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Abstract—Main memory capacities have grown up to a point
where most databases fit into RAM. For main-memory database
systems, index structure performance is a critical bottleneck.
Traditional in-memory data structures like balanced binary
search trees are not efficient on modern hardware, because they
do not optimally utilize on-CPU caches. Hash tables, also often
used for main-memory indexes, are fast but only support point
queries.

To overcome these shortcomings, we present ART, an adaptive
radix tree (trie) for efficient indexing in main memory. Its lookup
performance surpasses highly tuned, read-only search trees, while
supporting very efficient insertions and deletions as well. At the
same time, ART is very space efficient and solves the problem
of excessive worst-case space consumption, which plagues most
radix trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though ART’s performance
is comparable to hash tables, it maintains the data in sorted
order, which enables additional operations like range scan and
prefix lookup.

I. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hardware landscape and are therefore much faster. Our
system HyPer, for example, compiles transactions to machine
code and gets rid of buffer management, locking, and latching
overhead. For OLTP workloads, the resulting execution plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B+-tree
variants like the cache sensitive B+-tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B+-trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,
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Fig. 1. Adaptively sized nodes in our radix tree.

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).

These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)
mechanism, which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(log n) access
time, hash tables have expected O(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.



These data structures directly use the digital representation of
keys instead of hashing or comparing keys. The underlying
idea is similar to a thumb-index found in many alphabetically
ordered dictionary books: The first character of a word can
directly be used to jump to all words starting with that
character. In a computer, this process can be repeated with
the next characters until a match is found. As a consequence
of this process, all operations have O(k) complexity where k is
the length of the key. In the era of extremely large data sets,
when n is growing faster than k, having a time complexity
independent of n is very attractive.

In this work, we present the adaptive radix tree (ART) which
is a fast and space-efficient in-memory indexing structure
specifically tuned for modern hardware. While most radix
trees require to trade off tree height versus space efficiency
by setting a globally valid fanout parameter, ART adapts the
representation of every individual node, as exemplified in
Figure 1. By adapting each inner node locally, it optimizes
global space utilization and access efficiency at the same time.
Nodes are represented using a small number of efficient and
compact data structures, chosen dynamically depending on
the number of child nodes. Two additional techniques, path
compression and lazy expansion, allow ART to efficiently
index long keys by collapsing nodes and thereby decreasing
the tree height.

A useful property of radix trees is that the order of the keys
is not random as in hash tables; rather, the keys are ordered
bitwise lexicographically. We show how typical data types can
be reordered efficiently to support all operations that require
the data to be ordered (e.g., range scan, prefix lookup, top-k,
minimum, and maximum).

This work makes the following contributions:
• We develop the adaptive radix tree (ART), a fast and

space-efficient general-purpose indexing structure for
main-memory database systems.

• We prove that the space consumption per key is bounded
to 52 bytes, even for arbitrarily long keys. We show
experimentally, that the space consumption is much lower
in practice, often as low as 8.1 bytes per key.

• We describe how common built-in data types can be
stored in radix trees while retaining their order.

• We experimentally evaluate ART and other state of the
art main-memory index structures, including the most
efficient search tree proposals.

• By integrating ART into the main-memory database
system HyPer and running the TPC-C benchmark, we
prove its superior end-to-end performance in a “real-life”
transaction processing application.

The rest of this paper is organized as follows. The next sec-
tion discusses related work. Section III presents the adaptive
radix tree and analyzes its space consumption. In Section IV
we introduce the concept of binary-comparable keys and show
how common built-in types can be transformed. Section V
describes experimental results including a number of micro
benchmarks and the TPC-C benchmark. Finally, Section VI
concludes and discusses future work.

II. RELATED WORK

In disk-based database systems, the B+-tree [8] is ubiq-
uitous [9]. It retrieves large blocks from disk to reduce the
number of accesses. Red-black trees [10], [11] and T-trees
[4] were proposed for main-memory database systems. Rao
and Ross [5] showed that T-trees, like all binary search trees,
suffer from poor cache behavior and are therefore often slower
than B+-trees on modern hardware. As an alternative, they
proposed a cache conscious B+-tree variant, the CSB+-tree
[12]. Further cache optimizations for B+-trees were surveyed
by Graefe and Larson [13].

Modern CPUs allow to perform multiple comparisons with
a single SIMD instruction. Schlegel et al. [6] proposed k-
ary search which reduces the number of comparisons from
log2 n to logK n where K is the number of keys that fit
into one SIMD vector. In comparison with binary trees, this
technique also reduces the number of cache misses, because
K comparisons are performed for each cache line loaded
from main memory. Kim et al. extended this research by
proposing FAST, a methodology for laying out binary search
trees in an architecture sensitive way [7]. SIMD, cache line,
and page blocking are used to optimally use the available
cache and memory bandwidth. Additionally, they proposed to
interleave the stages of multiple queries in order to increase
the throughput of their search algorithm. FAST trees and
the k-ary search trees are pointer-free data structures which
store all keys in a single array and use offset calculations
to traverse the tree. While this representation is efficient and
saves space, it also implies that no online updates are possible.
Kim et al. also presented a GPU implementation of FAST and
compared its performance to modern CPUs. Their results show
that, due to the higher memory bandwidth, GPUs can achieve
higher throughput than CPUs. Nevertheless, the use of GPUs
as dedicated indexing hardware is not yet practical because
memory capacities of GPUs are limited, communications cost
with main memory is high, and hundreds of parallel queries
are needed to achieve high throughput. We, therefore focus on
index structures for CPUs.

The use of tries for indexing character strings has been
studied extensively. The two earliest variants use lists [14]
and arrays [15] as internal node representations. Morrison
introduced path compression in order to store long strings
efficiently [16]. Knuth [17] analyzes these early trie variants.
The burst trie is a more recent proposal which uses trie nodes
for the upper levels of the tree, but switches to a linked list
once a subtree has only few elements. The HAT-trie [18]
improves performance by replacing the linked list with a
hash table. While most research focused on indexing character
strings, our goal is to index other data types as well. Therefore,
we prefer the term radix tree over trie because it underscores
the similarity to the radix sort algorithm and emphasizes that
arbitrary data can be indexed instead of only character strings.

The Generalized Prefix Tree was proposed by Boehm et
al. [19] as a general-purpose indexing structure. It is a radix
tree with a fanout of 16 and was a finalist in the SIGMOD



Programming Contest 2009. The KISS-Tree [20] is a more
efficient radix tree proposal with only three levels, but can
only store 32 bit keys. It uses an open addressing scheme for
the first 16 bits of the key and relies on the virtual memory
system to save space. The second level, responsible for the
next 10 bits, uses an array representation and the final level
compresses 6 bits using a bit vector. The idea of dynamically
changing the internal node representation is used by the Judy
array data structure which was developed at Hewlett-Packard
research labs [21], [22].

Graefe discusses binary-comparable (“normalized”) keys,
e.g. [23], as a way of simplifying and speeding up key
comparisons. We use this concept to obtain meaningful order
for the keys stored in radix trees.

III. ADAPTIVE RADIX TREE

This section presents the adaptive radix tree (ART). We start
with some general observations on the advantages of radix
trees over comparison-based trees. Next, we motivate the use
of adaptive nodes by showing that the space consumption
of conventional radix trees can be excessive. We continue
with describing ART and algorithms for search and insertion.
Finally, we analyze the space consumption.

A. Preliminaries

Radix trees have a number of interesting properties that
distinguish them from comparison-based search trees:
• The height (and complexity) of radix trees depends on

the length of the keys but in general not on the number
of elements in the tree.

• Radix trees require no rebalancing operations and all
insertion orders result in the same tree.

• The keys are stored in lexicographic order.
• The path to a leaf node represents the key of that

leaf. Therefore, keys are stored implicitly and can be
reconstructed from paths.

Radix trees consist of two types of nodes: Inner nodes,
which map partial keys to other nodes, and leaf nodes, which
store the values corresponding to the keys. The most efficient
representation of an inner node is as an array of 2s pointers.
During tree traversal, an s bit chunk of the key is used as the
index into that array and thereby determines the next child
node without any additional comparisons. The parameter s,
which we call span, is critical for the performance of radix
trees, because it determines the height of the tree for a given
key length: A radix tree storing k bit keys has dk/se levels of
inner nodes. With 32 bit keys, for example, a radix tree using
s = 1 has 32 levels, while a span of 8 results in only 4 levels.

Because comparison-based search trees are the prevalent
indexing structures in database systems, it is illustrative to
compare the height of radix trees with the number of compar-
isons in perfectly balanced search trees. While each compar-
ison rules out half of all values in the best case, a radix tree
node can rule out more values if s > 1. Therefore, radix trees
have smaller height than binary search trees for n > 2k/s. This
relationship is illustrated in Figure 2 and assumes that keys
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Fig. 2. Tree height of perfectly balanced binary search trees and radix trees.

can be compared in O(1) time. For large keys, comparisons
actually take O(k) time and therefore the complexity of search
trees is O(k log n), as opposed to the radix tree complexity of
O(k). These observations suggest that radix trees, in particular
with a large span, can be more efficient than traditional search
trees.

B. Adaptive Nodes

As we have seen, from a (pure lookup) performance stand-
point, it is desirable to have a large span. When arrays of
pointers are used to represent inner nodes, the disadvantage
of a large span is also clear: Space usage can be excessive
when most child pointers are null. This tradeoff is illustrated
in Figure 3 which shows the height and space consumption
for different values of the span parameter when storing 1M
uniformly distributed 32 bit integers. As the span increases,
the tree height decreases linearly, while the space consumption
increases exponentially. Therefore, in practice, only some
values of s offer a reasonable tradeoff between time and space.
For example, the Generalized Prefix Tree (GPT) uses a span of
4 bits [19], and the radix tree used in the Linux kernel (LRT)
uses 6 bits [24]. Figure 3 further shows that our adaptive radix
tree (ART), at the same time, uses less space and has smaller
height than radix trees that only use homogeneous array nodes.

The key idea that achieves both space and time efficiency is
to adaptively use different node sizes with the same, relatively
large span, but with different fanout. Figure 4 illustrates this
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Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.



Fig. 4. Illustration of a radix tree using array nodes (left) and our adaptive radix tree ART (right).

idea and shows that adaptive nodes do not affect the structure
(i.e., height) of the tree, only the sizes of the nodes. By
reducing space consumption, adaptive nodes allow to use a
larger span and therefore increase performance too.

In order to efficiently support incremental updates, it is
too expensive to resize nodes after each update. Therefore,
we use a small number of node types, each with a different
fanout. Depending on the number of non-null children, the
appropriate node type is used. When the capacity of a node
is exhausted due to insertion, it is replaced by a larger node
type. Correspondingly, when a node becomes underfull due to
key removal, it is replaced by a smaller node type.

C. Structure of Inner Nodes

Conceptually, inner nodes map partial keys to child pointers.
Internally, we use four data structures with different capacities.
Given the next key byte, each data structure allows to effi-
ciently find, add, and remove a child node. Additionally, the
child pointers can be scanned in sorted order, which allows to
implement range scans. We use a span of 8 bits, corresponding
to partial keys of 1 byte and resulting a relatively large
fanout. This choice also has the advantage of simplifying the
implementation, because bytes are directly addressable which
avoids bit shifting and masking operations.

The four node types are illustrated in Figure 5 and are
named according to their maximum capacity. Instead of using
a list of key/value pairs, we split the list into one key part
and one pointer part. This allows to keep the representation
compact while permitting efficient search:
Node4: The smallest node type can store up to 4 child

pointers and uses an array of length 4 for keys and another
array of the same length for pointers. The keys and pointers
are stored at corresponding positions and the keys are sorted.
Node16: This node type is used for storing between 5 and

16 child pointers. Like the Node4, the keys and pointers
are stored in separate arrays at corresponding positions, but
both arrays have space for 16 entries. A key can be found
efficiently with binary search or, on modern hardware, with
parallel comparisons using SIMD instructions.
Node48: As the number of entries in a node increases,

searching the key array becomes expensive. Therefore, nodes
with more than 16 pointers do not store the keys explicitly.
Instead, a 256-element array is used, which can be indexed
with key bytes directly. If a node has between 17 and 48 child
pointers, this array stores indexes into a second array which
contains up to 48 pointers. This indirection saves space in
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Fig. 5. Data structures for inner nodes. In each case the partial keys 0, 2,
3, and 255 are mapped to the subtrees a, b, c, and d, respectively.

comparison to 256 pointers of 8 bytes, because the indexes
only require 6 bits (we use 1 byte for simplicity).
Node256: The largest node type is simply an array of 256

pointers and is used for storing between 49 and 256 entries.
With this representation, the next node can be found very
efficiently using a single lookup of the key byte in that array.
No additional indirection is necessary. If most entries are not
null, this representation is also very space efficient because
only pointers need to be stored.

Additionally, at the front of each inner node, a header of
constant size (e.g., 16 bytes) stores the node type, the number
of children, and the compressed path (cf. Section III-E).

D. Structure of Leaf Nodes

Besides storing paths using the inner nodes as discussed
in the previous section, radix trees must also store the values
associated with the keys. We assume that only unique keys
are stored, because non-unique indexes can be implemented
by appending the tuple identifier to each key as a tie-breaker.

The values can be stored in different ways:
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• Single-value leaves: The values are stored using an addi-
tional leaf node type which stores one value.

• Multi-value leaves: The values are stored in one of four
different leaf node types, which mirror the structure of
inner nodes, but contain values instead of pointers.

• Combined pointer/value slots: If values fit into point-
ers, no separate node types are necessary. Instead, each
pointer storage location in an inner node can either
store a pointer or a value. Values and pointers can be
distinguished using one additional bit per pointer or with
pointer tagging.

Using single-value leaves is the most general method,
because it allows keys and values of varying length within one
tree. However, because of the increased tree height, it causes
one additional pointer traversal per lookup. Multi-value leaves
avoid this overhead, but require all keys in a tree to have the
same length. Combined pointer/value slots are efficient and
allow to store keys of varying length. Therefore, this method
should be used if applicable. It is particularly attractive for
secondary database indexes which store tuple identifiers with
the same size as pointers.

E. Collapsing Inner Nodes

Radix trees have the useful property that each inner node
represents a key prefix. Therefore, the keys are implicitly
stored in the tree structure, and can be reconstructed from
the paths to the leaf nodes. This saves space, because the
keys do not have to be stored explicitly. Nevertheless, even
with this implicit prefix compression of keys and the use
of adaptive nodes, there are cases, in particular with long
keys, where the space consumption per key is large. We
therefore use two additional, well-known techniques that allow
to decrease the height by reducing the number of nodes.
These techniques are very effective for long keys, increasing
performance significantly for such indexes. Equally important
is that they reduce space consumption, and ensure a small
worst-case space bound.

With the first technique, lazy expansion, inner nodes are
only created if they are required to distinguish at least two
leaf nodes. Figure 6 shows an example where lazy expansion
saves two inner nodes by truncating the path to the leaf “FOO”.
This path is expanded if another leaf with the prefix “F” is
inserted. Note that because paths to leaves may be truncated,

search (node, key, depth)
1 if node==NULL
2 return NULL
3 if isLeaf(node)
4 if leafMatches(node, key, depth)
5 return node
6 return NULL
7 if checkPrefix(node,key,depth)!=node.prefixLen
8 return NULL
9 depth=depth+node.prefixLen

10 next=findChild(node, key[depth])
11 return search(next, key, depth+1)

Fig. 7. Search algorithm.

this optimization requires that the key is stored at the leaf or
can be retrieved from the database.

Path compression, the second technique, removes all inner
nodes that have only a single child. In Figure 6, the inner node
storing the partial key “A” was removed. Of course, this partial
key cannot simply be ignored. There are two approaches to
deal with it:
• Pessimistic: At each inner node, a variable length (pos-

sibly empty) partial key vector is stored. It contains the
keys of all preceding one-way nodes which have been
removed. During lookup this vector is compared to the
search key before proceeding to the next child.

• Optimistic: Only the count of preceding one-way nodes
(equal to the length of the vector in the pessimistic
approach) is stored. Lookups just skip this number of
bytes without comparing them. Instead, when a lookup
arrives at a leaf its key must be compared to the search
key to ensure that no “wrong turn” was taken.

Both approaches ensure that each inner node has at least
two children. The optimistic approach is particularly beneficial
for long strings but requires one additional check, while
the pessimistic method uses more space, and has variable
sized nodes leading to increased memory fragmentation. We
therefore use a hybrid approach by storing a vector at each
node like in the pessimistic approach, but with a constant
size (8 bytes) for all nodes. Only when this size is exceeded,
the lookup algorithm dynamically switches to the optimistic
strategy. Without wasting too much space or fragmenting
memory, this avoids the additional check in cases that we
investigated.

F. Algorithms

We now present the algorithms for search and updates:
Search: Pseudo code for search is shown in Figure 7. The

tree is traversed by using successive bytes of the key array
until a leaf node or a null pointer is encountered. Line 4
handles lazy expansion by checking that the encountered leaf
fully matches the key. Pessimistic path compression is handled
in lines 7 and 8 by aborting the search if the compressed
path does not match the key. The next child node is found
by the findChild function, which is shown in Figure 8.
Depending on the node type the appropriate search algorithm
is executed: Because a Node4 has only 2-4 entries, we use



findChild (node, byte)
1 if node.type==Node4 // simple loop
2 for (i=0; i<node.count; i=i+1)
3 if node.key[i]==byte
4 return node.child[i]
5 return NULL
6 if node.type==Node16 // SSE comparison
7 key=_mm_set1_epi8(byte)
8 cmp=_mm_cmpeq_epi8(key, node.key)
9 mask=(1<<node.count)-1

10 bitfield=_mm_movemask_epi8(cmp)&mask
11 if bitfield
12 return node.child[ctz(bitfield)]
13 else
14 return NULL
15 if node.type==Node48 // two array lookups
16 if node.childIndex[byte]!=EMPTY
17 return node.child[node.childIndex[byte]]
18 else
19 return NULL
20 if node.type==Node256 // one array lookup
21 return node.child[byte]

Fig. 8. Algorithm for finding a child in an inner node given a partial key.

a simple loop. For a Node16, the pseudo code shows an
SIMD implementation using SSE instructions, which allow
to compare 16 keys with one instruction in parallel. First, the
searched key is replicated (line 7) and then compared to the
16 keys stored in the inner node (line 8). In the next step, a
mask is created (line 9), because the node may have less than
16 valid entries. The result of the comparison is converted to
a bit field and the mask is applied (line 10). Finally, the bit
field is converted to an index using the count trailing zero
instruction (line 12). Alternatively, binary search can be used
if SIMD instructions are not available. Lookup in a Node48 is
performed by first checking if the childIndex entry is valid,
and then returning the corresponding pointer. A Node256
lookup consists of only a single array access.

Insert: The pseudo code is shown in Figure 9. The tree
is traversed using the recursive call in line 29, until the
position for the new leaf is found. Usually, the leaf can
simply be inserted into an existing inner node, after growing
it if necessary (lines 31-33). If, because of lazy expansion,
an existing leaf is encountered, it is replaced by a new
inner node storing the existing and the new leaf (lines 5-
13). Another special case occurs if the key of the new leaf
differs from a compressed path: A new inner node is created
above the current node and the compressed paths are adjusted
accordingly (lines 17-24). We omit some helper functions for
lack of space: replace substitutes a node in the tree by
another node, addChild appends a new child to an inner
node, checkPrefix compares the compressed path of a
node with the key and returns the number of equal bytes,
grow replaces a node by a larger node type, and loadKey
retrieves the key of a leaf from the database.

Bulk loading: When an index is created for an existing
relation, the following recursive algorithm can be used to speed
up index construction: Using the first byte of each key the
key/value pairs are radix partitioned into 256 partitions and an

insert (node, key, leaf, depth)
1 if node==NULL // handle empty tree
2 replace(node, leaf)
3 return
4 if isLeaf(node) // expand node
5 newNode=makeNode4()
6 key2=loadKey(node)
7 for (i=depth; key[i]==key2[i]; i=i+1)
8 newNode.prefix[i-depth]=key[i]
9 newNode.prefixLen=i-depth

10 depth=depth+newNode.prefixLen
11 addChild(newNode, key[depth], leaf)
12 addChild(newNode, key2[depth], node)
13 replace(node, newNode)
14 return
15 p=checkPrefix(node, key, depth)
16 if p!=node.prefixLen // prefix mismatch
17 newNode=makeNode4()
18 addChild(newNode, key[depth+p], leaf)
19 addChild(newNode, node.prefix[p], node)
20 newNode.prefixLen=p
21 memcpy(newNode.prefix, node.prefix, p)
22 node.prefixLen=node.prefixLen-(p+1)
23 memmove(node.prefix,node.prefix+p+1,node.prefixLen)
24 replace(node, newNode)
25 return
26 depth=depth+node.prefixLen
27 next=findChild(node, key[depth])
28 if next // recurse
29 insert(next, key, leaf, depth+1)
30 else // add to inner node
31 if isFull(node)
32 grow(node)
33 addChild(node, key[depth], leaf)

Fig. 9. Insert algorithm.

inner node of the appropriate type is created. Before returning
that inner node, its children are created by recursively applying
the bulk loading procedure for each partition using the next
byte of each key.

Delete: The implementation of deletion is symmetrical to
insertion. The leaf is removed from an inner node, which is
shrunk if necessary. If that node now has only one child, it is
replaced by its child and the compressed path is adjusted.

G. Space Consumption

Even though servers with terabytes of RAM are readily
available, main memory is still a precious resource. Therefore,
index structures should be as compact as possible. For radix
trees, the space consumption depends on the distribution of
the stored keys. Dense keys (e.g., integers ranging from 1 to
n) are the best case, and can be stored space efficiently, even
using a large span and without adaptive nodes. When the keys
are sparse on the other hand, many pointers of inner nodes
are null, which results in wasted space. Skewed keys cause
some nodes to contain mostly null pointers, and other nodes
to be densely packed. Adaptive nodes solve these problems
and ensure that any key distribution is stored compactly by
locally optimizing the space consumption at each node.

We now analyze the worst-case space consumption per
key, taking into account adaptive nodes, lazy expansion, and
path compression. For the following analysis, we assume that
pointers are 8 bytes long and that each node has a 16 byte



TABLE I
SUMMARY OF THE NODE TYPES (16 BYTE HEADER, 64 BIT POINTERS).

Type Children Space (bytes)
Node4 2-4 16 + 4 + 4 · 8 = 52
Node16 5-16 16 + 16 + 16 · 8 = 160
Node48 17-48 16 + 256 + 48 · 8 = 656
Node256 49-256 16 + 256 · 8 = 2064

TABLE II
WORST-CASE SPACE CONSUMPTION PER KEY (IN BYTES) FOR DIFFERENT

RADIX TREE VARIANTS WITH 64 BIT POINTERS.

k = 32 k →∞
ART 43 52
GPT 256 ∞
LRT 2048 ∞
KISS >4096 NA.

header storing the node type, the number of non null children,
and the compressed path. We only consider inner nodes and
ignore leaf nodes because leaves incur no space overhead if
combined pointer/value slots with tagged pointers are used.
Using these assumptions, the resulting space consumption for
each inner node type is shown in Table I.

Think of each leaf as providing x bytes and inner nodes as
consuming space provided by their children. If each node of
a tree has a positive budget, then that tree uses less than x
bytes per key. The budget of an inner node is the sum of all
budgets of its children minus the space consumption of that
node. Formally, the budget b(n) of a node n with the child
nodes c(n) and the space consumption s(n) is defined as

b(n) =

{
x, isLeaf(n)(∑

i∈c(n) b(i)
)
− s(n), else.

Using induction on the node type, we now show that
b(n) ≥ 52 for every ART node n if x = 52: For leaves, the
statement holds trivially by definition of the budget function.
To show that the statement holds for inner nodes, we compute
a lower bound for

∑
i∈c(n) b(i) using the induction hypothesis

and the minimum number of children for each node type. After
subtracting the corresponding space consumption, we obtain
a lower bound on the budget of each node type. In all four
cases it is greater than or equal to 52, which concludes the
induction. To summarize, we have shown that for x = 52 it
is not possible to construct an adaptive radix tree node that
has a negative budget. As a consequence, the worst-case space
consumption is 52 bytes for any adaptive radix tree, even for
arbitrarily long keys. It can also be shown analogously that
with six node types1, the worst-case space consumption can be
reduced to 34 bytes per key. As we will show in Section V-D,
in practice, the space consumption is much smaller than the
worst case, even for relatively long keys. The best case of 8.1
bytes, however, does occur quite frequently because surrogate
integer keys are often dense.

1The Node4 type is replaced by the new node types Node2 and Node5
and the Node48 type is replaced by the new Node32 and Node64 types.

Let us close with a comparison to other radix trees which is
summarized in Table II. Because the Generalized Prefix Tree
and the Linux kernel radix tree do not use path compression,
the number of inner nodes is proportional to the length of the
keys. Therefore, the worst-case space consumption per key
is not bounded. Furthermore, even for short keys, both data
structures have a much higher worst-case space consumption
than ART because they do not use adaptive nodes. The worst-
case space consumption of the KISS-Tree is over 4KB per
key, and occurs, for example, with the unsigned integer keys
{i · 216 | i ∈ {0, 1, . . . , 216 − 1}}.

IV. CONSTRUCTING BINARY-COMPARABLE KEYS

An important aspect in choosing an indexing structure is
whether or not the data is stored in sorted order. The sorted
order traversal of an index structure facilitates the implementa-
tion of efficient ordered range scans and lookups for minimum,
maximum, top-N, etc. By default, only comparison-based
trees store the data in sorted order, which resulted in their
prevalence as indexing structures for database systems. While
the use of order-preserving hashing has been proposed to allow
hash table elements to be sorted, it is not common in real-
world systems. The reason is that for values from unknown
distributions, it is very hard to come up with functions that
spread the input values uniformly over the hash table while
preserving the input order.

Keys stored in radix trees are ordered bitwise lexicograph-
ically. For some data types, e.g., ASCII encoded character
strings, this yields the expected order. For most data types
this is not the case. For example, negative two-complement
signed integers are lexicographically greater than positive
integers. However, it is possible to obtain the desired order
by transforming the keys. We call the values resulting from
such a transformation binary-comparable keys. If only binary-
comparable keys are used as keys of a radix tree, the data
is stored in sorted order and all operations that rely on this
order can be supported. Note that no modifications to the
algorithms presented in the previous section are necessary.
Each key must simply be transformed to a binary-comparable
key before storing it or looking it up.

Binary-comparable keys have other use cases. Just as this
concept allows to replace comparison-based trees with radix
trees, it allows to replace comparison-based sorting algorithms
like quicksort or mergesort with the radix sort algorithm which
can be asymptotically superior.

A. Definition

A transformation function t : D → {0, 1, . . . , 255}k
transforms values of a domain D to binary-comparable keys of
length k if it satisfies the following equivalences (x, y ∈ D):
• x < y ⇔ memcmpk(t(x), t(y)) < 0
• x > y ⇔ memcmpk(t(x), t(y)) > 0
• x = y ⇔ memcmpk(t(x), t(y)) = 0

The operators <,>,= denote the usual relational operators
on the input type while memcmpk compares the two input
vectors component wise. It returns 0 if all compared values



are equal, a negative value if the first non-equal value of the
first vector is less than the corresponding byte of the second
vector, and otherwise a positive value.

For finite domains, it is always possible to transform the val-
ues of any strictly totally ordered domain to binary-comparable
keys: Each value of a domain size n is mapped to a string of
dlog2 ne bits storing the zero-extended rank minus one.

B. Transformations

We now discuss how common data types can be transformed
to binary-comparable keys.

a) Unsigned Integers: The binary representation of un-
signed integers already has the desired order. However, the
endianness of the machine must be taken into account when
storing the value into main memory. On little endian machines,
the byte order must be swapped to ensure that the result is
ordered from most to least significant byte.

b) Signed Integers: Signed two-complement integers
must be reordered because negative integers are ordered de-
scending and are greater than the positive values. An b bit
integer x is transformed very efficiently by flipping the sign
bit (using xXOR2b−1). The resulting value is then stored like
an unsigned value.

c) IEEE 754 Floating Point Numbers: For floating point
values, the transformation is more involved, although concep-
tually not difficult. Each value is first classified as positive
or negative, and as normalized number, denormalized number,
NaN,∞, or 0. Because these 10 classes do not overlap, a new
rank can easily be computed and then stored like an unsigned
value. One key transformation requires 3 if statements, 1
integer multiplication, and 2 additions.

d) Character Strings: The Unicode Collation Algorithm
(UCA) defines complex rules for comparing Unicode strings.
There are open source libraries which implement this algo-
rithm and which offer functions to transform Unicode strings
to binary-comparable keys2. In general, it is important that
each string is terminated with a value which does not appear
anywhere else in any string (e.g., the 0 byte). The reason is
that keys must not be prefixes of other keys.

e) Null: To make a null value binary comparable, it must
be assigned a value with some particular rank. For most data
types, all possible values are already used. A simple solution
is to increase the key length of all values by one to obtain
space for the null value, e.g., 4 byte integers become 5 bytes
long. A more efficient way to accommodate the null value is
to increase the length only for some values of the domain. For
example, assuming null should be less than all other 4 byte
integers, null can be mapped to the byte sequence 0,0,0,0,0,
the previously smallest value 0 is mapped to 0,0,0,0,1, and all
other values retain their 4 byte representation.

f) Compound Keys: Keys consisting of multiple attributes
are easily handled by transforming each attribute separately
and concatenating the results.

2The C/C++ library “International Components for Unicode”
(http://site.icu-project.org/), for example, provides the ucol_getSortKey
function for this purpose.

V. EVALUATION

In this section, we experimentally evaluate ART and com-
pare its performance to alternative in-memory data structures,
including comparison-based trees, hashing, and radix trees.
The evaluation has two parts: First, we perform a number of
micro benchmarks, implemented as standalone programs, with
all evaluated data structures. In the second part, we integrate
some of the data structures into the main-memory database
system HyPer. This allows us to execute a more realistic
workload, the standard OLTP benchmark TPC-C.

We used a high-end desktop system with an Intel Core i7
3930K CPU which has 6 cores, 12 threads, 3.2 GHz clock
rate, and 3.8 GHz turbo frequency. The system has 12 MB
shared, last-level cache and 32 GB quad-channel DDR3-1600
RAM. We used Linux 3.2 in 64 bit mode as operating system
and GCC 4.6 as compiler.

As contestants, we used

• a B+-tree optimized for main memory (Cache-Sensitive
B+-tree [CSB]),

• two read-only search structures optimized for modern
x86 CPUs (k-ary search tree [kary], Fast Architecture
Sensitive Tree [FAST]),

• a radix tree (Generalized Prefix Tree [GPT]), and
• two textbook data structures (red-black tree [RB], chained

hash table [HT] using MurmurHash64A for 64-bit plat-
forms [25]).

For a fair comparison, we used source code provided by the
authors if it was available. This was the case for the CSB+-
Tree [26], k-ary search [27], and the Generalized Prefix Tree
[28]. We used our own implementation for the remaining data
structures.

We were able to validate that our implementation of FAST,
which we made available online [29], matches the originally
published numbers. To calibrate for the different hardware,
we used the results for k-ary search which were published
in the same paper. Our implementation of FAST uses 2 MB
memory pages, and aligns all cache line blocks to 64 byte
boundaries, as suggested by Yamamuro et al. [30]. However,
because FAST and k-ary search return the rank of the key
instead of the tuple identifier, the following results include
one additional lookup in a separate array of tuple identifiers in
order to evaluate a meaningful lookup in the database context.

We had to use 32 bit integers as keys for the micro bench-
marks because some of the implementations only support 32
bit integer keys. For such very short keys, path compression
usually increases space consumption instead of reducing it.
Therefore, we removed this feature for the micro benchmarks.
Path compression is enabled in the more realistic second part
of the evaluation. In contrast to comparison-based trees and
hash tables, the performance of radix trees varies with the
distribution of the keys. We therefore show results for dense
keys ranging from 1 to n (n denotes the size of the tree in #
keys) and sparse keys where each bit is equally likely 0 or 1.
We randomly permuted the dense keys.

http://site.icu-project.org/
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Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

A. Search Performance

In our first experiment, we measured the performance of
looking up random, existing3 keys. Figure 10 shows that
ART and the hash table have the best performance. ART is
more than twice as fast as GPT, a radix tree with half the
span and therefore twice the height. The red-black tree is the
slowest comparison-based tree, followed by the CSB+-tree,
k-ary search, and finally FAST. Even though FAST does not
support updates and is optimized for modern architectures, it is
slower than ART and the hash table. The relative performance
of the data structures is very similar for the three index sizes.
This indicates that the fact that small indexes (65K) are about
10 times faster than large indexes (256M) is mostly caused by
caching effects, and not by the asymptotic properties of the
data structures.

To better understand these results, consider Table III, which
shows performance counters per random lookup for the three
fastest data structures (ART, FAST, and the hash table). With
16M keys, only parts of the index structures are cached,
and lookup is memory bound. The number of cache misses
is similar for FAST, the hash table, and ART with sparse
keys. With dense keys, ART causes only half as many cache
misses because its compact nodes can be cached effectively.
In small trees, the lookup performance is mostly determined
by the number of instructions and branch mispredictions.
While ART has almost no mispredicted branches for dense
keys, sparse keys lead to around 0.85 mispredicted branches
per lookup, which occur during node type dispatch. Dense
keys also require less instructions, because finding the next
child in a Node256 requires no computation, while the other
node types result in more effort. FAST effectively avoids
mispredictions which occur with ordinary search trees, but
requires a significant number of instructions (about 5 per
comparison) to achieve this. The hash table has a small number
of mispredictions which occur during collision handling.

So far, lookups were performed one query at a time,
in a single thread. The goal of the next experiment was
to find the maximum achievable throughput using multiple

3Successful search in radix trees is slower than unsuccessful search.

TABLE III
PERFORMANCE COUNTERS PER LOOKUP.

65K 16M
ART (d./s.) FAST HT ART (d./s.) FAST HT

Cycles 40/105 94 44 188/352 461 191
Instructions 85/127 75 26 88/99 110 26
Misp. Branches 0.0/0.85 0.0 0.26 0.0/0.84 0.0 0.25
L3 Hits 0.65/1.9 4.7 2.2 2.6/3.0 2.5 2.1
L3 Misses 0.0/0.0 0.0 0.0 1.2/2.6 2.4 2.4
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Fig. 11. Multi-threaded lookup throughput in an index with 16M keys (12
threads, software pipelining with 8 queries per thread).

unsynchronized threads. Besides using multiple threads, it has
been shown that throughput can be improved by interleaving
multiple tree traversals using software pipelining [7]. This
technique exploits modern superscalar CPUs better, but in-
creases latency, and is only applicable if multiple queries are
available (e.g., during an index-nested loop join). FAST bene-
fits most from software pipelining (2.5x), because its relatively
large latencies for comparisons and address calculations can
be hidden effectively. Since ART performs less calculations
in the first place, its speedup is smaller but still significant
(1.6x-1.7x). A chained hash table can be considered a tree of
only two levels (the hash table array, and the list of key/value
pairs), so the speedup is relatively small (1.2x). Nevertheless,
Figure 11 shows that even with 12 threads and 8 interleaved
queries per thread, ART is only slightly slower than FAST for
sparse keys, but significantly faster for dense keys.
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B. Caching Effects

Let us now investigate caching effects. For modern CPUs,
caches are extremely important, because DRAM latency
amounts to hundreds of CPU cycles. Tree structures, in
particular, benefit from caches very much because frequently
accessed nodes and the top levels are usually cached. To
quantify these caching effects, we compare two tree structures,
ART (with dense keys) and FAST, to a hash table.

Random lookup, which we performed so far, is the worst
case for caches because this access pattern has bad temporal
locality. In practice, skewed access patterns are very common,
e.g., recent orders are accessed more often than old orders.
We simulated such a scenario by looking up Zipf distributed
keys instead of random keys. Figure 12 shows the impact of
increasing skew on the performance of the three data struc-
tures. All data structures perform much better in the presence
of skew because the number of cache misses decreases. As the
skew increases, the performance of ART and the hash table
approaches their speed in small, cache resident trees. For FAST
the speedup is smaller because it requires more comparisons
and offset calculations which are not improved by caching.

We now turn our attention to the influence of the cache
size. In the previous experiments, we only performed lookups
in a single tree. As a consequence, the entire cache was
utilized, because there were no competing memory accesses.
In practice, caches usually contain multiple indexes and other
data. To simulate competing accesses and therefore effectively
smaller caches, we look up keys in multiple data structures in
a round-robin fashion. Each data structure stores 16M random,
dense keys and occupies more than 128MB. Figure 13 shows
that the hash table is mostly unaffected, as it does not use
caches effectively anyway, while the performance of the trees
improves with increasing cache size, because more often-
traversed paths are cached. With 1

64 th of the cache (192KB),
ART reaches only about one third of the performance of the
entire cache (12MB).

C. Updates

Besides efficient search, an indexing structure must support
efficient updates as well. Figure 14 shows the throughput when
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Fig. 14. Insertion of 16M keys into an empty index structure.

inserting 16M random keys into an empty structure. Although
ART must dynamically replace its internal data structures
as the tree grows, it is more efficient than the other data
structures. The impact of adaptive nodes on the insertion per-
formance (in comparison with only using Node256) is 20%
for trees with 16M dense keys. Since the space savings from
adaptive nodes can be large, this is usually a worthwhile trade
off. In comparison with incremental insertion, bulk insertion
increases performance by a factor of 2.5 for sparse keys and
by 17% for dense keys. When sorted keys, e.g., surrogate
primary keys, are inserted, the performance of ordered search
trees increases because of caching effects. For ART, 50 million
sorted, dense keys can be inserted per second. Only the hash
table does not benefit from the sorted order because hashing
randomizes the access pattern.

FAST and the k-ary search tree are static data structures that
can only be updated by rebuilding them, which is why they
were not included in the previous experiment. One possibility
for using read-only data structures in applications that require
incremental updates is to use a delta mechanism: A second
data structure, which supports online updates, stores differ-
ences and is periodically merged with the read-only structure.
To evaluate the feasibility of this approach, we used a red-
black tree to store the delta plus FAST as the main search
structure, and compared it to ART (with dense keys) and a
hash table. We used the optimal merging frequency between
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FAST and the delta which we determined experimentally.
Our workload consisted of random insertions, deletions, and
lookups in a tree of about 16M elements. Figure 15 shows
the results for varying fractions of lookups versus insertions
and deletions. As the fraction of lookups decreases, the per-
formance of FAST+delta degrades because of the additional
periodic O(n) merging step.

D. End-to-End Evaluation

For the end-to-end application experiment, we used the
main-memory database system HyPer. One of its unique char-
acteristics is that it very efficiently supports both transactional
(OLTP) and analytical (OLAP) workloads at the same time
[3]. Transactions are implemented in a scripting language
which is compiled to assembler-like LLVM instructions [31].
Furthermore, HyPer has no overhead for buffer management,
locking, or latching. Therefore, its performance critically de-
pends on the efficiency of the index structures used. For each
index, HyPer allows to determine which data structure is used.
Originally, a red-black tree and a hash table were available. We
additionally integrated ART, including the path compression
and lazy expansion optimizations. We further implemented
the key transformation scheme discussed in Section IV for
all built-in types so that range scan, prefix lookup, minimum,
and maximum operations work as expected.

The following experiment uses TPC-C, a standard OLTP
benchmark simulating a merchandising company which man-
ages, sells, and distributes products. It consists of a diverse
mix of select statements (including point queries, range scans,
and prefix lookups), insert, and delete statements. While it
is considered a write-heavy benchmark, 54% of all SQL
statements are queries [32]. Our implementation omits client
think-time and uses a single partition with 5 warehouses. We
executed the benchmark until most of the available RAM was
exhausted. As index configurations we used ART, a red-black
tree, and a combination of a hash table and a red-black tree.
It is not possible to use hash tables for all indexes because
TPC-C requires prefix-based range scans for some indexes.

Figure 16 shows that the index structure choice is critical for
HyPer’s OLTP performance. ART is almost twice as fast as the
hash table/red-black tree combination and almost four times
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Fig. 16. TPC-C performance.

TABLE IV
MAJOR TPC-C INDEXES AND SPACE CONSUMPTION PER KEY USING ART.

# Relation Cardinality Attribute Types Space
1 item 100,000 int 8.1
2 customer 150,000 int,int,int 8.3
3 customer 150,000 int,int,varchar(16),varchar(16),TID 32.6
4 stock 500,000 int,int 8.1
5 order 22,177,650 int,int,int 8.1
6 order 22,177,650 int,int,int,int,TID 24.9
7 orderline 221,712,415 int,int,int,int 16.8

as fast as the red-black tree alone. The hash table improved
performance significantly over the red-black tree alone, but
introduced unacceptable rehashing latencies which are clearly
visible as spikes in the graph.

Let us turn our attention to the space consumption of the
TPC-C benchmark which we measured at the end of the
benchmark runs. In order to save space, HyPer’s red-black
tree and hash table implementations do not store keys, only
tuple identifiers. Using the tuple identifiers, the keys are loaded
from the database on demand. Nevertheless, and although ART
may use more space per element in the worst case, ART used
only half as much space as the hash table and the red-black
tree. More detailed insights into space consumption can be
obtained by considering the structural information for each
major index and its corresponding space consumption per key,
which is shown in Table IV. Index 3 uses most space per
key, as it stores relatively long strings. Nevertheless, its space
consumption stays well below the worst case of 52 bytes.
Indexes 1, 2, 4, and, 5 use only 8.1 bytes per key because
they store relatively dense integers. Indexes 6 and 7 fall in
between these extremes.

The results of our final experiment, shown in Figure 17,
measure the impact of path compression and lazy expansion
on the average tree height. By default, the height of a radix
tree equals the length of the key (in bytes for ART). For
example, the height of index 3 would be 40 without any
optimizations. Path compression and lazy expansion reduce
the average height to 8.1. Lazy expansion is particularly
effective with long strings (e.g., index 3) and with non-unique
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indexes mostly containing unique values because the appended
8 byte tuple identifier can be truncated (e.g., index 6). Path
compression helps with long strings (e.g., index 3) and with
compound indexes of dense integers which share a common
prefix (e.g., indexes 2, 4, 5, and, 7). The impact of the two
optimizations on space consumption is similar to the impact
on height which is why we do not show it separately. To
summarize, except for short integers, path compression and
lazy expansions are critical for achieving high performance
and small memory consumption with radix trees.

VI. CONCLUSIONS AND FUTURE WORK

We presented the adaptive radix tree (ART), a fast and
space-efficient indexing structure for main-memory database
system. A high fanout, path compression, and lazy expan-
sion reduce the tree height, and therefore lead to excellent
performance. The worst-case space consumption, a common
problem of radix trees, is limited by dynamically choosing
compact internal data structures. We compared ART with
other state-of-the-art main-memory data structures. Our results
show that ART is much faster than a red-black tree, a Cache
Sensitive B+-Tree, and GPT, another radix tree proposal. Even
the architecture sensitive, read-only search tree FAST, which
is specifically designed for modern CPUs, is slower than ART,
even without taking updates into account. Of all the evaluated
data structures only a hash table was competitive. But hash
tables are unordered, and are therefore not suitable as general-
purpose index structures. By integrating ART into the main-
memory database system HyPer and executing the TPC-C
benchmark, we demonstrated that it is a superior alternative
to conventional index structures for transactional workloads.

In the future, we intend to work on synchronizing concur-
rent updates. In particular, we plan to develop a latch-free
synchronization scheme using atomic primitives like compare-
and-swap. Another idea is to design a space-efficient radix tree
which has nodes of equal size. Instead of dynamically adapting
the fanout based on the sparseness of the keys, the number of
bits used from the key should change dynamically, while the
fanout stays approximately constant. Such a tree could also be
used for data stored on disk.
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