
Co-Designing Cloud-Native Database Systems and Unikernels
A Story of Radicalization

Viktor Leis

Technische Universität München



Operating Systems and Database Systems: An Uneasy Relationship

• OS:
• Manages, multiplexes, abstracts hardware
• Isolates processes/containers/users from each other

• DBMS:
• Wants full control over hardware
• Assumes it owns the machine

• Both implement similar things:
• Compute scheduling
• Memory management
• I/O scheduling, file system, RAID
• Caching

1



Case Study 1: Virtual Memory for Caching

2



Memory Mapping for DBMSs [Crotty et al., CIDR’22]

Memory-mapping the database file using mmap seems perfect:
• OS caches pages in RAM
• Access to all data is transparent
• Uses hardware support (MMU, TLB) to make cached accesses fast

However, this is almost always a bad idea for DBMSs:
• Problem #1: Transactional Safety
• Problem #2: I/O Stalls
• Problem #3: Error Handling
• Problem #4: Performance Issues

⇒ Database systems virtually always (re-)implement caching

3

https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf


Memory Mapping for DBMSs [Crotty et al., CIDR’22]

Memory-mapping the database file using mmap seems perfect:
• OS caches pages in RAM
• Access to all data is transparent
• Uses hardware support (MMU, TLB) to make cached accesses fast

However, this is almost always a bad idea for DBMSs:
• Problem #1: Transactional Safety
• Problem #2: I/O Stalls
• Problem #3: Error Handling
• Problem #4: Performance Issues

⇒ Database systems virtually always (re-)implement caching

3

https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf


Memory Mapping for DBMSs [Crotty et al., CIDR’22]

Memory-mapping the database file using mmap seems perfect:
• OS caches pages in RAM
• Access to all data is transparent
• Uses hardware support (MMU, TLB) to make cached accesses fast

However, this is almost always a bad idea for DBMSs:
• Problem #1: Transactional Safety
• Problem #2: I/O Stalls
• Problem #3: Error Handling
• Problem #4: Performance Issues

⇒ Database systems virtually always (re-)implement caching

3

https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf


Changing Linux [Leis et al., SIGMOD’23]

Virtual memory-assisted buffer management (vmcache):
• DBMS is in control over faulting and eviction
• Exploit MMU and TLB
• Can be implemented with vanilla Linux, but:

• Linux virtual memory primitives do not scale

• exmap: Linux kernel module that provides high-performance

Downsides:
• Changing/extending Linux is very hard
• Maintainability

4

https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/_my_direct_uploads/vmcache.pdf


Changing Linux [Leis et al., SIGMOD’23]

Virtual memory-assisted buffer management (vmcache):
• DBMS is in control over faulting and eviction
• Exploit MMU and TLB
• Can be implemented with vanilla Linux, but:

• Linux virtual memory primitives do not scale

• exmap: Linux kernel module that provides high-performance

Downsides:
• Changing/extending Linux is very hard
• Maintainability

4

https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/_my_direct_uploads/vmcache.pdf


Case Study 2: I/O

5



OS Overhead for I/O: Random 4KB Read Microbenchmark

AMD 96-core EPYC 9654P CPU with 8 Kioxia CM7-R SSDs:

M IOPS k cycles per IO CPU Util. (Cores)

pread 0.8 87.2 19.4
− page cache (O_DIRECT) 6.1 48.1 81.5
io_uring 6.7 28.4 52.9
− file system (XFS) 21.6 22.4 134.4
− RAID 0 (md) 23.3 19.0 123.0
+ uring opt. (polling, passthru) 23.3 9.7 62.8

⇒ To exploit fast SSDs, one has to disable all OS features + large overhead

6



OS Overhead for I/O: Random 4KB Read Microbenchmark

AMD 96-core EPYC 9654P CPU with 8 Kioxia CM7-R SSDs:

M IOPS k cycles per IO CPU Util. (Cores)

pread 0.8 87.2 19.4
− page cache (O_DIRECT) 6.1 48.1 81.5
io_uring 6.7 28.4 52.9
− file system (XFS) 21.6 22.4 134.4
− RAID 0 (md) 23.3 19.0 123.0
+ uring opt. (polling, passthru) 23.3 9.7 62.8

⇒ To exploit fast SSDs, one has to disable all OS features + large overhead

6



Kernel Bypassing

• Directly access PCIe device
• Intel DPDK: networking
• Intel SPDK: NVMe storage

M IOPS k cycles per IO CPU Util. (Cores)

+ uring opt. (polling, passthru) 23.3 9.7 62.8
SPDK (user-space I/O) 23.3 1.6 10.4

Downsides:
• Very low level, we’re doing the job of the OS
• Memory allocation issues
• No OS features (e.g., TCP, file system)

7



Kernel Bypassing

• Directly access PCIe device
• Intel DPDK: networking
• Intel SPDK: NVMe storage

M IOPS k cycles per IO CPU Util. (Cores)

+ uring opt. (polling, passthru) 23.3 9.7 62.8
SPDK (user-space I/O) 23.3 1.6 10.4

Downsides:
• Very low level, we’re doing the job of the OS
• Memory allocation issues
• No OS features (e.g., TCP, file system)

7



Models of DBMS/OS Interaction

8



Linux

• Experience in exploiting modern hardware with all three approaches
• Lots of engineering effort (customized Linux, bypassing)
• Or bad performance (vanilla Linux)
• This is despite Linux being a marvel of technology
• But Linux is impossible to fix given its constraints:

• POSIX, obscure features, backward compatibility
• Support for obsolete hardware platforms
• Process isolation

9



Taking A Step Back

• I argue that the root of the problem is legacy OS interfaces (POSIX)
• Have been designed decades ago for a very different hardware landscape
• Consequences:

• complexity
• inefficiency
• bugs

• fsyncgate Linux/PostgreSQL anecdote: https://danluu.com/fsyncgate/

10

https://danluu.com/fsyncgate/


Can we do better?

11



Unikernel + Cloud DBMS = A Perfect Match?

Unikernel:
• Single-address operating systems: threads, but no processes
• Everything runs in kernel space: privileged instructions possible, no syscall
overhead, direct access to hardware

Cloud DBMS:
• DBaaS: users don’t care about OS kernel
• Virtual machine runs only the database process

12



Unikernel + Cloud DBMS = A Perfect Match?

Unikernel:
• Single-address operating systems: threads, but no processes
• Everything runs in kernel space: privileged instructions possible, no syscall
overhead, direct access to hardware

Cloud DBMS:
• DBaaS: users don’t care about OS kernel
• Virtual machine runs only the database process

12



Unikernel + Cloud DBMS = A Perfect Match?

Unikernel:
• Single-address operating systems: threads, but no processes
• Everything runs in kernel space: privileged instructions possible, no syscall
overhead, direct access to hardware

Cloud DBMS:
• DBaaS: users don’t care about OS kernel
• Virtual machine runs only the database process

12



What About Security?

• Hypervisor provides security isolation across virtual machines
• Every virtual machine runs one (database) service
• In this world, Linux process isolation has little additional benefit
• Bug in DBMS will expose user data anyway
• Unikernels have a smaller attack surface

• Anecdote: Google disabled uring in production:
https://security.googleblog.com/2023/06/
learnings-from-kctf-vrps-42-linux.html

13

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html


OSv [Kivity et al., OSDI’14]

• Implements much (but not all of) POSIX
• Most code runs out-of-the-box or is easy to port
• Supports x86 and ARM multi-core CPUs
• Boot through kvm/QEMU, debug using gdb
• Simple, clean C++ code
(virtual memory implementation in OSv: 2k lines; Linux: 110k lines)

• No process isolation and no kernel/user space split make code much easier

14

https://www.usenix.org/system/files/conference/atc14/atc14-paper-kivity.pdf


OSv Deployment

• Can directly boot in AWS EC2 virtual machine or metal instance (in <100ms)
• Storage: NVMe driver
• Networking: ENA driver
• And that’s it
• Can also run on top of Firecracker

15



Unikernel/DBMS Co-Design [Leis and Dietrich, VLDB’24]

• Migrating to OSv will not magically make your DBMS faster
• Will often be slower out-of-the-box because Linux is well engineered

16

https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/cumulus.pdf


Unikernel/DBMS Co-Design [Leis and Dietrich, VLDB’24]

• Migrating to OSv will not magically make your DBMS faster
• Will often be slower out-of-the-box because Linux is well engineered

16

https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/cumulus.pdf


New Powers

• CPU:
• Preemption: timer, IPI
• Sleep/power states

• Virtual memory:
• Page table: 4-level radix tree
• TLB flush instructions

• NVMe:
• Completion queue: 64 byte entry
• Submission queue: 16 byte entry
• Enable/disable interrupts

• Hypervisor:
• Memory ballooning
• CPU hot-plugging

17



New Powers

• CPU:
• Preemption: timer, IPI
• Sleep/power states

• Virtual memory:
• Page table: 4-level radix tree
• TLB flush instructions

• NVMe:
• Completion queue: 64 byte entry
• Submission queue: 16 byte entry
• Enable/disable interrupts

• Hypervisor:
• Memory ballooning
• CPU hot-plugging

17



New Powers

• CPU:
• Preemption: timer, IPI
• Sleep/power states

• Virtual memory:
• Page table: 4-level radix tree
• TLB flush instructions

• NVMe:
• Completion queue: 64 byte entry
• Submission queue: 16 byte entry
• Enable/disable interrupts

• Hypervisor:
• Memory ballooning
• CPU hot-plugging

17



New Powers

• CPU:
• Preemption: timer, IPI
• Sleep/power states

• Virtual memory:
• Page table: 4-level radix tree
• TLB flush instructions

• NVMe:
• Completion queue: 64 byte entry
• Submission queue: 16 byte entry
• Enable/disable interrupts

• Hypervisor:
• Memory ballooning
• CPU hot-plugging

17



Opportunities

Only makes sense for data plane:

• Virtual memory-supported caching
• Virtual memory-supported memory allocation
• Virtual memory-supported snapshotting
• Unified thread/task scheduling with preemption
• High-performance storage and network I/O: <100 cycles per I/O?
• Easier and faster resource overprovisioning in multi-tenant settings

18



Conclusions

• This a personal story of radicalization after fighting against the OS for years
• Hardware is usually much simpler than legacy OS stacks
• Existing operating systems makes exploiting modern hardware

• complex
• inefficiency
• bug-prone

• Unikernels and DBaaS in the cloud may make custom OS kernels realistic
• Enables faster and simpler data plane systems

• Dropping Linux sounds radical, but it’s the best path forward
• eBPF and uring are only band-aids

https://www.cs.cit.tum.de/dis/research/cumulus/

19

https://www.cs.cit.tum.de/dis/research/cumulus/

