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Abstract Although compiling queries to efficient ma-

chine code has become a common approach for query

execution, a number of newly-created database system

projects still refrain from using compilation. It is some-

times claimed that the intricacies of code generation

make compilation-based engines too complex. Also, a

major barrier for adoption, especially for interactive

ad-hoc queries, is long compilation time.

In this paper, we examine all stages of compiling

query execution engines and show how to reduce com-

pilation overhead. We incorporate the lessons learned

from a decade of generating code in HyPer into a design

that manages complexity and yields high speed. First,

we introduce a code generation framework that estab-

lishes abstractions to manage complexity, yet generates

code in a single fast pass. Second, we present a program

representation whose data structures are tuned to sup-

port fast code generation and compilation. Third, we

introduce a new compiler backend that is optimized for

minimal compile time, and simultaneously, yields supe-

rior execution performance to competing approaches,

e.g., Volcano-style or bytecode interpretation.

We implemented these optimizations in our database

system Umbra to show that it is possible to unite fast
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compilation and fast execution. Indeed, Umbra achieves

unprecedentedly low query latencies. On small data sets,

it is even faster than interpreter engines like DuckDB

and PostgreSQL. At the same time, on large data sets, its

throughput is on par with the state-of-the-art compiling

system HyPer.

Keywords Relational Query Execution · Code

Generation · Low Latency

1 Introduction

Query compilation is a widely adopted approach for

relational database systems [1, 7, 10, 34, 46]. Creating

machine code for every query removes interpretation

overhead and allows the database system to extract the

highest performance from the underlying hardware. So

far, high processing performance was most relevant in

the field of in-memory databases [5, 6, 13,15,17,20,23,

25,30,31,36]. Yet, the growing bandwidth capabilities

of solid state drives and non-volatile memory (also with

large bandwidth) make query compilation attractive for

a growing field of hardware configurations [11,27,40].

Compilation works well for large analytical work-

loads. However, for some use-cases the extra time spent

on compilation—the latency overhead of compilation—

can be a problem. For example, interactive data ex-

ploration tools send many queries to the underlying

database system; often even multiple queries for a single

user interaction. Any overhead from compilation delays

the query response and, especially with a large number

of queries per interaction, becomes noticeable to the

user and causes them to idly wait. Vogelsgesang et al.

reported that for the interactive data exploration tool

Tableau some queries, even after careful tuning, still

take multiple seconds just in compilation step of the
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Fig. 1 Umbra’s low-latency path from query plan to result. – In this paper, we explain how Tidy Tuples, Umbra IR,
and Flying Start minimize the time each query spends on this path—for short-running and long-running queries alike.

underlying database system Hyper [45]. The Northstar

project also encountered the issue. They observed that

compilation ”has an up-front cost, which can quickly add

up” [19] and thus severely deteriorates the interactive

user experience.

This paper presents multiple components for compil-

ing query engines to achieve low query latency ; that is, to

minimize the total time spent for query compilation and

execution. Compile time must be addressed in the whole

compilation pipeline, thus we address every component

(c.f., Figure 1). We introduce 1 Tidy Tuples, a fast

code generation framework, 2 Umbra IR, an efficient

program representation, and 3 Flying Start, a compiler

to quickly generate machine code. All components are

integrated into the database system Umbra [27] and our

experiments show that together, they effectively reduce
compilation time and maintain high query execution

speed.

The first step toward low query latency is a fast code

generator. We present 1 the Tidy Tuples relational code

generator framework. It lowers algebraic operators to

Umbra IR in a single pass for low compilation time

and in certain cases utilizes pre-compiled code to avoid

compilation time all-together. Tidy Tuples is a latency-

streamlined design that achieves code generation up to

three orders of magnitude faster than competitors (e.g.,

1000× faster than LB2 [44]) while still providing a clean,

type-safe, and easy to understand interface.

The question of how to build a code generator is

not yet settled [42–44], as the generator must handle

the complexity of relational operators, many SQL types,

NULL values, and much more. To handle complexity,

a code generator should adhere to the principles of

good software engineering. Tahboub et al. found an el-

egant way to achieve this. With the LB2 system [44]

they built a well-architected query interpreter in Scala.

The interpreter is based on the data-centric model, but

uses callback functions to structure communication be-

tween operators. Employing callback functions is a struc-

tural advancement that provides the data-centric model

with the clear structure of Volcano-style interpreters.

Through extensions in the Scala compiler they are able

to transform this interpreter into a code generator so

that they get a system with a type safe, easy to read,

well-architected code generator.

Unfortunately, the LB2 approach requires very long

code generation times, which add to query latency. It

fundamentally limits query execution speed to three

queries per second. The authors report 299 ms for code

generation geometric mean over all TPC-H queries, and

that is even before the compiler started generating ma-

chine code, so the approach is not viable for low query

latencies. We transfer the essence of the LB2 code gener-

ator architecture to the systems language C++ and into

our Tidy Tuples design. This way, Tidy Tuples obtains a

clear structure, yet achieves code generation more than

1000× faster. Additionally, we contribute abstractions

on top of the code generator that decompose all issues

of code generation into a layered structure.

The next component for low query latency is 2 Um-

bra IR, a custom intermediate program representation.

It is modelled after LLVM’s intermediate representation,

but its data structures are optimized for writing and

reading speed. Tidy Tuples uses Umbra IR as target for

the code generator and source for all compilation back-

ends. This reduces the time to generate programs and to

transform them to executables. An alternative, the com-

monly used intermediate representation from the LLVM

compiler framework, is expressive and agile. In the com-

piler framework, it is used as the common format which

all optimization passes edit during compilation. However,

we found that its flexibility is counter-productive for

query latency. Therefore, with Umbra IR, we trade off

the ability to arbitrarily transform programs for optimal

writing and reading speed.

Lastly, we introduce 3 the novel Flying Start com-

pilation backend which transforms Umbra IR directly

into machine-code. Flying Start reduces query latency in

two ways: It minimizes time spent for compilation as it

generates machine-code very quickly. Further, it reduces

the time spent for execution as the speed of the created

machine-code is close to that of thoroughly optimized

code. The Flying Start backend is integrated into Umbra

through the adaptive execution technique [18]. This al-

lows Umbra to switch dynamically between low-latency

compilation with Flying Start and highest-speed query
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Fig. 2 Best of Both Worlds – Umbra’s new query engine
combines fast compilation, previously reserved for bytecode in-
terpreters, with the fast execution speed of native instructions.
For example, in TPC-H query 2 the execution time compared
to all other options is greatly reduced. SF=1, Threads1=4

execution by optimizing compilation with the LLVM
compiler framework.

Adaptive execution was introduced first to the HyPer

query engine. For query execution it has a choice be-

tween using intensively optimized code for high-speed

execution and two low-latency compilation backends.

For low latency, HyPer can either use a bytecode in-

terpreter or the optimizing compiler LLVM with most

optimizations turned off (turning optimizations on takes

too much compilation time for short-running queries).

In the example of TPC-H query 2, HyPer’s low-latency

choices are the top two in Figure 2. It can either priori-

tize fast execution, but spend more time in compilation

with the LLVM backend, or use the bytecode interpreter

for fast compilation at the cost of slower execution.

Unfortunately, in cases like this, both options have sig-

nificant shortcomings: Compilation time with LLVM is

not amortized and the bytecode interpretation is so slow

that it diminishes the gains from its fast compilation.

Ultimately, the query engine is stuck in a performance
gap between interpretation and compilation, with no

great choice for low query latency.

With the Flying Start backend we show a solution

for the low-latency spectrum, i.e., short-running queries.

It generates code even faster than HyPer’s bytecode

interpreter and the resulting execution speed is on par

with HyPer’s LLVM-generated code. The Flying Start

compilation backend, thus, is able to capture the best

of both worlds: It combines great compilation speed

with great execution speed. Effectively, it closes the

performance gap between the two execution options

and therefore offers much lower query latencies than

previous approaches.

1 Umbra and HyPer use a single thread for compilation and
multiple threads for query execution.

Tidy Tuples, Umbra IR, and the Flying Start back-

end represent the foundation of our new database sys-

tem Umbra. Together, these three components achieve

query latencies for short-running queries that previously

were only possible using interpretation. Overall, exper-

imental results show that the triad is so effective at

reducing latency that Umbra reaches the latency realms

of interpretation-based engines like DuckDB and Post-

greSQL, all while keeping the execution speed of state-

of-the-art compiling systems like HyPer for long-running

queries.
The paper is organized as follows: Section 2 explains

the code generator and the Tidy Tuples design. Sec-

tion 3 details how our custom intermediate representa-

tion aides fast code generation. Section 4 outlines the

Flying Start compiler and how it achieves low compi-

lation time. The impact of these latency optimizations

on the performance of Umbra is evaluated experimen-

tally in Section 5. Section 6 discusses related work, and

Section 7 summarizes the main results of this work.

2 Tidy Tuples: A Low-Latency Code

Generation Framework

The initial component important for low latency is the

code generator—the component that lowers relational

plans to imperative programs. For maximum speed, we

propose to create programs in a single pass over the in-

put. Unfortunately, performance optimizations are often

at odds with principles of good software engineering,

e.g., separation of concerns, readability, extensibility,

and accessibility to newcomers. This also applies to

building a SQL database system. Such a system must

be able to handle arbitrarily complex SQL queries, han-

dle many SQL types, and cope with the intricacies of

NULL values. These requirements are already complex,

but paired with the need to optimize for speed one can

quickly clash with software engineering principles.

In this section we present our Tidy Tuples design

for a relational code generator. It caters to the need for

speed, but also provides structure to adhere to principles

of good software engineering. Tidy Tuples is a toolbox

of complementary components that are organized into

layers. It is a solid base to implement relational operators

that are easy to read and achieve fast execution.

To introduce the architecture, we first take a short

look at the life of a query within a compiling database

system in the follwoing Section 2.1. Section 2.2 starts

with an overview of the layers in the toolbox and their

contents. In Section 2.3, we demonstrate the layers us-

ing a short example—peeling off abstractions step by

step to provide insight into how the layers fit together.

This section shows most clearly how the query plan
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is conceptually lowered in multiple steps. Finally, we

discuss some important details, including the SQLValue

abstraction in Section 2.4 and the low-level code gener-

ator interface in Sections 2.5, 2.6, and 2.7.

2.1 Background: Compilation Pipeline

Let us first give an overview of the life of a SQL query

inside a compiling DBMS, using the system Umbra as

an example. A query is parsed to an abstract syntax

tree, which is then semantically analyzed and translated

to relational algebra. The query optimizer takes the re-

lational algebra tree and creates an optimized physical

plan. The plan describes how to process data to obtain

the result. All steps described up to here are commonly

found in any relational database system. Only the fol-

lowing steps are specific to compiling query execution

engines. From the optimized physical plan, the code

generator must create a program so that the execution

of the program produces the query result. To see an
illustration of the process, find the query plan in the

top left corner of Figure 4.

Tidy Tuples translates the physical plan operator
by operator. It instantiates an operator translator for

each algebraic operator which is responsible for gener-

ating code that will execute its algebra operator. Con-

ceptually, operator translators get tuples from their

child operators and pass control to each other following

the produce/consume interface [25]. During this transla-

tion, every translator appends instructions to a program.

Ultimately, all operator translators together create a

program that will produce the query result. Umbra

represents these programs in a custom intermediate

representation called Umbra IR (see Section 3).

There are two options for converting a program

from Umbra IR into an executable: The low-latency

Flying Start backend (see Section 4) or the LLVM-based

optimizing backend [21]. Both produce machine code

which computes the query result when executed. Of

all the steps involved in this process, the Tidy Tuples

framework focuses on translating algebraic execution

plans into IR in a clear, modular, and maintainable

fashion. The remainder of this section explains in detail

how Tidy Tuples structures the code generator.

For the description of the Tidy Tuples framework, it

is important to differentiate between the two compilation

phases “system compile time” and “query compile time”

(c.f., Figure 3). At system compile time the source code

of the DBMS is compiled into an executable (DBMS)

binary. A user can start that binary to run the system.

During runtime the system accepts SQL queries, com-

piles a binary for each query, and runs the query-specific
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Fig. 3 Compilation phases of the compiling system
Umbra. – C++ compilation happens once when the DBMS
binary is assembled. Query compilation occurs for every query,
thus happens many times during system runtime.

binary to obtain the query result. The distinction be-

tween system compile time and query compile time is

relevant for the description of the Tidy Tuples compi-

lation framework. For example, Tidy Tuples relies on

the C++ type system to ensure correctness of code

generated at query compile time. Naturally, correctness
checks within the C++ type system already happen

at system compile time (thus produce no overhead at

query compile time).

2.2 Layer Overview

The components of Tidy Tuples are arranged into the

five logical layers shown in Figure 4. Each layer acts as a

level of abstraction and can use the tools of lower layers

to implement its functionality so that conceptually a

query plan is lowered through the layers.

– Operator Translators: The top-most layer con-

tains algebra operator translators which coordinate

in produce-consume style [25].

– Data Structures: To handle algorithmic challenges,

operator translators use components from the data

structure layer, e.g., hash tables (i.e., components

that generate code to act on hash tables).

– Tuples: The tuples layer provides operations that

work on multiple SQL values, e.g., packing tuples

into a memory efficient format and hashing.

– SQL Values: Operators use the SQL value layer

to implement SQL data-type specific parts in which

operations on SQL types are performed. These op-

erations include addition, substring search, equality

comparison, and many more. Furthermore, the SQL

value layer offers tools to operate on SQL values

with standard-conform NULL-semantics.

– Codegen API: All these layers directly or indirectly

use the Codegen layer to append instructions to the

output program. Codegen offers operations on low-

level types which are close to the hardware, e.g.,

Int8, UInt64, Double, Ptr<Int8>, and also seamlessly

integrates C++ types and functions. This is exposed
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Fig. 4 Architecture for a low-latency code generation
engine – In the Tidy Tuples code generation framework each
layer offers abstractions to simplify the layers above.

through a statically-typed interface, which ensures
that, e.g., the result of a:Int8 + b:Int8 is again of

type Int8. Furthermore, the Codegen layer provides

constructs to generate control flow.

Overall, these layers are structured from coarse-

grained upper layers to fine-grained lower layers. The

upper layers perform a lot of work for one operation, e.g.,

insert all tuples into a hash table, whereas lower layers

perform little work for one operation. Thus, operations

on lower layers must emit only very few instructions

into the program. Conversely, operations in upper layers

ultimately emit many instructions. However, this does

not mean that the implementation of an upper layer op-

eration must be very lengthy or emits many instructions

directly. Through the Tidy Tuples layering scheme, they

can use components from lower layers so that the upper

layer source code is concise and the intent is expressed

directly.

2.3 From Operators to Instructions

So far, the overview of the layers gave an abstract

description of where tools belong and how they interact.
To make this more tangible, let us walk through snippets

of the code. The walk-through starts at the top layer, at

an operator translator, and then repeatedly zooms in on

one element of the implementation at-a-time to reach

the next lower layer until it arrives at the Codegen layer.

This should give insight into the code structure in each

layer, how the layers interact, and how they generate

code in a single fast pass.

The walk-through inspects the layers along the ex-

ample of an in-memory hash-join. At the top-most ab-

straction level the hash-join operator translator must

take each incoming tuple from the build side and insert

it into a hash-table. The translator therefore needs to

generate code to handle many issues. It must hash the

keys from the tuple according to each attribute’s SQL

type, it needs to find the spot in the hash-table data

structure where the tuple belongs, memory must be al-

located for storing the tuple, and, finally values must be

moved into the allocated spot. Additionally, the source

code that implements all this should be well-structured,

reader-friendly, and very fast at generating code.

Figure 5 shows the proposed Tidy Tuples imple-

mentation, which meets all these requirements. Observe

how the hash-join translator, in order to generate code,

merely has to set up a hash-table2 (Line 5) and insert a
tuple (Line 11). All further details are delegated to lower

layers. In the next lower layer, the data structure layer,

the hash-table insert function assembles the keys and

values (Lines 20-21), computes a hash (Line 22), finds

the appropriate spot to insert (Line 25), and finally asks

the tuple storage component to place the tuple into that

spot (Lines 27-28). So, again, the layer decomposes the

task and delegates to lower layers. The same mechanic

repeats in the Tuples and the SQL Value layer until the

Codegen layer is reached. It is the type-safe foundation

on which all layers above rest.

Overall, the shown organization into layers results
in well-structured source code that separates and orders

many concerns. Yet, it requires only a single pass over

the physical query plan to generate a program in low-

level intermediate representation.

2.4 SQL Values

The explanation in the previous section uses the Code-

gen interface only for a simple store instruction (and

some arithmetic). This is one of the simplest operations

inside a SQL database system, but clearly, a DBMS

needs to support more complex functionality than that.

Strings, dates, intervals, JSON, and fixed-point numer-

ics offer many (sometimes) complex functions that need

to be integrated into generated code. One option would

be to implement this functionality in the Codegen layer

and provide layers above that with the complex SQL

types they need to work with. However, our design aims

to reduce complexity from top to bottom layers and

to keep each layer simple. To keep the Codegen layer

simple, it only offers primitive types plus the means to

operate on C++ types. Therefore, we implement the

rich semantics of SQL types above the Codegen layer in

the SQL Value layer.

2 Information Unit (IU) is effectively a reference to a col-
umn [24].
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1 # Layer 1: Operator Translators
2 HJTranslator::HJTranslator(CompilationContext& c,
3 algebra::Join& op, Pipeline& p, algebra::IUSet& required){
4 ...
5 hashTable.buildLayout(keys, required /*the payload*/ );
6 }
7

8 void HJTranslator::consume(ConsumerScope& scope) {
9 Ptr<Proxy<HashTable>> ht = ...;

10 if (scope.contains(op.left)){ // build side

11 hashTable. insertEntry (ht, scope);

12 } else ... // probe side
13 }
14

15 # Layer 2: Data Structures

16 void HashTable:: insertEntry (Ptr<Proxy<HashTable>> ht,

17 ConsumerScope& scope) {
18 // Resolve the key
19 vector<SQLValue> keys, values;
20 for (IU& k : keyIUs) keys.push_back(scope.deriveValue(k));
21 for (IU& v : payloadIUs) values.push_back(scope.deriveValue(v));
22 UInt64 h = Hash::hash(keys);
23 UInt64 size = keyStore.size(keys) + payloadStore.size(values);
24 // Insert entry for given hash h
25 Ptr<UInt8> entry = Proxy<HashTable>::insert::call(ht, h, size);
26 // Write keys and values into entry
27 keyStore.pack(entry, keys);

28 payloadStore. pack (entry + keyStore.size(), values);

29 }

30 # Layer 3: Tuples

31 void Storage:: pack (

32 Ptr<UInt8> target, vector<SQLValue>& values){
33 unsigned slot = 0;
34 NullIndicator nullIndicator;
35 for (SQLValue& value : values) {//Uses Layer 4: SQLValue
36 Bool isNull = v.null();
37 nullIndicator.store(slot, isNull);
38 {
39 If nullCheck(!isNull); // If from Layer 5: Codegen

40 store (target + layout[slot++].offset, value);

41 }
42 }
43 nullIndicator.store(target + layout.nullOffset);
44 }
45

46 CGType getStorageType(SQLValue::Type t) { ... }

47 void Storage:: store (Ptr<Uint8> target, SQLValue v){
48 switch(getStorageType(v.value.type())){

49 case Int64: Ptr<Int64>(target). store (v.value());

50 ...
51 }
52 }
53

54 # Layer 5: Codegen

55 void Ptr<Int64>:: store (Int64& v) {
56 // Calls into Layer 6: IR
57 irProgram.createStore64Instr(v.get(), ptr);
58 }

Fig. 5 Illustration of an in-memory inner hash join – (Lines 1-13) using a hash-table from the Data Structures Layer
(Lines 15-29) which uses the Tuples Layer (Lines 30-52). Eventually, the Tuples Layer uses the Codegen Layer (Lines 54-58)
to create a store instruction.

The main interface of the SQL Value layer is the

SQLValue class. A SQLValue consists of a NULL indicator,

the value, and a SQL type specifier (e.g., Varchar, Inte-

ger). Its general interface to invoke operations are the

evaluateBinary and evaluateUnary functions which apply

any of the built-in functions. In addition, functions that

are frequently used by programmers are offered explic-

itly, e.g., equality comparison. This interface serves two
purposes. First, it bridges from the realm of the (at sys-

tem compile time) generically typed SQLValue, whose

type is determined by the attached type specifier, into

the realm of the statically-typed Codegen. Second, it

provides a single place that is responsible for the intri-

cacies of SQL values and operations. SQLValue handles
nullability by also carrying a NULL indicator, and all

operations on SQLValues handle NULL propagation as

dictated by each specific operation. Furthermore, each

operation provides overflow checking and implicit type

casting if appropriate.

2.5 Primitive Types for Code Generation

The SQL Values described in the previous section map

SQL types to primitive types and construct operations

on SQL types from operations on primitive types. Code-

gen offers a statically-typed interface to work with prim-

itive types and other means to create programs which

we show in the following sections.

Most importantly, Codegen offers classes to gener-

ate code for primitive types and uses C++ operator

overloading to make it convenient to use. The types are

modeled after data types that modern CPUs provide

and the basic types that are available in C++. Table 1

lists those types and gives an overview of the main

methods they provide to generate code.

Any of the operations on the primitive types have a

statically-typed interface. For example, the result of a

comparison of Doubles is a Bool and the Ptr<Int8>.load()

returns a Int8. This greatly helps to reduce bugs in

code generation and reduces the complexity burden

on the programmer as they do not have to keep track

of types while implementing algorithms. To see this

static type system in action, let us have a look at the

implementation of our hash function. It generates code

to compute a hash of all given SQLValues. As it operates

on multiple SQLValues, it belongs to the Tuples layer.

1 # Tuples layer

2 // Hash.cpp, Hash values

3 UInt64 Hash::hashValues(vector<SQLValue> values) {

4 ... //Concat. all low-level types to 64bit integers

5 //Hash concatenated values into two 32-bit integers

6 UInt64 hash1(6763793487589347598);

7 UInt64 hash2(4593845798347983834);

8 for (UInt64 v : concatenatedValues) {

9 hash1 = hash1.crc32(v); hash2 = hash2.crc32(v);}

10 // Combine the two 32-bit hashes into a 64-bit hash

11 UInt64 hash = hash1 ˆ hash2.rotateRight(32);

12 hash *= 11400714819323198485;

13 ... // Hash the C++ types
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Table 1 Codegen primitive types – Type wrappers and
operations on them available in code generation API

Type Available Operations

(U)Int(8-64) + - * / % ~ & | ^ << >>

ashr rotateL rotateR

bswap crc32 == ...

Bool lnot && || select == ...

Double + - * / % pow == ...

Data128 build extract

Ptr<T> load store atomicLoad atomicStore

atomicXchg atomicCmpXchg refMember

14 return hash;

15 }

Observe how the primitive types from the Code-

gen interface are used as regular variables (e.g., Line 9

and 12), and the implementation reads as if the hash

function directly acted on the values to hash them. This

makes the implementation accessible to readers, yet,

when executed on, e.g., two 32-bit integers, the follow-

ing IR code is generated:

1 %1 = zext i64 %int1; Zero extend to 64 bit

2 %2 = zext i64 %int2;

3 %3 = rotr i64 %2, 32; Rotate right

4 %v = or i64 %1, %3; Combine int1 and int2

5 %5 = crc32 i64 6763793487589347598, %v; First crc32

6 %6 = crc32 i64 4593845798347983834, %v; Scnd. crc32

7 %7 = rotr i64 %6, 32; Shift second part

8 %8 = xor i64 %5, %7; Combine hash parts

9 %hash = mul i64 %8, 11400714819323198485; Mix parts

What also becomes apparent in this example is that
even though the implementation of our hash function

takes SQLValues as input the generated code is without

any remainders of these abstractions. It merely consists

of the necessary instructions to perform the task, which

constitutes very compact code that can be translated

and executed efficiently.

2.6 Host Language Integration

Previous sections explained how to conceptually lower

high-level constructs such as relational algebra opera-

tors, data structures, and SQL types to programs in

Umbra intermediate representation. This code genera-

tion process is already fast, as only a single pass over

the query plan is required. It is even faster, though, not

to generate code at all. Instead, in some situations, it

is possible to call functions implemented in the host

language, previously compiled at system compile time,

without any runtime performance penalty.

To enable seamless integration between generated

and precompiled code, Codegen provides a system of

proxies that lets us generate operations on any C++

class. We can access data members and call member

functions from generated code. Thus, for every feature to

implement, the proxy system offers a choice of whether

to write code that generates code or to implement the

functionality in C++ and call it from generated code.

The advantage of the latter option is reduced code gen-

eration time.

The use of this technique is shown, e.g., in Figure 5

Line 25. Instead of generating code to create an entry

in a hash-table, manage memory allocation, etc., we

call a precompiled C++ function. This reduces code
generation time and removes complexity from the code

generator.

The proxy system is statically typed like the rest of

Codegen and therefore offers a fully typed view of C++

classes. It does not need to be created or maintained

manually. We generate proxies completely automatically

during C++ compile time for a predefined list of classes

and functions.

The proxy system has the valuable property that it

reduces query compile time by incorporating precom-

piled snippets, yet does not sacrifice peak execution

performance. A function call from generated code into

C++ is already quite cheap, as no marshaling is required

(as, e.g., would be necessary when using the JVM). It

does, however, come at a slight cost at runtime because,

e.g., register values must be saved, arguments trans-

ferred, and the call stack managed. To avoid this call

overhead, the proxy system allows that a programmer

can mark functions to be inlined. The Flying Start back-

end will ignore this inlining marker and only profit from

lower compilation time. Our optimizing backend, which

aims for peak performance, will react to the marker and
inline the function at all call sites, thus removing any

calling overhead. This mechanism provides an elegant

way to implement functionality in C++, use it in gener-

ated code, reduce code generation and compilation time,

but without any runtime overhead.

2.7 Control Flow

In previous sections, we showed how to lower operations

from complex to primitive types in an architecture that

creates clean code and a Codegen that enables fast code

generation. This section shows the last missing piece:

How to generate control flow in a type-safe interface

directly into static single assignment (SSA) form. This

form is the preferred program representation for many

compilers, especially for our fast compiler Flying Start,

which requires it to calculate value life spans (c.f., Sec-

tion 4.3). Generating SSA directly is important for

compilation speed, as it removes the necessity to run an

extra compiler pass.
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The Codegen provides classes for three control-flow

constructs : If, Loop, and Function. They need to handle

two aspects: Basic blocks and PHI nodes. Umbra IR

organizes instructions in basic blocks (see Section 3).

During code generation, there is one current block to

which all operations append.

The first aspect is that control-flow constructs need

to set the current basic block, so that the following in-

structions are written to the right location. For example,

the If first chooses the then block and when the else

block is requested sets it accordingly. When the If goes
out of scope, it wires all basic blocks together to produce

the desired control flow.

Second, Codegen needs to produce static single as-

signment form. This means that there are no variables,

only names for instruction results. As a substitute for

multiple variable assignment, PHI nodes are used. A

PHI node is an instruction at the beginning of a basic

block and has multiple arguments. Depending on which

basic block was executed before the PHI node’s basic

block, it chooses one of its arguments as its value. This

is used, for example, to choose values in the presence

of control-flow without using multiple variable assign-

ments. So to produce static single assignment form, the

control-flow constructs offer facilities to construct PHI

nodes when needed.

1 # Data Structures layer
2 // Perform a probe and use callback to processhits
3 void ChainingHashTable::probe(
4 Ptr<Proxy<HashTable>> table,
5 vector<SQLValue> key,
6 FunctionRef<void(...)>& callback){
7 UInt64 hash = Hash::hashValues(key);
8 auto entry = Proxy<HashTable>::lookup::call(table, hash);
9 { // <-- create nested block

10 Loop<Ptr<UInt8>> loop("chain", entry.notNull(), {{entry}});
11 // get SSA handle
12 Ptr<UInt8> iter = loop.getLoopVar<0>();
13 // Compare requested key to the one found in ht
14 vector<SQLValue> found = keyStore.unpack(iter + header);
15 ConsumerScope::testValuesEq(key, found, loop.continueBlock());
16 // Process entry
17 callback(loop.cntBlk(), loop.breakBlk(), iter);
18 loop.continueSequence(); // Go to the next entry
19 Ptr<UInt8> next = Proxy<HashTable>::next::call(table, iter);
20 loop.done(next.notNull(), {next}); // Set next to new loop var
21 } /* <-- close nested block, destruct loop */
22 }

The code above demonstrates how both aspects

are handled during a lookup in a chaining hash ta-

ble. Traversing the chain of hash-table entries is imple-

mented with the Loop construct. Within a nested block

we instantiate an object of class Loop, named loop. In

its constructor, Loop creates a new basic block for the

loop body and sets the new block as the current block.

The constructor arguments are a name for the loop for

debugging purposes, an entry criterion, and a list of

variables that can be “updated” in the loop.

Loops often need to update values in every itera-

tion, for example, they iteratively follow a pointer or

increment a loop counter. In single static assignment

form, however, no values can be updated. Instead, the

Loop class internally uses PHI nodes to pass values to

subsequent loop iterations and uses these to present a

concept of loop variables to the user (of the Loop class).

In the example above, the constructor argument entry

is the initial value for the first loop variable. Inside the

loop we access the first loop variable with getLoopVar.

Behind the scenes, this constructs a PHI node which also

manages updated values in later iterations. The value

for the subsequent iteration is then set in loop.done.

Besides PHI nodes the Loop class creates the loop

control flow. The constructor generates the loop entry

along with the entry criterion, in the example, the cri-

terion was that the entry is not null. The done function

connects the last block to the loop head to form a loop

under the condition provided in loop.done. On destruc-

tion Loop create a new basic block for after the loop and

thus finalizes the control flow.

We observe that with the help of these control-flow

constructs, the code that generates code becomes easier

to write and read. Additionally, they allow to directly

create static single assignment form in a type-safe man-
ner.

3 Umbra Program Representation

A second element important for query latency in the

compilation pipeline are the programs the code gen-

erator creates. Programs are the main artifact of the

compilation pipeline, thus it is important that the code

generator is able to quickly write programs and the

backends can quickly read them.

To support this, we designed an intermediate (pro-

gram) representation that we call Umbra IR. It serves as

intermediary between code generator and compilation

backends. We took special care that creating programs

with Umbra IR is fast. Its data structures are carefully

tuned for low memory allocation cost and compactness

of representation to efficiently utilize processor caches.

The reading speed of Umbra IR is optimized with a

low-overhead internal reference format and database-

specific instructions. Overall, we chose trade-offs towards

low compile-time, yet still perform some optimizations

on-the-fly when a program is created.

In the following, we present Umbra IR’s internal

data layout, the optimizations performed on the IR, and

database specific instructions.
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3.1 Umbra IR Structure

Before going into detail of how Umbra IR contributes

to low compilation times this section gives an overview

of the logical structure of IR programs. A program

in Umbra IR consists of functions, basic blocks, and

instructions. Functions contain basic blocks of which

one is the entry point of the function—i.e., function

execution starts there. The example in Figure 6 defines

the function foo with the basic blocks start:, yes:, and

no:.

Basic blocks contain sequences of instructions to be

executed in the given order. Each basic block must be

terminated by a control flow instruction, for example

a conditional branch as shown at the end of the start:

block in Figure 6. The targets of branches are again

basic blocks, so the control flow during execution of a

program is determined by control flow instructions and

the basic blocks they point to.

Umbra IR offers instructions for arithmetic, loading

and storing values, comparisons, casts, atomic mem-

ory operations, function calls, returns from functions,
branches, conditional branches, and switch, similar to

optimizing compilers, e.g., LLVM. Putting this all to-

gether in the example in Figure 6, execution would begin

with the first block, compare the function argument %x

to 5 and then either branch to block yes: or no:. From

either one of these blocks, execution returns from the

function.

3.2 Physical Program Layout

To make the creation of and analyses on Umbra IR

programs fast we utilize three properties of the code

generation pipeline:

– Code generation mostly appends instructions at the

end of basic blocks. We do not move instructions.

– Code generation has high locality. We generally first

complete one basic block/function before moving to

the next.

– All instructions have the same lifetime as the pro-

gram.

With the help of these properties we seek to store the

program as compactly as possible to make use of caches,

but still allow for quick navigation through the program.

We also want to minimize the number of memory allo-

cations. A careless implementation can cause thousands

of memory allocations during program generation. Nat-

urally, a fast implementation avoids this as allocations

require time.

The first ingredient to Umbra IR’s compact program

representation is a variable length instruction format. All

foo:
Functions

start:

yes:

no:

Basic
Blocks

FunArg Int32

Const Int32; 5

CmpGt Bool;  ,   

CondBr Void;  ,  ,

Const Bool; 0 

Ret Bool;   

Instructions

define i1 foo(i32 %x){
start:
%1 = cmpgt i32 5, %x
condbr %1, %yes %no
yes:

ret 1
no:

ret 0
}

Const Bool; 1

Ret Bool;  

Fig. 6 Internal Structure of an Umbra IR Program –
Instructions, basic blocks, and functions live in contiguous
memory so that 32-bit integers suffice for addressing.

104 instructions begin with an opcode which identifies

the instruction—and determines its lengths—followed

by a type identifier that specifies the result type. Each

instruction then continues with its specific arguments.

The example in Figure 6 shows the program’s instruc-

tions on the right side. They begin with an opcode and

return type followed by a variable number of arguments.

To achieve data locality while reading and writing in-

structions Umbra IR stores all instructions of a program

in a dynamic array (as illustrated by the box around

the instructions in Figure 6). This keeps instructions

grouped together in memory and appending instructions
does not require allocations (most of the time). It also

enables us to reference instructions with a 4-Byte offset

into the array. That is particularly helpful as it saves

space when instructions reference each other, but still

allows to follow references with low overhead.

The basic blocks of a program are similarly stored

consecutively in memory. A basic block contains a dy-

namic array of instruction offsets which point into the

instruction array and determine which instructions are

in the basic block and in which order. This is depicted

in Figure 6 by the dotted arrows. Storage for functions

is similar. Each function, however, only contains the

offset of the first basic block. From there, all other basic

blocks are discoverable through the branches at the end

of each block.

The shown representation is less flexible than inter-

mediate representations used in optimizing compilers,

e.g., LLVM. However, we find that it yields good cache

efficiency and accelerates the generation of programs

and executables from it.
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3.3 Constants and Dead-Code Removal

The layout of Umbra IR is optimized for fast program

generation and is therefore not well suited for complex

restructuring passes. However, there are two important

optimizations.

First, the Umbra IR builder applies constant folding

to instructions at the moment they are appended to the

program and deduplicates constants. This potentially
decreases the programs size and reduces the workload

of later stages in the compilation pipeline.

Second, a dead code elimination pass removes all

instructions whose results are not used by any other

instruction and any unreachable blocks. Employing an

explicit dead code elimination pass gives an advantage

in all layers above the Codegen layer. It removes com-
plexity at places in the code generation where we are

not completely certain that there will be a user for the

value currently produced. With dead code elimination
the code generator does not have to carefully determine

all users beforehand which makes the generator sim-

pler. As an example for these complexities consider how

Tidy Tuples generates code for this if-then-else construct

and how constant folding can help to eliminate the else
branch:

1 Bool cond = Int32(4) * Int32(5) > Int32(15);

2 If test(cond); // Condition is constant

3 Int64 a = ...;

4 test.elseBlock(); // Else branch is dead

5 Int64 b = ...;

6 test.done();

7 Int64 result = test.phi(a,b);

At the time of code generation we know that the else

branch will never be taken. Thus, we could try to not

even generate a block for it. However, this would mean

that all the instructions that would usually belong into

that block, in this case the instruction that generates b,

could not be placed into the program. All later sections

of the code would then have to handle that any of the

values may not exist. This approach would introduce

additional corner-cases, be prone for errors, and code

which generates code in this manner would be hard to

understand. We find that a later dead code elimination

pass circumvents those problems.

3.4 DBMS-Specific Instructions

A benefit of using a custom IR is that we can co-design

the instruction set with the database system. Most im-

portantly, instructions can express the intent of opera-

tions so execution backends can create efficient code for

them. Also, instructions that occur frequently can be

represented by compact, specific instructions.

Because many arithmetic operations in SQL require

overflow checking, Umbra IR offers checked arithmetic.

Check arithmetic branches when an overflow occurs or

continues otherwise. For example, the following performs

a 32-bit integer addition of %a and %b that branches to

the basic block %overflow on overflow:

1 %c = checkedsadd i32 %a, %b %continue %overflow

Such specific instructions remove the need for an extra
overflow check and lets backends use the expressed intent

to create efficient code.

Umbra IR also combines some instructions in the

fashion of inlining to obtain a more compact representa-

tion. The getelementptr instruction calculates addresses

within arrays or structures. Load and store instructions

are often combined with address calculation, therefore

loads and stores can inline address calculation. Other

instructions can also benefit from this technique. We

introduced an instruction isNull which checks if a value

is NULL. It does not require a second argument and

thus also no constant for NULL. For the same reason we

introduced instructions for CRC checksums, bit rotation,

and the 128-bit data type introduced in Section 2.5.

Overall, the benefits of adding database-specific in-

structions to Umbra IR is (1) that it is easier to generate

efficient code in the backends and (2) it yields a more

compact program representation.

3.5 Comparison to LLVM IR

Compared to HyPer, which uses LLVM’s intermediate

representation [21], using a custom IR is a different ap-

proach. It allows to specifically tune the data layout for

low-latency execution and add instructions that more

closely express the intent. In terms of semantics, Umbra

IR is closely related to LLVM IR. However, LLVM IR is

designed to be more generic to support a wide variety of

optimization passes. Therefore, LLVM IR has an empha-

sis on instruction reordering, replacement, and deletion.

We observed that this generality entails a performance

penalty which we circumvent with Umbra IR.

4 Flying Start Backend

The goal of the Flying Start compilation backend is to

reduce query latency, that is, the sum of compile time

and query runtime. Flying Start is the default backend3

for adaptive execution, therefore compile time should

be as low as possible. At the same time, as a secondary

3 Umbra’s compilation backends all use the same Umbra IR
program. Thus adding a new backend does not add complexity
to layers above.
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Umbra IR

Direct Translation (1 Pass)
+ Stack Space Reuse
+ Machine Register Allocation
+ Lazy Address Calculation
+ Fuse Comparison and Branch

x86 Machine Code

Live Span Analysis
   (+1 Pass)

Fig. 7 Flying Start optimizations – are integrated into
a single pass over the input program. Allocation optimizations
require one preliminary pass to determine value live spans,
thus at most two passes are required for translation.

goal, it should create fast code, so it achieves the best

combination of compile time and runtime.

The best way to make code run fast and remove

any interpretation overhead is to directly generate ma-

chine code (as opposed to bytecode for an interpreter).

However, generating optimal machine code can be very

time consuming. Our approach is to start out from the

most basic machine code generator possible. It maps

each Umbra IR instruction to exactly one sequence of

x86-instructions. There are no choices or optimizations

involved, so this is the fastest way to generate machine

code from Umbra IR.

Obviously, the resulting code is completely unopti-

mized and that impedes the secondary goal, fast query

execution. To investigate cheap optimization opportu-

nities, we propose the optimizations in Figure 7, which

are applied on-the-fly while generating machine code

(denoted with “+”). These optimizations explore the

design space in the vicinity of the fastest compile time

and create different compile-time vs. run-time trade-offs.

The next section gives a short introduction of the

adaptive execution technique and details how Flying

Start fits into the compilation pipeline. Subsequent sec-

tions show the basic translator design and introduce the

proposed optimizations step by step.

4.1 Background: Adaptive Execution

There are multiple ways to execute an intermediate

representation. All have different trade-offs in code gen-

eration time and execution time. Generally, interpreters

need little preparation time but execute slower, while

optimizing compilers produce fast code, but are slow to

generate the code.

Algorithm 1 Basic translation of an add instruction

function compile(Program p)
for Function f ∈ p; Block b ∈ f ; Instruction i ∈ b do

translate(i)
end for

end function

function translate(AddInstruction i)
scratch ← allocScratchRegister()
firstArgSlot ← i.firstArg()
secondArgSlot ← i.secondArg()
result ← allocStackSlotFor(i)
emit ”copy firstArgSlot into scratch register”;
emit ”add secondArgSlot onto scratch register”;
emit ”copy scratch register value to result”;
free(scratch)

end function

Kohn et al. created the adaptive execution method

which incorporates multiple execution backends into

the HyPer database system [18]. Adaptive execution

switches dynamically between execution backends at
runtime—even half-way through a query—in order to

profit from fast compilation for short-running queries

and from fast execution for long-running queries. Fig-

ure 2 exemplarily shows two execution backends of

HyPer with the trade-offs intrinsic to each backend.

HyPer’s bytecode interpreter has slow execution, but

compilation does not take long. The LLVM backend

(with most optimizations turned off) needs some time

for code generation, but execution is faster. Additionally,

HyPer can employ LLVM with enabled optimizations

to generate even faster code (c.f. Figure 14).

Umbra also applies the adaptive execution approach.

It has an execution backend that uses the LLVM optimiz-

ing compiler to produce fast executables. Additionally,

we introduce the Flying Start backend for fast compila-

tion.

4.2 Minimal Compile-Time Design

The most basic variant of Flying Start uses a single

pass over all instructions to generate machine code.

Algorithm 1 shows how a program can be compiled

with this approach. Each instruction is translated by

calling the translator function for its type. Algorithm 1

also shows exemplarily how to translate an Umbra IR

add instruction (for an introduction to Umbra IR see

Section 3). The translator for add emits a sequence of

instructions that load the inputs from stack, perform

the addition, and store the outputs.

To show what this means concretely, let us consider

the example Umbra IR snippet of Figure 8. The compile

function emits code for instruction after instruction.
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Eventually, it calls the translate function for the add

instruction in Line 4:

1 %3 = add i32 %1, i32 %2

Obviously, the translate function in Algorithm 1 is only

a sketch. To emit concrete machine code for the Umbra

IR add instruction we must choose actual machine in-

structions. The x86 machine-instruction we want to use

for the addition operation is the add a, b instruction. It

computes the sum of a and b and stores the result in

a. This means the instruction overrides the first input

operand.

The translate function must take this peculiarity

into account. To keep the first operand value available

after the add instruction, it must first copy the value

to a scratch register and use the copy as first operand.

So, to prepare the translation, it first reserves a scratch

register and also collects bookkeeping information about

where the input data resides on the stack and where the

result must be stored. Second, it emits instructions to

copy the first operand from the stack into the scratch

register. Then, to perform the addition, and to copy the

result onto the stack. This emits the following machine

code to perform addition:

mov eax, [rsp+firstArgSlot]; Copy arg. into scratch

add eax, [rsp+secondArgSlot]; Add arg. onto scratch

mov [rsp+result], eax; Copy result on stack

Implementing such translators for all Umbra IR in-

structions yields a program compiler that only requires

a single pass over the IR to lower it to machine in-
structions. The approach has the lowest compile-time

because it performs the least work possible to translate

each instruction. However, it has some drawbacks: All

values are stored on the stack, which causes extra mem-

ory traffic, it introduces many superfluous copies, and

uses more space on the stack than necessary.

In the following, we devise optimizations to address

these issues. They allow us to quantify the trade-offs

towards better code quality at the expense of longer

compile time.

4.3 Stack Space Reuse

The first optimization that improves the created ma-

chine code is using stack space more efficiently. Flying

Start can reuse a stack slot once it knows that the value

occupying the slot is never used again. To obtain this

information, we arrange the program’s basic blocks in

reverse post-order and calculate the live spans of all

values with the linear time algorithm described by Kohn

et al. [18,26]. The live span of a value is the interval from

first to last point in the program where the value is live

1 block1:

2 ...

3 block2:

4 %3 = add i32 %1, i32 %2

5 %5 = add i32 %3, i32 %4

6 %6 = cmpult i32 %5, i32 64

7 condbr %6 %block1 %block3

8 block3:

9 ...

%1,%2
%4

%3

%5

%6

Value Live Spans

Fig. 8 Umbra IR snippet — as running example for Flying
Start translation.

(similar to live intervals of Poletto and Sarkar [38]). Com-

pared to detailed liveness information, e.g., computed by

data-flow analysis, live spans are only an approximation.

However, live spans can be calculated in linear time

and require little memory space per value, which makes

them ideal for fast compilation.

Flying Start uses live-span information during com-

pilation to reuse stack slots whose values are not used
again. For example in Figure 8, the annotated value live

spans on the right show that after the addition in Line 4

the stack slot of argument %1 will not be used again.

The computation result %3 can reuse that slot. In the

next line, %5 can again reuse the slot and so on.

Generally, reusing stack slots can be cheaply im-

plemented by checking after every translation of an

instruction whether the arguments have reached the end

of their live span. If they have, we return their stack

slots to the stack space allocator4.

Stack space allocation introduces additional trans-

lation cost as it requires a pass over the program to

determine value live-spans. On the plus side, however,

it decreases the memory footprint of the resulting code

and thus increases the cache friendliness. More impor-

tantly, the analysis enables the next (very profitable)

optimization.

4.4 Machine Register Allocation

A major issue still is that the compiler generates many

superfluous mov instructions to retrieve values from stack

and put back results. This behavior is especially unnec-

essary for values that are passed between instructions

within one block, e.g., for the two consecutive additions

of Figure 8. For these, the approach of keeping all values

on stack generates six instructions of which the majority

is unnecessary data movement:

mov rax, [rsp+slot1]; Data movement

add rax, [rsp+slot2]; Actual operation

4 To be exact: In some cases we need to keep the value in
the stack slot until the end of the loop in which the value is
defined.
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mov [rsp+slot1], rax; Data movement

mov rax, [rsp+slot1]; Data movement

add rax, [rsp+slot3]; Actual operation

mov [rsp+slot1], rax; Data movement

A way to eliminate data movement to and from

stack is to keep values in machine registers beyond the

boundaries of the translation of a single instruction.

Therefore, in addition to assigning each value a slot

on the stack, we also try to assign a machine register.

This reduces the need for data movement instructions as

values reside in registers. The two additions, for example,

can then be implemented with only two instructions:

add r9, r10; Add second arg. onto first

add r9, r11; Add third arg. onto prev. result

Of course, this example shows the ideal case. In re-

ality, there are much fewer registers available on x86

machines than there are usually values in our Umbra

IR programs. In order to make best use of the avail-

able registers we adopt a best effort approach. Out of

the available 16 registers on the target machine, four

registers are scratch registers, one register contains the

stack pointer, and the remaining 11 registers store values

beyond the translation of a single IR instruction.

One could try to assign these 11 machine registers to

values on a first-come first-served basis. Unfortunately,

this strategy leads to a shortage of available machine reg-

isters for short-lived values and especially inside nested
loops. We found it to be more beneficial to assign ma-

chine registers to values that either only live within the

block they were created in or were created in the most

deeply nested loop. This heuristic is cheap to compute

from the data already at hand and effectively shifts

the register usage to the passing of intermediate data

and into loops. Consequently, it reduces the number of

generated instructions and memory accesses.

4.5 Lazy Address Calculation

Besides register allocation, there are two additional

minor optimizations. The first concerns the address

calculation instruction getelementptr. Generated code

frequently accesses different elements of one tuple or

data structure. For data access Umbra IR programs use

pointer arithmetic with the getelementptr instruction

to compute data locations. This often leads to a chain of

multiple address calculation instructions. To extend the

running example of Figure 8, block1 obtains the input

data for the example with these address calculations

and load instructions:

1 block1:

2 %tuple = getelementptr i32 %base, %tid;

3 %ptr1 = getelementptr i32 %tuple, i32 8;

4 %ptr2 = getelementptr i32 %tuple, i32 24;

5 %1 = load i32 %ptr1;

6 %2 = load i32 %ptr2;

7 ...

The program first computes a pointer to a tuple, then

computes the pointer to the first and second element

with separate getelementptr instructions. If the com-

piler would emit machine instructions for each address

calculation instruction separately, it would produce an

extra add instruction and use an extra register. How-

ever, the x86 instruction set offers an alternative as it

allows to integrate address calculation into instruction

operands5. To implement the load in Line 5 the compiler

can use the mov instruction with one register and one

memory operand:

mov r9, [rdx + offset]

This form of integrated addressing can be achieved by

delaying address calculation. When translating pointer

arithmetic instructions the compiler does not fully re-

solve them to yield a single pointer value. Instead it keeps

the form [base + offset] (where base is a register6

and offset a constant). This enables the translator to

use the composite form in instruction operands.

4.6 Fuse Comparison and Branch

The second minor optimization concerns comparisons

and branches. Comparisons in Umbra IR result in a

Boolean value which conditional branches take as input.

This is an elegant construct, but unfortunately, it does

not map directly to any machine instructions. In x86, a

comparison sets a special flags register and branches take

the flags as input. Translating comparison and branch

instruction separately would produce extra machine

instructions. The compiler would have to retrieve the

comparison result from the flags register, only to move

it right back into the flags register when translating the

next instruction:

cmp r9, 64; compare

setlt r13b; retrieve cmp. result from flags register

cmp r13b, 1; put decision into flags register

jnz .block1; branch, depending on flags value

To avoid this situation, we must achieve during trans-

lation that the comparison and the conditional branch

are translated adjacently. Also, during the translation

of the comparison the compiler must decide whether to

leave the result only in the flags register.

5 Similar to address inlining in Umbra IR (Section 3.4).
Unfortunately, we can not rely on that, because addresses
with multiple users can not be inlined.

6 The lifetime of the base register must be extended to cover
later uses.
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1 void translateAddInstruction(IRValue v) {

2 AddInstruction* i = get<BinaryInstruction>(v);

3 // Collect book-keeping info

4 Reg value1 = argumentReg(i->arg[0]);// First arg.

5 Reg value2 = argumentReg(i->arg[1]);// Second arg.

6 Reg result = resultReg(v);// Result info

7 // Prepare inputs

8 ScratchReg scratch1(*this);// Acquire scratch reg

9 Operand arg1 = get(value1, scratch1);// To scratch

10 Operand arg2 = get(value2);// Get as mem. operand

11 // Emit main instruction

12 assembler.emit(X86Inst::Add, arg1, arg2);

13 put(result, arg1);// Move result to assigned spot

14 // Destruct Regs and ScratchReg. Yield resources

15 }

Fig. 9 Foundation of the Flying Start Backend – This
is the core of translation from Umbra IR to x86. The classes
Reg and ScratchReg perform book-keeping of values and free
registers. They determine where inputs are located, where
results should be placed, and which temporary registers to use.

An extra reordering and analysis pass over the input

program could enforce adjacency, but the extra pass

would come at the expense of compilation time. Instead,

within a basic block we defer translation of all, but

load, store and control-flow instructions, e.g., we defer

comparisons. Instructions are translated at the latest
possible time, that is when their results are required by

other instructions.

For the above example, the lazy approach first skips

the translation of the comparison instruction. On trans-

lation of the branch the compiler notices that the input

is not yet computed. At this point, it starts translating
the input and also passes along the request to put the

result into the flags register. Then, in the translation

of the comparison it sees the request, checks if there is

only one consumer, and puts the result into the flags

register. The branch instruction can then directly use

the flags register:

cmp r9, 64; compare

jl .block1; branch, depending on flags value

On-demand instruction translation can also pass re-

quests from value users to producers and in this case

also guarantees that there is no user of the flags register

in between comparison and branch.

4.7 Implementation of Flying Start

So far, Algorithm 1 presented the code emitter in a

fairly abstract fashion. Our actual implementation in

C++, is very similar. Figure 9 shows an implementation

of the translation of the Umbra IR addition instruction.

We use the classes Reg and ScratchReg to keep track

of input and result data (Lines 4-6), and to allocate

scratch registers (Line 8). To emit machine instructions

1 Reg resultReg(IRValue v) {// get location for result

2 if (notConst(v)) {

3 if (registersAvailable() &&

4 (onlyLiveInCurrentBlock(v) ||

5 loopIsDeepestNest())) { // heuristic

6 Location& l = allocateRegister(v);

7 return Reg(RegisterVariable, v, l, this);

8 } else {

9 Location& l = allocateStackSlot(v);

10 return Reg(StackVariable, v, l, this);

11 }

12 } // else ...

13 }

14 Reg argumentReg(IRValue v, LocationHint h = None) {

15 if (notConst(v)) {

16 Location& l = lookupValueLocation(v);

17 // On-demand instruction translation

18 // with hint where to place result,

19 // e.g., in flags register

20 if (!l.assigned) translate(v, h);

21 return Reg(l.type, v, l, this);

22 } // else ...

23 }

24 Reg::~Reg() { // Destructor of Reg

25 if (--location.references == 0)

26 // return register or stack slot to allocator

27 freeResources();

28 }

Fig. 10 On-the-fly optimizations in Flying Start – in-
tegrate with the book-keeping infrastructure. Register allocation
takes place during value placement (resultReg). Branches and
comparisons are fused with hints in deferred instruction trans-
lation (argumentReg). Freeing of resources is managed in the
destructor of the book-keeping class ~Reg.

our implementation uses the asmJIT library [16]. It

provides the ability to directly assemble x86 instructions.

E.g., in Line 12 the translator emits the add instruction

from the running example into a buffer. Appending

multiple instructions to this buffer forms the translated

program.

All the described optimizations fit very well into

this code structure. For example, the register allocation

heuristic is hidden in the bookkeeping class Reg. Lazy

address calculation and fusing comparisons and branches

require only small additions.

Figure 10 shows an implementation of the book-

keeping functions for instruction translation. Observe

how the function resultReg decides right at the moment

of instruction translation where to place computation

results. Either the allocation heuristic decides to put the

value into a machine register or the result is placed on

the stack. Similarly, fusion of comparisons and branches

is handled behind the scenes. The function argumentReg

also handles deferred translation of instructions. When

the result of an instruction %b is required, e.g., during

instruction translation of %a = add(%b, %c), function

argumentReg checks if %b is already computed. If not, the
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instruction is translated on-demand. At this point, the

caller of argumentReg can pass a placement hint for the

value. E.g., a branch instruction can instruct a compare

instruction to place its result in the flags register, skip-

ping a placement on the stack or in another machine

register.

Our implementation of Flying Start targets the widely

used x86 instruction set. During translation Umbra IR

instructions are compiled into semantically equivalent

x86 instructions. For other target architectures, e.g.,

ARM processors, a target specific implementation is

necessary. Specifically, the individual translation of Um-

bra IR instructions to the target instruction set must

be adapted. Fortunately, a lot of the infrastructure for

translation, such as live span analysis, register alloca-

tion, book keeping, and scratch register handling can

be reused.

5 Evaluation

This section evaluates the quantifiable properties of Tidy

Tuples and Flying Start, confirming these performance

hypotheses:

– The design achieves very low overall query latency

over all database sizes and across multiple machine

configurations (Section 5.2).

– Umbra IR speeds up code generation (Section 5.3).

– The Flying Start backend dominates multiple state-

of-the-art alternatives (Section 5.4).

– The optimizations in the Flying Start backend all

provide performance benefits (Section 5.5).

5.1 Experimental Setup

All experiments were run on a machine with a 10-

core Intel Skylake X i9-7900X clocked at 3.4 GHz and

a turbo boost of 4.5 GHz. The processor provides 20

hyperthreads, an L1-cache of 32 kB for every core and a

last-level cache of 14 MB. The machine has 128 GB of

DRAM with an aggregate bandwidth of 56 GB/s and

uses Ubuntu 19.04 with kernel 5.0.0 as operating sys-

tem. The TPC-H benchmark serves as workload with

scale factors from 0.001 with 10 thousand tuples to scale

factor 30 with about 260 million tuples. PostgreSQL

was installed with version 11.7 and configured to use

up to 20 workers per query. Further, index and bitmap

scans are disabled to obtain query plans comparable to

Umbra. DuckDB was compiled from commit aec86f6;

MonetDB was installed in version 11.33.11.

Large Dataset,   260M tuples, sf 30

Medium Dataset,   26M tuples, sf 3

Small Dataset,   866k tuples, sf 0.1

Little Dataset, 87k tuples, sf 0.01

Tiny Dataset,  10k tuples, sf 0.001
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Fig. 11 Flying Start achieves low query latency over
a wide range from tiny to large datasets. – Over geo-
metric mean of queries per second over all 22 TPC-H queries
Flying Start out-performs even DuckDB, MonetDB, and Post-
greSQL, which do not spend any time on code generation and
compilation. Threads7=20

5.2 Query Latency: Compile Time + Runtime

The goal of Tidy Tuples and Flying Start is to minimize

the query latency of compiling query engines. That is,

minimizing compilation overhead while at the same time

processing queries as fast as possible. This section we

evaluates to what extent that goal is achieved.

Compilation time can be traded for execution time,

to a certain degree. Tidy Tuples and Flying Start con-

stitute a specific design point in that trade-off. Whether

a chosen trade-off is beneficial depends on the ratio of

compilation time and execution time within a query. For

a given system, compilation time is directly determined

by the query. Execution time depends on the data set

size and the amount of resources/threads used for pro-

cessing. To evaluate the trade-off in a variety of scenarios

we use the TPC-H benchmark8. It provides represen-
tative OLAP queries that cover a range of compilation

7 Currently, DuckDB can only use one thread for execution.
Nevertheless, it provides an interesting comparison on small
datasets.
8 At the time of writing, Umbra does not have a high-

performance transaction processing implementation. Thus, we
can not yet compare on OLTP benchmarks. Umbra’s relational
operator implementations, however, are prepared to integrate
well with transaction processing—similar to HyPer’s operators.
For example, Umbra does not use precomputed values or
dictionary encoding for query processing.
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Fig. 12 Umbra with Flying Start achieves low query latency across machine configurations. – In geometric mean
(Geo.M.) Umbra answers queries faster than the fastest competitor Monet DB. This is already the case when only one thread is
available for query processing and holds true with additional threads. Query latency is low over the full range of long running
(Q1, Q9) and short running (Q6,Q2) queries as well as queries with short (Q1,Q6) and long (Q9,Q2) compile time. SF=0.1

time characteristics. To influence the execution time we

vary the data set size and number of available threads.

In combination, these factors cover many scenarios to

evaluate the compiletime-runtime trade-off.

The experiments use the database system Umbra,

in which we implemented Tidy Tuples and Flying Start.

The following state-of-the-art systems serve as a ref-

erence to put Umbra’s performance into perspective.

HyPer serves as a representative of compiling systems.

It already uses multiple execution backends to achieve

low latency, which makes it a strong competitor. The

experiments use PostgreSQL as an instance of classical

tuple-at-a-time interpreters with no compilation over-

head9. Modern interpreter-based based engines are rep-

resented by MonetDB and DuckDB, which are built with

high-performance vectorized execution engines [3, 39].

The impact of data set size (on the trade-off) is

shown in Figure 11. The experiments show that Um-

bra with Flying Start provides high query throughput

over a wide range of data set sizes—consistently out-

performing the competitors. Thus, Tidy Tuples and

Flying Start effectively minimize query latency. The

y-axis of the plot shows the geometric mean of query

throughput over all 22 TPC-H queries, a metric for how

many queries each system can execute per second. The

measured time includes compilation time and execution

time. Compilation time is a major factor especially for

queries on small data sets, as shown in the top half of

Figure 11. On these, there is not a lot of time spent

in execution to amortize the time spent on generating

code. Yet, Umbra with Flying Start answers queries on

small data sets faster than the interpreter-based systems,

which spend no time to generate code at all. On larger

data sets execution time becomes an important factor.

9 We manually decorrelated queries for PostgreSQL for a
fair comparison.

The quality and speed of generated code are relevant

here. As shown in the bottom half of Figure 11, Flying

Start produces sufficient code quality to out-perform

other approaches on data sets with up to hundreds of

millions of tuples. Altogether, Umbra processes queries

with high speed over all data set sizes, which means the

trade-off is beneficial for a large range of scenarios.

The other important factor in the trade-off is the

number of threads used for execution. Figure 12 shows

Umbra’s execution time depending on the number of

threads. As a reference point it also shows the fastest

competitor, Monet DB. Note, Umbra’s execution phase

can make use of multiple threads and operators use

morsel-driven parallelisation [22]. The compilation phase,

with code generation and compilation, uses only a single

thread.

In a broad view over all TPC-H queries (Geo.M.),

Umbra is able to respond to queries faster than the other

systems when using a single thread for execution up to

using all available threads. Figure 12 also shows detailed

performance results for queries which are chosen to cover

the full range of runtime/compile time characteristics.

There are long running (Q1, Q9) and short running (Q6,

Q2) queries to examine the interaction of overall query
runtime and number of threads. Both groups have a

query with low (Q1, Q6) and high (Q9, Q2) compilation

time to additionally vary the compile time/runtime ratio

within each group and thus cover the whole spectrum.

Notably, in call cases code generation and execution

provides faster overall query response time than the

fastest interpreter-based approach.

Overall, we observe that Umbra’s latency optimiza-

tions work very well. They allow Umbra to reach far

into the low latency realms of query engines that do not

compile at all. Furthermore, note that the latency opti-

mizations do not interfere with query execution speed.
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Table 2 Tidy Tuples, Umbra IR, and Flying Start speed up Umbra’s preparation phase. Umbra is twice as
fast as HyPer, thus preparation time is as low as interpreter-based systems. – The table lists detailed timing in
milliseconds for TPC-H queries 1-22 and geometric mean (G). Planning time (“plan”) includes query parsing, semantic analysis
and algebraic optimization. Umbra and HyPer also list compile time, split into generation of IR (“cdg.”) and generation of
machine code (“x86”/”bc.”). For Umbra and HyPer LLVM compilation is excluded, as its compile times are too long for a
data set this small. SF=0.01, Threads=1

Umbra Flying Start HyPer bytecode Interpreter DuckDB MonetDB PostgreSQL

# plan cdg. x86 exec. Σ plan cdg. bc. exec. Σ plan exec. Σ plan exec. Σ plan exec. Σ

1 0.19 0.15 0.14 1.71 2.19 0.09 0.44 0.30 8.16 8.99 0.17 13.66 13.82 0.60 5.35 5.94 1.14 30.01 31.15
2 0.38 0.31 0.37 0.10 1.16 0.53 0.91 0.76 3.06 5.26 1.14 20.69 21.83 0.67 0.51 1.17 1.52 2.28 3.80
3 0.21 0.18 0.19 0.58 1.15 0.25 0.57 0.50 2.43 3.75 0.32 7.38 7.70 0.51 0.76 1.27 1.64 11.61 13.25
4 0.16 0.14 0.13 0.52 0.95 0.13 0.49 0.35 4.45 5.43 0.32 14.21 14.53 0.29 0.56 0.84 1.18 13.78 14.96
5 0.33 0.22 0.25 0.43 1.23 0.49 0.79 0.67 5.40 7.36 1.90 7.17 9.07 0.77 0.88 1.65 2.47 9.63 12.09
6 0.13 0.08 0.07 0.26 0.54 0.09 0.29 0.14 0.12 0.65 0.15 1.96 2.11 0.27 1.00 1.27 0.99 18.90 19.89
7 0.31 0.29 0.32 0.50 1.41 0.46 0.75 0.62 5.16 7.00 0.80 7.00 7.81 0.55 1.48 2.03 1.33 11.21 12.54
8 0.37 0.30 0.32 0.34 1.32 0.63 0.80 0.64 2.94 4.99 2.56 4.82 7.39 1.12 0.84 1.96 1.77 9.71 11.48
9 0.34 0.26 0.28 1.03 1.91 0.47 0.73 0.62 7.86 9.68 1.52 20.48 22.00 0.85 1.78 2.63 4.18 16.48 20.66

10 0.27 0.21 0.20 0.70 1.37 0.35 0.66 0.47 3.46 4.94 0.55 13.36 13.91 0.74 0.74 1.48 1.99 11.51 13.49
11 0.27 0.24 0.28 0.42 1.21 0.30 0.63 0.53 3.32 4.77 0.54 1.57 2.11 0.57 0.25 0.82 1.41 2.47 3.87
12 0.21 0.16 0.16 0.49 1.03 0.18 0.56 0.43 3.87 5.04 0.21 2.81 3.01 0.90 0.53 1.43 1.21 13.61 14.82
13 0.16 0.15 0.16 0.68 1.14 0.13 0.51 0.42 6.62 7.67 0.14 5.42 5.56 0.19 0.79 0.98 1.25 7.08 8.33
14 0.16 0.14 0.12 0.17 0.60 0.16 0.43 0.28 0.28 1.15 0.19 2.02 2.21 0.53 0.41 0.94 1.21 8.93 10.15
15 0.21 0.22 0.21 0.30 0.94 0.16 0.54 0.39 2.83 3.92 0.30 2.65 2.95 0.63 0.36 0.99 1.37 15.51 16.88
16 0.29 0.22 0.29 1.14 1.94 0.19 0.61 0.54 4.05 5.39 0.36 1.88 2.24 0.36 0.56 0.92 1.56 3.75 5.31
17 0.20 0.21 0.21 0.38 1.00 0.28 0.65 0.61 7.09 8.63 0.48 2.67 3.15 0.23 0.87 1.11 1.26 0.32 1.58
18 0.25 0.23 0.25 1.48 2.21 0.25 0.67 0.60 13.14 14.66 0.38 10.92 11.30 0.34 1.84 2.18 1.80 26.87 28.68
19 0.42 0.19 0.18 0.72 1.51 0.25 0.56 0.35 1.80 2.96 0.33 3.95 4.28 0.93 0.80 1.73 1.51 11.46 12.97
20 0.32 0.23 0.25 0.32 1.12 0.36 0.65 0.52 3.09 4.63 0.79 3.15 3.94 0.75 1.05 1.80 1.15 13.69 14.83
21 0.36 0.23 0.26 1.17 2.02 0.50 0.71 0.61 8.96 10.78 0.90 27.10 27.99 0.70 1.61 2.31 2.56 10.50 13.06
22 0.24 0.23 0.25 0.32 1.03 0.25 0.68 0.55 3.41 4.89 0.54 5.05 5.58 0.34 0.68 1.02 1.23 3.80 5.03

G 0.25 0.20 0.21 0.50 1.24 0.26 0.60 0.47 3.33 5.06 0.47 5.72 6.40 0.53 0.84 1.46 1.53 8.50 10.82

The combination of Flying Start and the optimizing com-

piler backend outperform the competitors in all cases.

From this, we conclude that our latency optimizations

are effective.

5.3 Compilation Time

Now that we have seen that the overall design achieves

good query latency let us focus on how time is spent in

the query compilation phase, i.e., before query execution.

Table 2 shows a breakdown of query processing time

for Umbra with Flying Start and its competitors on

the little TPC-H data set at scale factor 0.01. Umbra

timing is split into the planning phase (“plan”), the

code generation phase (“cdg.”), machine code generation

(“x86”), and query execution (“exec.”). The planning

phase includes query parsing, semantic analysis, and

algebraic optimization. Creation of Umbra IR happens

in the code generation phase and the machine code

generation phase produces x86 instructions. Similarly for

the competitor HyPer, yet instead of generating machine

code, it produces bytecode (“bc.”) for its interpreter.

For the interpreting engines DuckDB, MonetDB, and

PostgreSQL the table only distinguishes between plan

and execution. Finally, it also lists the time for the sum

of all components (“Σ”).

For Umbra, we observe that once the query plan is

prepared, execution (“exec.”) on the little dataset does

not take long—it is even shorter than query prepara-

tion. All competitors spend more time during execution.

The time Umbra spends before execution, to prepare

the executable, though, is slightly more than the com-

petitors. On average Umbra takes 0.66 ms to prepare,

whereas DuckDB and MonetDB only need 0.47 ms and

0.53 ms respectively. This puts Umbra with Tidy Tuples

and Flying Start well within the same order of magni-

tude of query preparation time as interpreter engines,

even though Umbra additionally performs all the steps

required for machine code generation.

Compared to HyPer, the most similar system as it

also spends time on code generation, we observe that

Umbra starts faster. HyPer needs 1.33 ms on average

to prepare for a query and Umbra only 0.66 ms. The

main difference here is that HyPer generates LLVM’s

intermediate representation and Umbra uses its Umbra

IR representation. The effect clearly shows in the differ-

ences of code generation time (“cdg.”), where Umbra is

more than 2× faster than HyPer. A similar, but smaller,

effect is visible during generation of the executable (“x86”

and “bc.”). Flying Start is faster at x86 generation than

HyPer at bytecode generation. We conclude that Umbra

IR speeds up code generation and thus serves its purpose

well as it effectively reduces Umbra’s query latency.
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Fig. 13 Flying Start compiles large queries quickly. –
LLVM needs considerably longer. Note, that the y-axis scales
are orders of magnitude apart. SF=1, Threads=1

Up to this point, we compared compile times of Um-

bra with external competitors. An internal alternative

to the Flying Start compiler is the LLVM compiler,

which Umbra uses adaptively to get optimized code for

long-running queries (c.f., Section 4.1). Figure 13 com-
pares the compilation times on queries with different

numbers of joins. In this experiment joins the TPC-H

table nation multiple times on itself with the predicate

n1.n name = n2.n name and n2.n name = .... For a

join query with 2000 joins Umbra generates 108000 Um-

bra IR instructions, of which the vast majority is in

a single function. Figure 13 shows that LLVM needs

a considerable amount of time to compile such large

programs (150 seconds). Even without any optimiza-

tions and LLVM’s fast instruction selection compilation
takes 4 seconds. Flying Start, in comparison, only re-

quires less than 0.04 seconds to compile the program.

Thus, any such query compiled with Flying Start gets a

considerable head start to an LLVM-compiled query.

5.4 Runtime Performance Robustness

The previous section established that the compilation

times of Flying Start are competitive with interpreter

engines. Let us now explore the compile time versus

execution speed that it offers.

Recall from Section 4.1 that Umbra and HyPer both

use adaptive execution to run the generated code and

to balance compilation time and runtime. The systems

use multiple compilation backends that offer different

compilation and execution speeds. HyPer switches be-

tween the three backends bytecode Interpreter, LLVM

unoptimized, and LLVM optimized. Umbra only uses

the Flying Start backend and LLVM for thoroughly

optimizing machine code.

How all these runtime backends perform is depicted

in Figure 14 for the example of TPC-H query 3 at scale

factor 1. Among HyPer’s execution backends, bytecode

interpretation provides the lowest compilation time, al-
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Fig. 14 Umbra’s vs. HyPer’s execution modes. – Com-
parison of time taken for compilation and achieved execution
time for Umbra’s and HyPer’s execution modes on TPC-H
query 3. SF=1, Threads=20

Table 3 The Flying Start backend out-performs both
HyPer’s interpreter- and unoptimized LLVM back-
ends. – On geometric mean over all TPC-H queries Flying
Start is preferable to HyPer’s options. SF=1, Threads=20

Backend Comparison Compilation Execution

Umbra
Flying Start vs. LLVM O3 108× faster 1.2× slower

HyPer
Interpreter vs. LLVM O3 91× faster 4.1× slower
LLVM O0 vs. LLVM O3 6× faster 1.3× slower

beit with a noticeable execution time penalty. HyPer’s

next best option is to use the LLVM compiler with

almost all optimizations turned off. This yields good

execution performance, but comes with a higher compile

time10. Note, that it is already apparent, that Umbra’s

Flying Start backend offers a better choice. It is on par

with the bytecode interpreter’s compilation time and the

runtime performance of LLVM (unoptimized) machine

code. Hence, Flying Start combines the advantages of

HyPer’s two low-latency backend options into only one.

When expanding the view from this one example

query to all the TPC-H queries, we see a similar picture

in the trade-offs in Table 3. In comparison to fully opti-

mizing the machine code with LLVM, on geometric mean

over all queries the Flying Start backend offers 108×
faster compilation at the low cost of only 1.2× slower

execution. This all happens in a single compilation back-

end. For Umbra’s competitor HyPer, this option is split

10 In Figure 14 Umbra’s LLVM backend compiles faster
than HyPer’s. Umbra generates more but shorter functions
than HyPer, thus reduces compile-time in LLVM optimization
passes with super-linear runtime in function size. This effect
does not apply to the Flying Start backend, thus the shown
comparison is fair.
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Fig. 15 Effect of Optimizations on Compile- and Run-
time – in the Flying Start backend. SF=1, Threads=1

in two: The Hyper interpreter backend provides 91×
faster compilation at the cost of 4.1× slower execution.

The alternative cheap compilation backend with LLVM

offers 6× faster compilation producing code that exe-

cutes 1.3× slower.

To summarize, HyPer must juggle three execution

backends. As shown in Figure 14 each backend provides

a different trade-off between compilation time and run-

time. The results can be observed in Figure 11, where

every backend yields the fastest overall execution speed

over a limited range of scenarios. Thus, the system must

carefully choose the correct one of three backends, as a

wrong choice can gravely impede execution performance.

Umbra, on the other hand, only has to choose from two

backends. Flying Start combines the best of the byte-

code interpreter and the unoptimized LLVM backend.

It is as fast in generating code as the interpreter and

as fast in execution as the unoptimized LLVM back-

end. Consequently, it is safe to always begin execution

with Flying Start and, if necessary, shift into high gear

by using the optimizing compiler. As the difference in

execution speed between the backends is only 1.2×, a

wrong choice only has a small impact on execution time

and the performance cliff in a sense becomes a small

performance step.
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Fig. 16 Additional Cost and Benefit of Linear Scan
Register Allocation. – Geometric mean over all TPC-H
queries. SF=1, Threads=1

Fast ISel.

Regular Instruction Selection

+Instruction Combining

+Reassociate

+Global Value Numbering

+CFG Simplification

+Dead Code Elimination

+CFG Simplification

02040

Compile Time [ms]

Fast Instruction Selection

Regular Instruction Selection

+Instruction Combining

+Reassociate

+Global Value Numbering

+CFG Simplification

+Dead Code Elimination

+CFG Simplification

0 20 40 60

Runtime [ms]

Fig. 17 Effectiveness of LLVM’s optimization passes –
in Umbra’s LLVM backend. Geometric mean over all TPC-H
queries. SF=1, Threads=1

5.5 Flying Start Optimizations

We described in Section 4 that the Flying Start back-

end uses four optimizations to improve the speed of

the generated code. We measured the effect of each op-

timization on compilation and execution time for all

TPC-H queries.

Figure 15 shows the results for execution time on
some exemplary and interesting queries and also of the

geometric mean over all 22 queries. Observe that the

biggest effect is achieved by register allocation. On av-

erage it provides a 32% reduction of execution time.

Interestingly, in the Umbra LLVM backend, register

allocation also provides the largest performance ben-

efit among the applied optimizations (c.f., Figure 17).

Switching from fast instruction selection to the default

instruction selection enables machine specific optimiza-

tions, such as register allocation and instruction schedul-

ing. Further optimizations only have a small effect on

the runtime. In other words, the largest optimization

potential is covered by Flying Start’s register allocation.

Given that register allocation has such a large im-

pact, an interesting idea to improve Flying Start would

be to use a better register allocator than the already

applied heuristic. An allocation scheme often used in

fast compilers is Linear Scan [38]. In a single pass over

all lifetime intervals it decides which values live in regis-

ters. To compare with our allocation heuristic, we added
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Linear Scan to the Flying Start backend. Linear Scan

produces good allocations; the machine code produced

with linear scan leads to 1% faster query execution on

TPC-H (c.f. Figure 16). However, allocation with Linear

Scan takes 14% more compilation time. This presents an

interesting trade-off, yet in the interest of low compile

time for now we chose not to add Linear Scan to the

Flying Start default optimizations.

The experiment shows that some queries profit more
from optimizations than others. Query 1 shows the

largest gains, as most of its work is in expression eval-

uation. Thus, keeping intermediate values in registers

increases the CPU’s instruction throughput. Third, ad-

dress calculation and comparison-branch fusion provide

only a moderate effect. The benefit is most pronounced
on query 18. Overall, we observe that every one of the

optimizations increases execution speed.

The quality of the machine code generated by Flying

Start is good in comparison to the fully optimized code

from LLVM. As Figure 18 shows, performance metrics of

Flying Start code for TPC-H queries are well within the

same order of magnitude as the corresponding LLVM-

generated machine code. Previous experiments already

showed that the execution speed of Flying Start code is

close to the speed of highly optimized code. This also

shows in Figure 18, in which the amount of cycles to

execute queries with Flying Start is on median about

1.6× higher than with highly optimized code. Notably

though, the number of instructions executed is about

2.3× higher, which means that Flying Start produces

some amount of extra instructions. Fortunately, also

the number of instructions executed per cycle (IPC)

is 1.4× higher. The processor is able to execute more

instructions in parallel within each cycle which reduces
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Fig. 19 Effect of Dead Code Elimination on Compile-
and Runtime – with Flying Start. Geometric mean over all
TPC-H queries. SF=0.01, Threads=1

the negative effect of extra instructions. Branch miss-

predictions and last level cache (LLC) misses are about

the same for both compilers. The size of the gener-

ated code from Flying Start is about 2.4× larger than

optimized code. Overall, Flying Start generates some

superfluous instructions, yet the hardware is able to

partly compensate that. More importantly, Flying Start

code triggers the same amount of hardware hazards, i.e.,
branch-misses and cache-misses, as optimized code, but

triggers no additional hardware hazards.

Another optimization that Umbra performs is to

eliminate dead (unused) code. Technically, it is an op-

timization applied during the code generation process,

not by Flying Start, yet it effects compile- and runtime

performance. Figure 19 shows TPC-H compile- and run-

time with and without dead code elimination (DCE).

As explained in Section 3.3, Tidy Tuples uses dead code

elimination to simplify structure of the code generation

layer. These experiments show that dead code elimina-

tion is a rather quick pass compared to the remaining

compilation time. Also, as DCE removes about 4% of

instructions, it reduces the following compile- and run-

time, thus recaptures some of the time spent on the

optimization pass.

For all optimizations there is a compilation time price

to pay, as shown in the bottom of Figure 15. We note

that the only optimization that comes at a measurable

cost is the value-lifetime computation which is first

used for the stack reuse optimization. On average, it

adds 45% to compilation time. Interestingly, all further

optimizations more than offset their cost. Any one of

these optimizations helps reduce the number of emitted

instructions and consequently reduces the time necessary

to write machine code.

Given that lifetime computation adds about 45% to

compilation time one may also choose to skip it and

therefore not employ any of the four optimizations. In

Umbra, however, we use it, because it makes the query

engine more robust. It prevents that queries with many

intermediate values have an unnecessarily large memory

footprint. Additionally, it reduces the performance cliff



Tidy Tuples and Flying Start: Fast Compilation and Fast Execution of Relational Queries in Umbra 21

Table 4 Lines of Code of Tidy Tuples and Flying
Start – listed seperately for header files, implementation
files and unit tests for the respective component. Arrows (→)
denote examples from within the previous component; the
component line-counts already include the example counts.

Component Headers C++ Tests

Operator translators 2,360 8,347 3,225
→ Hash-join translator 53 597 88
→ Map translator 17 31 55
Data structures 187 399 113
Tuples 172 1,019 2,205
→ Hash 57 320 66
SQL Values 772 6,834 2,283
Codegen 975 1,049 690
Σ Tidy Tuples 4,466 17,648 8,516
Umbra IR 812 2,348 476
Flying Start 399 3,790 1,072
Σ All 5,677 23,786 10,064

towards the optimizing compiler. To summarize, the
optimization in Flying Start increase the execution speed

and robustness of the query engine.

5.6 Implementation Effort

Building a compiling SQL query engine from scratch is a

large undertaking and Tidy Tuples is meant to structure

such an effort and serve as a guideline. To give an idea of

the size of the code generator in Umbra, Table 4 lists the

lines of C++ code required to implement components

of Tidy Tuples and Flying Start. Lines with comments

and documentation do not count towards the lines of

code. We also exclude lines which only contain opening

or closing curly braces to account for a peculiarity of

the used code style.

The shown components follow the structure of Tidy

Tuples as presented in Section 2.2. Lines of code are

separately counted for C++ header files, C++ imple-

mentation files, and unit tests that directly test the

functionality of the component (integration tests for the

entire system are not listed). Operator translators in-

clude table scan, nested-loop join, hash join, multi-way

join, group-join, group by, sort, map, select, set oper-

ations, expressions, recursive views, and many more.

Each of the operators in turn may need to handle mul-

tiple variants of the operator. For example, the hash

join translator can produce inner, outer, semi, mark [29],

and single [29] joins. Thereof all, but the inner join have

different right join and left join implementations. Over-

all, there are many concepts in relational queries and

their efficient implementation often requires attention

to detail. In our experience with the implementation

of Umbra, that detail and the inherent complexity is

structured well by the Tidy Tuples design.

6 Related Work

There are two state-of-the-art query processing paradigms:

vectorization and compilation. Vectorization reduces the

overhead of Volcano-style interpreters by performing an

operation on many tuples at the same time. It was

pioneered in MonetDB [3] and improved upon by Mon-

etDB/X100 [2]. As vectorized engines are interpreters,

they can use Volcano-style interpretation and generally

have a reputation of being easier to build. Furthermore,

because they do not generate machine code, they can

potentially have lower query latency—while being effi-
cient for analytical workloads [14]. However, there are

drawbacks with complicated expressions and especially

when only few tuples are in a query, as is commonly the

case in transaction processing.
Compilation-based engines eliminate interpretation

overhead by generating query-specific machine code. An

architecture for generating machine code was shown with

the HyPer system [25,28]. This approach was criticized

as too low-level [15] and, in the context of LegoBase, an

alternative approach was proposed. Instead of generating

code from the query plan in one single step, LegoBase

gradually lowers it through a cascade of intermediate

representations to the effect that each lowering by itself

is less complex [43]. Using multiple representations was

then criticized as adding unnecessary complexity [44].

A solution was presented by using the idea of the Futa-

mura projection to specialize an interpreter to obtain

a code generator. The LB2 system uses Scala language

features and compiler extensions to implement this idea

and create an interpreter engine as well as a code gener-

ator, derived from the same code base. Further research

on the structure of relational code generators has shown

that, besides HyPer’s produce-consume model, Volcano-

style communication between operators can also be used

for code generators. However, extensive compiler opti-

mizations are required to obtain efficient code from

code generators with Volcano-style iterators [41]. An

alternative to distinguishing between interpreters and

code generators is to use micro-specialization on an

interpreter system [47, 48]. Kohn et al. presented the

adaptive execution approach for HyPer, which combines

an interpreter and a code generator to achieve low la-

tency for cheap queries and fast execution speeds for

expensive queries [18].

The work presented in this paper builds on all of

these contributions. Tidy Tuples features a layered archi-

tecture of abstractions that conceptually incorporates

the gradual lowering of LegoBase, but still achieves code
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generation in a single step. It also uses a code genera-

tor interface, as promoted with LB2 that utilizes the

host language’s type system. With this code generator

interface, the code that performs operator translation

closely resembles an interpreter. Unlike LB2, however,

we stop short of building an interpreter and always use

an explicit code generator. This allows us to tightly con-

trol the optimizations that we perform at SQL compile

time. An example of these optimizations was shown in

the hash function generation in Section 2.5 and tuple

storage in Section 2.3. Also it enables us to immediately
create code in static single assignment form so that we

can skip an optimization pass at a later stage. In addi-

tion, our code generator seamlessly integrates generated

code with host language code—a feature that would be

hard to realize efficiently between machine code and the

Java VM. To achieve low query latencies we propose a

lightweight compiler instead of using an interpreter. Fur-

ther, we advocate to use the produce-consume model (or

LB2’s callback interface) for code generation to circum-

vent the optimization effort required to obtain efficient

code from code generators with Volcano-style iteration.

We show that this approach enables low query latencies

that reach into the realm of interpreted and vectorized

engines. In addition, it provides the benefit of remov-

ing the performance cliff between interpretation and

optimizing compilers.

Compilers that are focused on minimal compila-

tion time have been used in other areas before and

our approach relies on ideas from the compiler com-

munity [8,35,37,38]. Notably, destination driven code

generation is an approach that generates machine code

directly from the abstract syntax tree (AST) of an input

language [8]. It uses one register to transfer intermediate

values (in expression evaluation) between neighboring

nodes in the AST and thus often achieves that val-

ues need not be transferred into memory. During AST

traversal every user of a value is visited before the value

is calculated and there is exactly one user for every in-

termediate value (due to the tree structure). The Flying

Start backend builds on these ideas, but operates in

a different setting. Each value in Umbra IR can have

multiple users and the value lifetimes potentially span

whole functions. From the view point of one instruction

the inputs and their recursive inputs form a DAG in-

stead of a tree. This removes the “one user” property for

intermediate values and requires additional analysis for

value lifetimes. Further, Umbra IR builds on ideas from

the sea-of-nodes programs representation [4]. Umbra IR

programs are structures as control-flow graphs where

basic blocks are vertices and edges represent control flow.

As in the sea-of-nodes representation, the arguments

of Umbra IR instructions directly point their defining

instructions. Unlike the sea-of-nodes representation, Um-

bra IR instructions stay attached to their basic blocks,

as Tidy Tuples takes care to generate code that does

not require a code-motion optimization.

The Chrome browser contains a WebAssembly com-

piler backend that is also inspired by destination driven

code generation. The V8 Liftoff backend aims for low

latency in code generation and creates code in only a
single pass [12]. WebAssembly uses a stack machine

model which takes instruction arguments from a stack

and puts results back onto the stack. This implicitly en-

codes the lifetime of intermediate values and Liftoff can

leverage this information to manage with only a single

pass. Liftoff thus depends on the compiler that gener-

ates WebAssembly to encode lifetimes. The Flying Start

backend cannot do this, as its compiler is executed right

ahead of it in the same compilation pipeline. Similarly,

Flounder IR is a program representation that relies on

the code generator to encode value lifetimes [9]. The

proposed design for Flounder IR is to estimate values

lifetimes with relational operator lifetimes. For Umbra

IR and Flying Start, we observed for TPC-H queries

that operator lifetimes overestimate the lifetimes and

lead to a shortage of available registers.

LuaJIT is a fast just-in-time compiler for the dy-

namically typed language Lua. Execution starts with

interpreting Lua bytecode [32]. A tracer then finds code
sections worth compiling and creates a statically typed

IR [33]. This IR, much like the Umbra IR, contains

features and instructions that are very specific to Lua.

A backend with multiple compiler passes can lower the

IR to machine code.

Destination driven code generation, Liftoff, and Lu-

aJIT rely on certain properties of their input programs

and so does the Flying Start backend. It profits from

the fact that the produce/consume interface generates

efficient and short code. Values are typically loaded

from memory only once and are then used in multiple

places by reference to only a single Umbra IR handle.

In addition, constant folding is performed on-the-fly

during program generation. The Flying Start backend

is tailored to these qualities and makes use of them to

save compilation time.

7 Summary

This paper presented the Tidy Tuples architecture, the

Umbra IR program representation, and the Flying Start

compiler backend to minimize query latency in compiling

relational database systems. They optimize the whole

execution pipeline from the arrival of a query plan to

when the result is ready.
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The Flying Start compilation backend showed that

very fast machine code generation is possible and the

generated code executes queries only slightly slower

than highly optimized code. Furthermore, Umbra IR, a

customized intermediate representation with optimized

data structures helps reduce the time spent for generat-

ing code and transferring code into machine instructions.

Lastly, Tidy Tuples structure code generators so that

complexity is well managed, yet code generation is very

fast and thus contributes to lower query latency.

We implemented the proposed optimizations in the

database system Umbra. An evaluation found that the

optimizations are effective at lowering query latency. The

experiments showed that Umbra’s compilation latency

becomes competitive with systems that do not compile

at all, e.g., DuckDB and MonetDB. At the same time,

the execution speed of Umbra is on par with state-of-

the-art query engines.

To conclude, we advocate the use of a fast compiler

that directly generates machine code and in some cases,

falls back to an optimizing compiler. This approach

reaches the low-latency realms of interpreter engines and

at the same time keeps a high execution speed in larger

datasets. Such a query engine can compile very quickly

and produces machine code that makes efficient use of

the processors. It is thus well equipped to optimally use

the large bandwidth provided by main memory and new

storage hardware, e.g., SSDs and Persistent Memory. Its

low query response time makes it predestined for a burst

of many small queries intermixed with large queries—as

regularly happens during interactive database use.
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Çetintemel, U., Zdonik, S.B.: Tupleware: ”big” data, big
analytics, small clusters. In: CIDR (2015)

7. Diaconu, C., Freedman, C., Ismert, E., Larson, P., Mittal,
P., Stonecipher, R., Verma, N., Zwilling, M.: Hekaton: SQL
server’s memory-optimized OLTP engine. In: SIGMOD,
pp. 1243–1254 (2013)

8. Dybvig, R.K., Hieb, R., Butler, T.: Destination-driven
code generation. Tech. rep., Indiana University Computer
Science Department (1990)

9. Funke, H., Mühlig, J., Teubner, J.: Efficient generation
of machine code for query compilers. In: DaMoN, pp.
6:1–6:7 (2020)

10. Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R.,
Stefani, S., Srinivasan, V.: Amazon Redshift and the case
for simpler data warehouses. In: SIGMOD, pp. 1917–1923
(2015)

11. Haas, G., Haubenschild, M., Leis, V.: Exploiting directly-
attached nvme arrays in DBMS. In: CIDR (2020)

12. Hammacher, C.: https://v8.dev/blog/liftoff (2018). URL
https://v8.dev/blog/liftoff

13. Karpathiotakis, M., Alagiannis, I., Heinis, T., Branco, M.,
Ailamaki, A.: Just-in-time data virtualization: Lightweight
data management with ViDa. In: CIDR (2015)

14. Kersten, T., Leis, V., Kemper, A., Neumann, T., Pavlo,
A., Boncz, P.A.: Everything you always wanted to know
about compiled and vectorized queries but were afraid to
ask. PVLDB 11(13), 2209–2222 (2018)

15. Klonatos, Y., Koch, C., Rompf, T., Chafi, H.: Building
efficient query engines in a high-level language. PVLDB
7(10), 853–864 (2014)

16. Kobalicek, P.: https://github.com/asmjit/asmjit (2014).
URL https://github.com/asmjit/asmjit

17. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A.,
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