrality, which,
as described before, is a computationally expensive graph
analytics problem that uses BFS-based graph traversal. It
is worth mentioning that the overheads for computing the
closeness centrality values are similar among the BFS algo-
rithms in order to provide a fair comparison.

Other Competitors. Note that we do not compare MS-BFS
with parallel BFS implementations as they are not optimized
for the efficient execution of large number of BFSs. In fact,
we implemented and experimented with the single-socket
version of the parallel BFS introduced by Agarwal et al. [2],
where the authors propose a parallel BFS implementation
that uses a bitmap for the seen data structure, as well as
efficient atomic operations to amortize the synchronization
costs of the level-synchronous parallelization. When varying
the number of cores, running single-threaded T-BFSs or DO-
BFSs showed a significantly better BFS throughput than
sequentially executing the same number of parallel BFSs to
solve the all-vertices closeness centrality problem; due to a
lack of space we cannot provide the complete results here.
The main reason for this throughput difference is that, al-
though highly optimized, the synchronization costs of paral-
lel BFSs hinder good scalability for running a large number
of BFSs.

As a further competitor we experimented with the well-
known open-source graph database Neo4j [26]. We used
their integrated closeness centrality computation function
and benchmarked its hot-cache runtime. On the LDBC
50k graph with 50,000 vertices and 1.5 million edges the
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Figure 4: Data size scalability results.

all-vertices closeness centrality computation took 23 hours.
Because Neo4j only used a single CPU core, and assuming
perfect scalability we estimate the parallelized runtime on
our evaluation machine would be 23 minutes which is still
more than two orders of magnitude slower than the Text-
book BFS we show. Compared to MS-BFS it is nearly four
orders of magnitude slower. We, thus, do not include Neo4j
in our comparison.

Software and Hardware Configuration. We ran the
majority of our experiments on a 4-socket server machine
with Intel Xeon E7-4870v2 CPUs, that has a total of 60
cores clocked at 2.30 GHz and with a Turbo Boost fre-
quency of 2.90 GHz. The server is equipped with 1 TB
of main memory equally divided over four NUMA regions.
The experiments for Figures 6 and 7 were run on a ma-
chine equipped with an Intel Core i7-4770K CPU clocked
at 3.50 GHz with a Turbo Boost frequency of 3.9 GHz; we
use this CPU as it supports the AVX-2 instruction set for
bit operations on 256-bit wide registers. All algorithms were
implemented in C++ 11, compiled with GCC 4.8.2, and ex-
ecuted on Ubuntu 14.04 with kernel version 3.13.0-32.

Datasets. In our evaluation, we experimented with both
synthetic and real datasets. For the former, we used the
LDBC Social Network Data Generator [9, 21], which was
designed to produce graphs with properties similar to real-
world social networks. With this generator, we created syn-
thetic graphs of various sizes—from 50,000 to 10 million
vertices, and with up to 288 million edges. Additionally,
we evaluated the performance of MS-BFS running on two
real-world datasets from Twitter and Wikipedia. The Twit-
ter dataset [34] contains 2.4 billion edges following the re-
lationships of about 41 million users, while the Wikipedia
dataset [36] represents a snapshot of the data as of July 2014
consisting of articles and links connecting them. Note that
we consider the edges in all datasets as undirected. Table 3
shows the properties of the graphs used in our evaluation,
including number of vertices and edges, diameter, and mem-
ory consumption of the used graph data structures.

6.2 Experimental Results
Data Size Scalability. To understand how MS-BFS scales
as the size of the graph increases, we measured its runtime
for different synthetic datasets, containing up to 10 million
vertices and 288 million edges. Figure 4 shows the scalability
of the BFS algorithms for all LDBC datasets we introduce
before. The runtimes are measured in minutes and do not
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Figure 5: Multi-core scalability results.

include loading times. The algorithms were executed using
60 cores, i.e., multiple runs of each algorithm were executed
in parallel using all the cores available in the machine.

From the results, it is clear that T-BFS and DO-BFS do
not scale well as the data size increases when running mul-
tiple BFSs. As an example, T-BFS and DO-BFS take 135
minutes and 22 minutes, respectively, to process the LDBC
graph with 1 million vertices, while MS-BFS takes only 1.75
minutes. MS-BFS shows excellent scalability for all pre-
sented graphs and makes computations feasible on a single
machine that are out of reach with traditional approaches:
calculations that formerly took hours are sped up to min-
utes.

The results show the benefits of sharing computation among
multiple concurrent BFSs. Even for large graphs (which
means more BFS levels), MS-BFS has a good runtime as a
significant amount of vertex explorations is shared. Also,
our use of bit operations provides very efficient concurrency
BFS execution in a single core. MS-BFS runs many con-
current BFSs, while T-BFS and DO-BFS can only perform
one traversal per execution. In Figure 4, we can also show
that using an entire cache line for bit fields in MS-BFS sig-
nificantly improves the algorithm’s performance. Our eval-
uation machine uses 512 bit wide cache lines, which we fill
using the data from 4 128-bit registers fill, thus allowing the
execution of 512 concurrent BFSs in a single core.

Multi-Core Scalability. In Figure 5, we show the scal-
ability of MS-BFS, T-BFS and DO-BFS with increasing
number of CPU cores. Instead of showing the execution
runtime, we measure the performance in traversed edges per
second (TEPS), i.e., the total number of edges considered
for traversal divided by the runtime [1], when running all-
vertices closeness centrality in LDBC 1M. We report the
results in GTEPS, i.e., billion TEPS.

Up to 60 cores, Figure 5 depicts the nearly linear scala-
bility of MS-BFS: by keeping the resource usage low for a
large number of concurrent BFSs, the approach can execute
more traversals as the number of cores increases. Notably,
by using 128-bit registers and the entire cache line, MS-BFS
can reach 670 GTEPS using 60 cores. T-BFS and DO-BFS
shows a significantly lower performance.

MS-BFS does not exhibit an exact linear scale-up due
to the activated Turbo Boost functionality in recent Intel
CPUs. Turbo Boost increases the clock frequency of the
CPUs when fewer cores are used, i.e., the more cores the
algorithm uses, the lower the clock rate is. We chose not
to disable this feature to show how the algorithm behaves
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under this functionality often used by server machines.

BFS Count Scalability. The main goal of MS-BFS is to
execute a large number of BFSs efficiently. To evaluate this
property, we study the scalability of MS-BFS as the number
of BFSs increases. In Figure 6 we show the scalability from
1 to 2,000 closeness centrality computations. We, again, use
the LDBC 1M dataset and report the results in GTEPS.
In contrast to the previous experiment, this time we only
use a single CPU core in order to make the results easier to
understand. We note that we use same source vertices when
comparing the different algorithms.

The number of traversed edges per second in T-BFS is
constant, which is an expected result as BFSs are run se-
quentially. For MS-BFS, we see a different behavior: as
more BFSs are executed, the GTEPS increase, since multi-
ple BFSs can run concurrently in a single core. The peaks
in the performance correspond to when the number of BFSs
is a multiple of the bit field width of the MS-BFS run, which
is 256 for MS-BFS 256, and 512 for MS-BFS 256 CL. The
performance decays are related to the need for sequentially
executing multiple MS-BFS runs as the bit fields become en-
tirely filled. Nevertheless, by re-ordering the source vertices
(Section 4.2.2), the performance keeps increasing as more
BFSs are executed, which shows that MS-BFS provides good
scalability with respect to the number of traversals.

Speedup. Table 4 shows the speedup of MS-BFS compared
to T-BFS and DO-BFS when running all-vertices closeness
centrality for two synthetic datasets as well as for the Wiki-
pedia and Twitter datasets; in the Twitter dataset, we ran-
domly selected 1 million vertices and compute the closeness
centrality values for only these vertices. In these exper-
iments, 60 cores were used. Some runs, indicated by an
asterisk, were aborted after executing for more than eight
hours, and the runtimes were then estimated by extrapolat-
ing the obtained results. From the results, we can see that
MS-BFS outperforms both T-BFS and DO-BFS by factors

Table 4: Runtime and speedup of MS-BFS com-
pared to T-BFS and DO-BFS.
Graph T-BFS DO-BFS MS-BFS Speedup
LDBC 1M 2:15h 0:22h 0:02h 73.8x, 12.1x
LDBC 10M ∗259:42h ∗84:13h 2:56h 88.5x, 28.7x
Wikipedia ∗32:48h ∗12:50h 0:26h 75.4x, 29.5x
Twitter (1M) ∗156:06h ∗36:23h 2:52h 54.6x, 12.7x
∗Execution aborted after 8 hours; numbers estimated.
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Figure 7: Speedup achieved by cumulatively apply-
ing different tuning techniques to MS-BFS.

of almost 2 orders of magnitude, varying from 12.1x to 88.5x.

Impact of Algorithm Tuning. To analyze the perfor-
mance gains obtained by using each tuning technique de-
scribed in Section 4, we evaluated their impacts by means of
speedup. As the baseline, we use the MS-BFS algorithm as
described in Section 3.2 using 64-bit registers. We then vary
the register size and the techniques applied to the algorithm
cumulatively and in the following order: aggregated neigh-
bor processing (ANP), direction-optimized traversal (DOT),
use of entire cache lines of 512 bits (CL), neighbor prefetch-
ing (PF) and heuristic for maximum sharing (SHR). The
results are shown in Figure 7.

Using wider registers is beneficial for all optimizations, as
more BFSs can be run concurrently. From the figure we
can see that using entire cache lines (CL) technique pro-
vides the most significant speedup. ANP also shows a sub-
stantial speedup, in particular when using wide registers,
which shows the impact of improving the memory locality
for graph applications. Prefetching (PF) only shows no-
ticeable speedup for smaller register sizes; it exhibits nearly
no improvement when applied to MS-BFS using wide reg-
isters. Together, the tuning techniques improve the overall
performance of MS-BFS by more than a factor of 8 over the
baseline.

7. CONCLUSION
In this paper, we addressed the challenge of efficiently

running a large number of graph traversals in graph analyt-
ics applications. By leveraging the properties of small-world
networks, we proposed MS-BFS, an algorithm that can run
multiple BFSs concurrently in a single core. MS-BFS re-
duces the number of random memory accesses, amortizes
the high cost of cache misses, and takes advantage of wide
registers and efficient bit operations in modern CPUs. We
demonstrated how MS-BFS can be used to improve the per-
formance of the all-vertices closeness centrality problem, and
we are confident that the principles behind our algorithm
can significantly help speedup a wide variety of other graph
analytics algorithms as well. Our experiments reveal that
MS-BFS outperforms state-of-the-art algorithms for running
a large number of BFSs, and that our approach, combined
with the proposed tuning techniques, provides excellent scal-
ability with respect to data size, number of available CPUs,
and number of BFSs.

There are numerous interesting directions for future work,
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remarkably: redesign of MS-BFS for distributed environ-
ments and GPUs; new heuristics to maximize the computa-
tion sharing among BFSs; and the use of MS-BFS in query
optimizers to batch BFS queries in order to improve the
throughput of graph databases.
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