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ABSTRACT
While estimating the result size of a group-by operation
on a base table is hard on its own, the presence of selec-
tions makes this problem increasingly difficult to solve. We
show that skewed data distributions and correlations found
in real-world data heavily affect the results of traditional
cardinality estimators. On the other hand, deep learning
has recently been shown to be a more robust approach to
cardinality estimation. Our evaluation shows that our (set-
based) deep learning model significantly enhances the qual-
ity of filtered group-by cardinality estimates.

1. INTRODUCTION
The estimation accuracy of intermediate query result sizes

dominates the plan quality of cost-based query optimizers,
and bad cardinality estimates can lead to disastrous perfor-
mance [24,26]. One particularly hard problem is estimating
the number of groups in the output of a group-by query on
a base table, such as the following query on the Internet
Movie Database (IMDb):

SELECT kind_id, phonetic_code, COUNT(*)

FROM title

GROUP BY kind_id, phonetic_code

Even for read-only OLAP workloads, this can be a diffi-
cult task. While it is trivial to store the number of distinct
values of individual columns, it is challenging for multiple
columns: That is, because the distinct value counts of in-
dividual columns or combinations of columns cannot eas-
ily be combined, and consequently, a system would have to
maintain an exponential number of such counts to support
arbitrary group-by expressions [10].

To work around multi-column statistics, systems like Post-
greSQL use sampling to estimate the cardinality of such
queries: They take a uniform sample from the relation, and
extrapolate statistics obtained on this sample to the whole
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relation. However, as Charikar et al. proved in their seminal
paper [5], it is fundamentally impossible to obtain good esti-
mates from reasonably-sized samples, mainly due to possibly
skewed data distributions. In other words, we would have to
sample most of the relation in order to reliably achieve high
estimation accuracy. As this is clearly not feasible, systems
that employ sampling often have no choice but to use wildly
inaccurate estimates for query optimization [26].

In previous work [10], we thus proposed a hybrid approach
that combines single-column statistics with a sampling-based
estimator to produce highly accurate multi-column estimates.
However, while this approach achieves state-of-the-art esti-
mates and can even deal with updates, we will show in this
paper that it breaks down when there are selection predi-
cates (filters) on the base table:

SELECT kind_id, phonetic_code, COUNT(*)

FROM title

WHERE production_year=2010

GROUP BY kind_id, phonetic_code

We will call queries like this filtered group-by queries in the
following. To accurately predict such queries, the hybrid
approach depends on precise estimates of the single-column
cardinalities (i.e., kind id and phonetic code) after the se-
lection predicate has been applied. Since statistics such as
histograms cannot account for selections on dimensions that
are not part of the statistic (production year in this exam-
ple), we must estimate these cardinalities purely based on
information obtained from the sample. As outlined above,
this will produce provably poor single-column estimates [5],
which in turn severely deteriorate the overall accuracy of
the estimator. In addition, as all sampling-based estimators,
the hybrid approach suffers from 0-tuple situations where no
samples remain after the predicate has been applied, leaving
it with nothing but an “educated” guess about the number
of groups.

Also, even if we would know the total number of groups
(without a selection), selectivity estimation alone would not
help. We need to estimate the number of groups in the re-
sult, whereas selectivity estimation can only accurately pre-
dict the number of tuples [24]. The presence of a selection
has an non-trivial effect on the number of groups. For exam-
ple, constraining production year to 2010 as in the above
query results in more than one third of the total number of
groups, while setting it to 1990 only yields about 1% of the
groups.
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Figure 1: Querying a Deep Sketch.

Long story short, despite a large volume of previous re-
search activity on the subject [5,12], traditional approaches
continue to struggle with producing accurate cardinality es-
timates on queries such as filtered group-by queries.

On the other hand, machine learning (ML) has recently
been shown to be useful for a variety of system tasks, in-
cluding classical problems like parameter tuning [3], query
optimization [22,28], and even indexing [21].

With Deep Sketches [18,19], we have recently introduced
a more robust approach to cardinality estimation that com-
bines (supervised) ML with runtime sampling to capture
skewed data distributions and correlations. A Deep Sketch
contains a (set-based) deep learning model that is trained
on a set of (generated) queries. First, these queries are gen-
erated using schema information and actual literals (values)
from the database. Next, they are annotated with bitmaps
indicating qualifying base table samples as well as their true
cardinalities (labels in ML), obtained by executing these
queries against the database. While Deep Sketches were
primarily developed to estimate join queries [18], they can
also be applied to the filtered group-by estimation task: The
output cardinality of a join query is independent of the con-
crete query plan—e.g., both (A 1 B) 1 C and A 1 (B 1 C)
can be represented as a set {A,B,C}. Similarly, the cardi-
nality of a group-by query does not depend on the concrete
permutation of the group-by columns in the SQL string.
Thus, we can apply the same set-based model here.

Our original model (called multi-set convolutional net-
work) represents three sets (tables, joins, and predicates) [18].
In this work, we use the original join module as a group-by
module to estimate filtered group-by queries on base tables.
Essentially, instead of encoding identifiers of join predicates,
we now encode identifiers of group-by columns. We train
the model with uniformly distributed queries on the IMDb
title table. Our evaluation shows that Deep Sketches can
effectively capture correlations between the group-by and
the selection operation. We demonstrate that our approach
significantly outperforms the estimators of PostgreSQL and
HyPer1 [16] as well as our own state-of-the-art multi-column
estimator (hybrid approach). Like the state size of our hy-
brid approach, the size of our ML model only grows linearly

1We are referring to the research version of HyPer developed
at the Technical University of Munich.

with the number of columns while it can accurately pre-
dict the effect of selections. Our results indicate that deep
learning is a promising candidate for the filtered group-by
cardinality estimation task.

While our approach only supports the class of filtered
group-by queries, its predictions can of course also be used
to estimate (sub trees of) larger queries. Another important
application is hash table sizing for hash-based aggregations.
Also, in distributed query processing, where it is expensive
to re-optimize at query runtime (as advocated by [35]), ac-
curately estimating such queries upfront is of high value. For
example, it allows the optimizer to decide between a local
and a shuffle-based aggregation depending on whether there
are few or many unique values, respectively.

Note that Deep Sketches are currently limited to read-only
databases and would require complete re-training (or at least
incremental training) to support updates. Also, our model
currently only supports conjunctive equality and range pred-
icates. We refer the reader to [18] for a discussion on these
two topics.

Contributions. In summary, we make the following con-
tributions:

• We experimentally show the poor performance of state-
of-the-art approaches for estimating filtered group-by
queries.

• We adapt an approach that combines deep learning
with runtime sampling to this problem, and show that
it provides higher accuracy with linear state size.

• We discuss possible extensions to our approach that
address its limitations: expensive training due to large
query space, limited to filtered group-by queries.

2. RELATED WORK
Traditional Approaches. Accurate cardinality estimates
are a fundamental requirement for effective query optimiza-
tion [24], and, correspondingly, a plethora of approaches
has been proposed in the literature. Traditionally, systems
maintain some sort of statistics on base tables, and attempt
to derive cardinality estimates from these statistics [24, 31].
For this purpose, sampling is one of the most versatile ap-
proaches, as it offers attractive performance and naturally
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deals with selections and multi-column estimates. However,
as Charikar et al. proved, any exclusively sampling-based ap-
proach must have poor accuracy on some input data [5]. A
large body of work thus attempts to improve sampling-based
estimation with auxiliary information [9,11,23,25,44]. This
includes our own state-of-the-art hybrid estimator, which,
as opposed to previous approaches, can produce accurate
multi-column estimates with minimal overhead but strug-
gles in the presence of selections [10].

Current systems frequently assume that the individual at-
tributes are independent for multi-column estimation, and
use ad-hoc heuristics to estimate the impact of selections [24].
However, such heuristics frequently do not reflect real-world
data accurately, resulting in large estimation errors [42].
Multi-column statistics, for example multi-dimensional his-
tograms [36], or wavelets [6], promise more accurate car-
dinality estimates, but as opposed to Deep Sketches, their
space consumption is non-linear in the number of attributes.

ML for Databases. Recently, there has been high interest
in applying ML techniques to database problems. The vi-
sion is to enhance or even replace traditional database com-
ponents with ML counterparts to create a learned database
system [20]. Recent work in the query optimization domain
focuses on join enumeration [22, 29], plan rewriting [7], and
even proposes an end-to-end learned optimizer [28]. As op-
posed to these proposals, we advocate for a more gradual
approach that focuses on cardinality estimation and leaves
join enumeration to modern algorithms that can find the op-
timal join order for dozens of relations [33]. Given the highly
non-trivial nature of the cardinality estimation problem and
the poor performance of current implementations [24], we
believe that ML can make a large difference here. Previous
ML papers on this problem used pure ML without any run-
time features [34, 40]. In previous work, we have started to
explore how ML can be combined with runtime sampling to
estimate base table and join cardinalities [18, 19]. In this
work, we adapt this approach to filtered group-by queries.

Other recent work proposes learned components for adap-
tive query processing [39], classical [21] and succinct [41] in-
dex structures, view materialization [27], index tuning [4,8],
data partitioning [14], workload management [15], and query
performance prediction [30].

Unsupervised ML Approaches. Unsupervised ML has
not yet been adapted to group-by queries. The closest work
is [13] in which the authors propose to use an autoregressive
model to learn a conditional probability distribution. How-
ever, their approach only supports equality predicates and
does not address group-by queries. Another recent proposal
is to use deep generative models to capture the joint data
distributions of multiple attributes and to generate new sam-
ple tuples following that distribution [38]. The idea then is
to run actual queries on these representative samples. Be-
sides its application in approximate query processing, one
could use that approach to estimate cardinalities of filtered
group-by queries. However, since the sample tuples are gen-
erated from the joint distribution over all columns, selective
queries may require a high number of samples to achieve
good approximation performance.

3. DEEP LEARNING TO THE RESCUE
In this section, we describe how we are using deep learn-

ing to accurately predict filtered group-by queries on base

tables. In our approach, we utilize Deep Sketches [18, 19]
which combine (supervised) ML with runtime sampling to
capture data skew and correlations. A Deep Sketch consists
of a trained (set-based) neural network and a set of materi-
alized samples, typically containing 1,000 base table tuples
selected uniformly at random.

Figure 1 shows the query flow of a Deep Sketch. First
( 1 ), the query’s selection predicates are evaluated on the
table sample to obtain a bitmap indicating qualifying sam-
ples (we call this process query annotation), before ( 2 ) the
annotated query is featurized and passed through a neural
network that outputs the query’s estimated cardinality.

While Deep Sketches were primarily developed to estimate
join queries [18], they can also be used to estimate (filtered)
group-by queries as we show in this paper. Similar to a
join query where the output cardinality is independent of
the concrete query plan, the cardinality of a group-by query
does not depend on the concrete permutation of the group-
by columns in the SQL string. Thus, we can apply the same
set-based model here.

In the following, we provide a high-level description of
our model for the purpose of this paper. For a more de-
tailed description of the model architecture and the query
featurization, we refer the reader to [18].

Query Featurization. Like in our initial work [18], we
represent a query q ∈ Q as a collection (Tq, Gq, Pq) of a set
of tables Tq ⊂ T , a set of group-by columns Gq ⊂ G and a
set of (conjunctive) predicates Pq ⊂ P participating in the
specific query q (illustrated in the middle of Figure 1). The
only difference here is that we have replaced the original join
set with a group-by set, since this work focuses on filtered
group-by queries on base tables and does not consider joins.
We later outline in Section 5 how to also address joins. T , G,
and P describe the entire query space in terms of available
tables, group-by columns, and predicates, respectively. Note
that for the purpose of this work Tq always only consists of
a single table.

All categorical data, i.e., tables, columns, and predicate
types (=, <, and >), are enumerated based on their ap-
pearance in the training data and represented as unique
one-hot vectors (binary vectors with a single non-zero en-
try). Bitmaps that indicate qualifying samples are repre-
sented in their natural form as binary vectors, typically of
length 1,000 with each bit representing a table sample. Non-
zero bits indicate that the corresponding sample qualifies all
predicates. Query literals are normalized (mapped to the
range [0, 1]) using the minimum and maximum values of the
respective column. Cardinalities are first logarithmized (to
obtain a more even distribution) and then normalized using
the maximum cardinality present in the training data.

Neural Network Architecture. Our multi-set convolu-
tional network (MSCN) model [18] (code: [1]) represents sets
of tables, joins, and predicates in separate modules. The
architecture of each of these modules is inspired by Deep
Sets [43], a neural network module that operates on sets.
While the Deep Sets model only addresses single sets, the
MSCN model represents multiple sets in a single architecture
and can capture correlations between sets. Each module is
comprised of one two-layer fully-connected multi-layer per-
ceptron (MLP) per set element with shared parameters. We
average module outputs, concatenate them, and pass them
through a final output MLP, which captures correlations
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Figure 2: Architecture of our MSCN model. Tables,
group-by columns, and predicates are represented as
separate MLP modules that provide input to a final
output network that predicts query cardinalities.

between sets and outputs a cardinality estimate. Since we
apply a learnable mapping for each set element individually
(with shared parameters), which is similar to the concept of
a 1 × 1 convolution, often used in CNNs for image classifi-
cation [37], we call our model convolutional.

In this work, we use the join module as a group-by module
to estimate filtered group-by queries on base tables. Figure 2
illustrates the (new) model that operates on the query rep-
resentation (Tq, Gq, Pq) as follows:

Table module: wT =
1

|Tq|
∑

t∈Tq
MLPT (vt)

Group-by module: wG =
1

|Gq|
∑

g∈Gq
MLPG(vg)

Predicate module: wP =
1

|Pq|
∑

p∈Pq
MLPP (vp)

Merge & predict: wout = MLPout([wT , wG, wP ])

The advantage of this architecture over standard neural
network architectures such as simple MLPs is that it does
not require serialization of the data. In other words, we
do not need to convert the individual set elements to an
ordered sequence. Instead, for every set S, we learn a set-
specific, per-element neural network MLPS(vs) that is ap-
plied on every feature vector vs for every element s ∈ S
individually. We then derive a final representation wS for
this set by averaging these individual transformed repre-
sentations, i.e., wS = 1/|S|

∑
s∈S MLPS(vs). Note that

an average of (transformed) one-hot vectors uniquely iden-
tifies the combination of one-hot vectors, e.g., the set of
group-by columns participating in the query. Thus, our ar-
chitecture does not waste any capacity in learning to dis-
cover the symmetries and structure of the original repre-
sentation, such as the boundaries between sets of differ-
ent size. The individual set representations are then con-
catenated and passed through a final output MLP: wout =
MLPout([wS1 , wS2 , . . . , wSN ]), where N is the total number

column cardinality filter group-by

kind id 6 X
phonetic code 23259 X
episode nr 14907 X X
production year 133 X X

Table 1: Cardinalities (distinct value counts) of
columns used in our workload. Checkmarks indi-
cate whether columns can appear in filter and/or
group-by clauses.

of sets and [·, ·] denotes vector concatenation. All MLP mod-
ules use ReLU(x) = max(0, x) activation functions and the
output MLP uses a sigmoid(x) = 1/(1 + exp(−x)) activa-
tion function for the last layer to only output a scalar value
wout ∈ [0, 1].

Optimization Metric. We make use of the Adam [17]
optimizer to minimize the mean q-error [32] q (q ≥ 1). The
q-error is the factor between the true and the estimated
cardinality.

Query Generation and Annotation. We obtain an ini-
tial training dataset by generating random queries using
schema information and actual literals (values) from the
database. The query generator is parametrized with a set
of available group-by and selection columns as well as pred-
icate types (=, <, and >). In addition, we specify limits
on the number of group-by and selection columns. All de-
cisions are performed uniformly at random (e.g., how many
and which group-by columns a specific query contains). We
provide a concrete example of this process in our evaluation
in Section 4.

Once the queries have been generated, we execute them
against a set of materialized sample tuples to annotate them
with bitmaps indicating qualifying samples and against the
full database table to obtain their true cardinalities.

4. EVALUATION
Dataset and Query Workload. We use the real-world
IMDb dataset, which is challenging for cardinality estima-
tors [24] due to data skew and correlations. We focus our
evaluation on the title table, which contains more than
2.5 M movie titles produced over 133 years.

In the following, we describe our query workload including
the search space (space of possible queries) that it is drawn
from.

We generate a workload that operates on four columns
(cf. Table 1). The construction of a query works as fol-
lows (all decisions are performed uniformly at random): We
generate either one or two filter predicates (selections) on
the filter columns, i.e., either one filter (on episode nr or
on production year) or two filters (on episode nr and on
production year). Each filter can be an equality (=), a less
than (<), or a greater than (>) predicate. Filter literals are
drawn from the respective columns in the database (e.g.,
2010 for a filter on production year). In fact, we pick val-
ues from random (uniformly distributed) row offsets. Next,
we generate the group-by clause. We generate either one
or two group-by columns, chosen among all four columns
(without replacement).
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Thus, given the distinct value counts shown in Table 1,
there are 5,993,013 possible selections and 10 possible group-
by clauses, resulting in 59,930,130 possible unique queries.

For our query workload, we use 500 queries from within
that search space.

Deep Sketch. We use a Deep Sketch (DS) that is trained
with uniformly distributed queries within the above query
space. The training set is disjoint from the query workload.
By default, we use 10,000 training queries and 1,000 ma-
terialized samples (i.e., each query is annotated with 1,000
bits).

We use the MSCN model with the following hyperparam-
eters: 100 epochs, batch size of 1024, 256 hidden units, and
a learning rate of 0.001. Training the model with 10,000
queries takes around two minutes on a GeForce GTX 1050 Ti
GPU using the PyTorch framework [2] with CUDA. Query-
ing the model with 500 annotated queries takes around two
microseconds per query when running the model on the
GPU. When serialized to disk, the model itself consumes
2.5 MiB (and another 16 KiB are occupied by the table sam-
ple). Note that its size increases linearly with the number of
columns: Since columns are encoded as unique one-hot vec-
tors, we require one additional 256-dimensional vector (# of
hidden units) for each extra column.

Competitors. We compare against PostgreSQL version
10.3 and HyPer as well as our state-of-the-art multi-column
estimator SCBC [10]. At its core, SCBC employs an im-
proved sampling-based estimator derived from the estima-
tors proposed by Charikar et al. [5]. For our experiments,
this part of SCBC uses the same sample than the Deep
Sketch. As outlined previously, a sampling-only approach
will have provably poor accuracy in some cases. For this rea-
son, SCBC additionally maintains the distinct value counts
in the individual columns. In order to obtain a multi-column
estimate, SCBC computes lower and upper bounds on the
number of groups based on these single-column counts, which
are then used to constrain the output of the sampling-based
estimator.

Without any selections, this approach gives excellent esti-
mates due to the accurate single-column estimates. In order
to extend SCBC to filtered group-by queries, we can simply
execute the query on the sample, and run the sampling-
based part of SCBC afterwards. However, we cannot pre-
dict the impact of selections on the number of distinct values
in the individual columns accurately. This prevents SCBC
from computing a reliable lower bound on the number of
groups after selections. For the purposes of this paper, we
only compute an upper bound on the number of groups
based on the single-column cardinalities before any selec-
tions. Note that for very selective queries, this bound will be
much too loose, severely limiting the performance of SCBC.

During our preliminary evaluation, we have tried to com-
pute single-column estimates after selections. However, with-
out any additional information, this boils down to a sample-
based distinct value count estimation, which gives poor re-
sults [5]. As SCBC heavily relies on accurate single-column
estimates, such an approach cannot improve the accuracy of
SCBC on filtered group-by queries.

Estimation Quality. Figure 3 and Table 2 show the q-
errors of the different approaches. While PostgreSQL and
HyPer achieve reasonable median q-errors, they both have
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Figure 3: Estimation errors on the query workload.
The box boundaries are at the 25th/75th percentiles
and the horizontal “whisker” lines mark the 95th
percentiles.

median 90th 95th 99th max mean

PostgreSQL 4.35 318 1236 7431 21934 351
HyPer 6.00 111 131 2275 3144 74.1
SCBC 3.21 14.0 21.0 86.8 2528 16.6
Deep Sketch 1.31 3.00 5.12 30.0 169 2.58

Table 2: Estimation errors on the query workload.

heavy outliers. SCBC has a lower median q-error than Post-
greSQL and HyPer, but also suffers from large mispredic-
tions. These mispredictions arise mainly due to the presence
of selections in the workload. As outlined above, selections
prevent SCBC from computing tight bounds on the result
cardinality, and there are many cases in which it has to rely
purely on the potentially inaccurate sampling-based estima-
tor. DS achieves the best median estimation quality and is
significantly more robust than its competitors. In fact, the
estimates produced by DS are within a factor of 3 of the
true cardinalities on average. Note that DS only observed
10,000 of the almost 60 M possible queries during training.

Effect of Number of Training Queries. We now analyze
the performance of DS with fewer training queries. Figure 4
shows the q-errors of DS with a varying number of training
queries. With only 100 queries, DS already achieves a me-
dian q-error of 4.33 which is competitive with the other ap-
proaches. However, as one would expect with such a small
training dataset, it produces large outliers. Starting with
1,000 training queries, DS surpasses HyPer in the 95th per-
centile. With 5,000 queries, it eventually outperforms SCBC
in all metrics.

Effect of Selections. We now use another (manually con-
structed) query workload to highlight the effect of selections.
Like in our opening example, we have an equality predi-
cate on production year (and vary the literal from 1880 to
2020) and use the kind id and phonetic code columns in
the group-by clause.

The Deep Sketch is again trained using the same 10,000
queries as above.

Here, we also include a simple combinatorial estimation
approach (which we call baseline) that has access to the
total number of groups G and the true number of qualifying
tuples t. Note that in reality we do not know the exact
values of these variables. This approach assumes a uniform
distribution of values among groups and works as follows:
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Figure 4: Estimation errors on the query workload
with an increasing number of training queries.

Assume the relation contains G groups and N = G×n tuples
with n being the number of tuples per group. A query selects
t tuples randomly without replacement, i.e., we disregard a
possible correlation between the selection column and the
group-by column. Then the expected number of groups in
the result set is:

G×

(
1−

(
N−n

t

)(
N
t

) )
Figure 5 shows the results with the four approaches in

different columns. The X axis denotes the production year
while we plot the cardinalities on the Y axis. The green
line shows the true cardinalities, while the red line denotes
the estimated cardinalities. In addition, the dotted red line
shows the estimates of the baseline approach.

We first only group by the low cardinality column kind id

(first row in Figure 5). As it turns out (green line), the num-
ber of different movie kinds increases over time. For exam-
ple, in 1931 the first tv series came out. Before that year,
all titles were of kind movie, tv movie, or episode. Our base-
line (dotted red line) overestimates the number of distinct
movie kinds early on. It essentially assumes that the number
of distinct movie kinds directly correlates with the number
of movie titles per year. In fact, once the number of yearly
movie titles increases (which it actually does), the baseline
estimates more distinct movie kinds. The reason for its over-
estimation is that it assumes that the qualifying movie ti-
tles t are uniformly distributed among movie kinds. In re-
ality, however, this distribution is non-uniform and highly
correlated with the year. Independent of the year, Post-
greSQL and HyPer always estimate 6 distinct movie kinds,
which is the total number of distinct values (cf. Table 1).
SCBC’s estimates fluctuate between 1 and 5. This result
further illustrates the importance of tight bounds on the
output cardinality for SCBC. The predicates in this work-
load are generally quite selective, i.e., the number of groups
in the output is small. However, SCBC only has access to
the single-column cardinalities before these selections, which
provide no useful upper bound on the number of groups in
the output. Thus, SCBC almost exclusively relies on its
sampling-based estimator, which leads to the observed se-
vere overestimations.

Moreover, SCBC also suffers heavily from 0-tuple situ-
ations, which explains the observed frequent underestima-
tions. Our query workload contains 132 different equality
predicates on production year, whereas the sample used by
SCBC only contains 100 distinct values of production year.

Thus, there are 32 queries in which the sample will contain
no tuples after applying the selection, and SCBC can only
guess the output cardinality. Since no lower bound on the
number of groups in the output is available, SCBC can also
not correct this guess reasonably. As Figure 5 illustrates,
DS does not suffer from this problem.

In order to confirm these considerations, we ran the same
workload but gave SCBC access to the true column cardi-
nalities after selections. As expected, this enabled SCBC to
predict the result cardinalities with high accuracy.

DS captures the increase in movie kinds but still under-
estimates it. The reason is that certain kinds are rare and
are thus less likely to be captured during training.

Next, we use the high cardinality column phonetic code

in the group-by clause (second row in Figure 5). Again,
the number of distinct values essentially increases over time
(green line), with a sharp rise after 1980. Our baseline (dot-
ted red line) produces reasonable estimates up to the year
1940 before starting to overestimate the cardinality in recent
years. The reason is again that it assumes a direct corre-
lation between the number of yearly movie titles and the
number of distinct phonetic codes. PostgreSQL’s and Hy-
Per’s estimates are again hardly unaffected by the selection.
While PostgreSQL catches the increase in distinct values
in recent years, HyPer heavily underestimates all of these
queries. SCBC’s estimates again fluctuate due to the same
reasons outlined above. DS estimates closely approximate
the true cardinalities with a few exceptions.

Finally, we group by both kind id and phonetic code

(third row in Figure 5). The trend (green line) is similar
than for the queries that only group-by phonetic code (sec-
ond row), but interestingly the estimations of PostgreSQL,
HyPer, and SCBC differ: PostgreSQL estimates the spike in
recent years to be larger this time, while HyPer’s estimates
are now influenced by the selection. SCBC’s estimates still
fluctuate but are now much closer to the true cardinalities,
except in recent years where its sampling-based estimator
underestimates the number of groups. DS again produces
highly accurate estimates with minimal outliers.

In summary, all of the traditional approaches have issues
with this workload. DS, in contrast, captures the corre-
lations between the selection on production year and the
group-by columns, leading to more accurate estimates.

5. DISCUSSION
More Runtime Features. Currently, we only featurize
bitmaps indicating table samples that have survived the se-
lection. Since we need to consult the sample anyways, we
could also derive and encode further statistics, such as the
number of distinct values of individual group-by columns in
the sample before and after selection, normalized based on
the number of distinct values in the entire table. Similarly,
we could compute and encode the number of groups in the
sample before and after selection (again normalized based
on table statistics).

Combining DS and SCBC. While we have shown that DS
only needs to observe 0.02% of the query space to produce
highly accurate estimates for our query workload, this might
not always be the case. To prune the search space and thus
reduce the number of required training queries, we could
combine DS with SCBC. We have previously shown that
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Figure 5: Cardinality estimates (Y axis) of PostgreSQL, HyPer, SCBC, and Deep Sketches. Selection on
production year (X axis) and group-by on kind id and/or phonetic code.

SCBC produces accurate group-by estimates without selec-
tions when it has access to precise estimates of the number
of distinct values of individual columns [10]. Under selec-
tions, SCBC does not have such estimates and as Charikar et
al. proved [5], also cannot compute precise estimates based
on a sample. To provide SCBC with precise estimates of
single-column distinct value counts after selection, we could
train a DS specifically for this task. By focusing on sin-
gle group-by columns, we would effectively prune the search
space and would need fewer training queries. The downside
is that a combined DS/SCBC approach would still suffer
from 0-tuple situations, i.e., when the sampling-based esti-
mator of SCBC has no qualifying tuples to start with. DS
on its own does not have this problem and can still rely on
static query features (i.e., group-by columns and predicates)
in such cases [18].

Supporting Joins. In the current model, we have replaced
the original join module with a group-by module. Instead,
we could add a forth set module to capture group-by and join
queries. While this is a rather straightforward extension,
this would increase the query space and thus require a larger
training dataset.

6. CONCLUSIONS
We have experimentally shown that traditional query op-

timizers as well as state-of-the-art techniques for distinct
value estimation produce poor cardinality estimates for fil-
tered group-by queries. We have extended and evaluated an
approach that combines a (set-based) deep learning model
with runtime sampling to accurately predict such queries.
This approach not only features higher accuracy but also
linear state size. We therefore believe that deep learning
is a promising candidate for solving the filtered group-by
cardinality estimation task.
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[44] M. Zäıt, S. Chakkappen, S. Budalakoti, S. R. Valluri,
R. Krishnamachari, and A. Wood. Adaptive Statistics
in Oracle 12c. PVLDB, 10(12):1813–1824, 2017.

8


