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ABSTRACT
The performance of transactional database systems is critically de-
pendent on the efficient synchronization of in-memory data struc-
tures. The traditional approach, fine-grained locking, does not scale
on modern hardware. Lock-free data structures, in contrast, scale
very well but are extremely difficult to implement and often require
additional indirections. In this work, we argue for a middle ground,
i.e., synchronization protocols that use locking, but only sparingly.
We synchronize the Adaptive Radix Tree (ART) using two such
protocols, Optimistic Lock Coupling and Read-Optimized Write
EXclusion (ROWEX). Both perform and scale very well while be-
ing much easier to implement than lock-free techniques.

1. INTRODUCTION
In traditional database systems, most data structures are pro-

tected by fine-grained locks1. This approach worked well in the
past, since these locks were only acquired for a short time and
disk I/O dominated overall execution time. On modern servers with
many cores and where most data resides in RAM, synchronization
itself often becomes a major scalability bottleneck. And with the
increasing number of CPU cores—Intel’s current server platform
Broadwell EP supports up to 24 cores per socket—efficient syn-
chronization will become even more important.

Figure 1 gives an overview over the synchronization paradigms
discussed in this paper. Besides traditional fine-grained locking,
which is known to scale badly on modern CPUs, the figure shows
the lock-free paradigm, which offers strong theoretical guarantees,
and Hardware Transactional Memory (HTM), which requires spe-
cial hardware support. When designing a data structure, so far, one
had to decide between the extreme difficulty of the lock-free ap-
proach, special hardware support of HTM, and poor scalability of
locking. In this paper, we present two additional points in the de-
sign space that fill the void in between. Optimistic Lock Coupling
and ROWEX are much easier to use than lock-free synchronization
but offer similar scalability without special hardware support.

1 In this paper, we always use the term “lock” instead of “latch”
since we focus on low-level data structure synchronization, not
high-level concurrency control.
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Figure 1: Overview of synchronization paradigms

We focus on synchronizing the Adaptive Radix Tree (ART) [12],
a general-purpose, order-preserving index structure for main-memory
database systems. ART is an interesting case study, because it is a
non-trivial data structure that was not designed with concurrency
in mind rather with high single-threaded performance. We present
a number of synchronization protocols for ART and compare them
experimentally.

Our main goal in this paper, however, is to distill general prin-
ciples for synchronizing data structures in general. This is impor-
tant for two reasons. First, besides index structures, database sys-
tems also require other data structures that must be concurrently ac-
cessible like tuple storage, buffer management data structures, job
queues, etc. Second, concurrent programs are very hard to write
and even harder to debug. We therefore present our ideas, which,
as we discuss in Section 6, are not entirely new, as general building
blocks that can be applied to other other data structures.

The rest of this work is organized as follows. We first present
necessary background about the Adaptive Radix Tree in Section 2.
The two new synchronization paradigms Optimistic Lock Coupling
and Read-Optimized Write EXclusion are introduced in Section 3
and Section 4. Section 5 evaluates the presented mechanisms. Fi-
nally, after discussing related work in Section 6, we present our
conclusions in Section 7.

2. THE ADAPTIVE RADIX TREE (ART)
Trie data structures, which are also known as radix trees and

prefix trees, have been shown to outperform classical in-memory
search trees [12, 10]. At the same time, and in contrast to hash
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Figure 2: The internal data structures of ART

tables, they are order-preserving, making them very attractive in-
dexing structures for main-memory database systems.

What distinguishes ART [12] from most other trie variants is that
it uses an adaptive node structure. ART dynamically chooses the
internal representation of each node from multiple data structures.
The four available node types are illustrated in Figure 2. Initially,
the smallest node type (Node4) is selected, and, as entries are in-
serted into that node, it is replaced with a larger node type. In
the figure, if two more entries would be inserted into the (Node4),
which currently holds 3 entries, it would be replaced by a (Node16).

Another important feature of ART is path compression, which
collapses nodes with only a single child pointer into the first node
with more than one child. To implement this, each node stores a
prefix of key bytes in its header. This allows indexing long keys
(e.g., strings) effectively, because the optimization significantly re-
duces the height of the tree. The example header shown in Figure 2
stores a prefix of 4 zero bytes thus reducing the height by 4 levels.

In HyPer, where ART is the default indexing structure [8], ART
maps arbitrary keys to tuple identifiers (TIDs). As the figure
shows, the TIDs are stored directly inside the pointers. Pointers
and TIDs are distinguished using “pointer tagging”, i.e., by using
one of the pointer’s bits.

Adaptive node types and path compression reduce space con-
sumption while allowing for nodes with high fanout and thus en-
sure high overall performance. At the same time, these features
are also the main challenges for synchronizing ART. Tries without
these features are easier to synchronize, which makes ART a more
interesting case study for synchronizing non-trivial data structures.

3. OPTIMISTIC LOCK COUPLING
Lock coupling [1], i.e., holding at most 2 locks at a time during

traversal, is the standard method for synchronizing B-trees. One
interesting property of ART is that modifications affect at most two
nodes: the node where the value is inserted or deleted, and poten-
tially its parent node if the node must grow (during insert) or shrink
(during deletion). In contrast to B-trees, a modification will never

propagate up to more than 1 level. Lock coupling can therefore be
applied to ART even more easily than to B-trees.

The left-hand-side of Figure 3 shows the necessary changes for
synchronizing the lookup operation of ART with lock coupling.
The pseudo code uses read-write locks to allow for concurrent read-
ers. Insert and delete operations can also initially acquire read locks
before upgrading them to write locks if necessary. This allows to
avoid exclusively locking nodes near the root, which greatly en-
hances concurrency because most updates only affect nodes far
from the root.

Lock coupling is simple and seems to allow for a high degree
of parallelism. However, as we show in Section 5, it performs very
badly on modern multi-core CPUs even if the locks do not logically
conflict at all, for example in read-only workloads. The reason is
that concurrent locking of tree structures causes many unnecessary
cache misses: Each time a core acquires a read lock for a node
(by writing to that node), all copies of that cache line are invali-
dated in the caches of all other cores. Threads, in effect, “fight” for
exclusive ownership of the cache line holding the lock. The root
node and other nodes close to it become contention points. There-
fore, other synchronization mechanisms are necessary to fully uti-
lize modern multi-core CPUs.

Optimistic Lock Coupling is similar to “normal” lock coupling,
but offers dramatically better scalability. Instead of preventing con-
current modifications of nodes (as locks do), the basic idea is to
optimistically assume that there will be no concurrent modification.
Modifications are detected after the fact using version counters, and
the operation is restarted if necessary. From a performance stand-
point, this optimism makes a huge difference, because it dramati-
cally reduces the number of writes to shared memory locations.

3.1 Optimistic Locks
Figure 3 compares the pseudo code for lookup in ART using lock

coupling and Optimistic Lock Coupling (the code for insert can be
found in Appendix B). Clearly, the two versions are very similar.
The difference is encapsulated in the readLockOrRestart and
readUnlockOrRestart functions, which mimic a traditional
locking interface but are implemented differently. This interface
makes it possible for the programmer to reason (almost) as if she
was using normal read-write locks.

Internally, an optimistic lock consists of a lock and a version
counter. For writers, optimistic locks work mostly like normal
locks, i.e., they provide mutual exclusion by physically acquir-
ing (by writing into) the lock. Additionally, each writeUnlock
operation causes the version counter associated with the lock
to be incremented. Read operations, in contrast, do not actu-
ally acquire or release locks. readLockOrRestart merely
waits until the lock is free, before returning the current version.
readUnlockOrRestart, which takes a version as an argument,
makes sure the lock is still free and that the version (returned by
readLockOrRestart) did not change. If a change occurred,
the lookup operation is restarted from the root of tree. In our im-
plementation we encode the lock and the version counter (and an
obsolete flag) in a single 64 bit word that is updated atomically and
is stored in the header of each ART node. A full description of the
optimistic lock primitives can be found in Appendix A.

Let us mention that, for debugging purposes, it is possible to
map the optimistic primitives to their pessimistic variants (e.g.,
pthread_rwlock). This enables thread analysis tools like
Helgrind to detect synchronization bugs. Version/lock combi-
nations have been used in the past for synchronizing data struc-
tures (e.g., [4, 2, 18]), usually in combination with additional, data
structure-specific tricks that reduce the number of restarts. Opti-



lookup(key, node, level, parent)
readLock(node)
if parent != null

unlock(parent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

unlock(node)
return null // key not found

// find child
nextNode = node.findChild(key[level])

if isLeaf(nextNode)
value = getLeafValue(nextNode)
unlock(node)
return value // key found

if nextNode == null
unlock(node)
return null // key not found

// recurse to next level
return lookup(key, nextNode, level+1, node)

lookupOpt(key, node, level, parent, versionParent)
version = readLockOrRestart(node)
if parent != null

readUnlockOrRestart(parent, versionParent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

readUnlockOrRestart(node, version)
return null // key not found

// find child
nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if isLeaf(nextNode)

value = getLeafValue(nextNode)
readUnlockOrRestart(node, version)
return value // key found

if nextNode == null
readUnlockOrRestart(node, version)
return null // key not found

// recurse to next level
return lookupOpt(key, nextNode, level+1, node, version)
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Figure 3: Pseudo code for a lookup operation that is synchronized using lock coupling (left) vs. Optimistic Lock Coupling (right).
The necessary changes for synchronization are highlighted

mistic Lock Coupling is indeed a very general technique that al-
lows consistent snapshots over multiple nodes (e.g., 2 at a time for
lock coupling). The region can even involve more than 2 nodes, but
should obviously be as small as possible to reduce conflicts.

3.2 Assumptions of Optimistic Lock Coupling
To make Optimistic Lock Coupling work correctly, there

are certain properties that an algorithm must fulfill. After
readLockOrRestart has been called, a reader may see inter-
mediate, inconsistent states of the data structure. An incorrect state
will be detected later by readUnlockOrRestart, but, in some
cases, can still cause problems. In particular, care must be taken to
avoid (1) infinite loops and (2) invalid pointers. For ART, an infinite
loop cannot occur. To protect against invalid pointers, it is neces-
sary to add an additional version check (line 11 in Figure 3). With-
out this check, nextNode might be an invalid pointer, which may
cause the program to crash. These additional checks are needed
before an optimistically read pointer is dereferenced.

Another aspect that needs some care is deletion of nodes. A node
must not be immediately reclaimed after removing it from the tree
because readers might still be active. We use epoch-based memory
reclamation to defer freeing such nodes. Additionally, when a node
has been logically deleted, we mark it as obsolete when unlocking
the node (cf. writeUnlockObsolete in Appendix A). This al-
lows other writers to detect this situation and trigger a restart.

One theoretical problem with Optimistic Lock Coupling is that—
in pathological cases—a read operation may be restarted repeat-
edly. A simple solution for ensuring forward progress is to limit
the number of optimistic restarts. After this limit has been reached,
the lookup operation can acquire write locks instead.

To summarize, Optimistic Lock Coupling is remarkably simple,
requires few changes to the underlying data structure, and, as we
show in Section 5, performs very well. The technique is also quite
general and can be applied to other data structures (e.g., B-trees).

4. READ-OPTIMIZED WRITE EXCLUSION
Like many optimistic concurrency control schemes, Optimistic

Lock Coupling performs very well as long as there are few con-
flicts. The big disadvantage is, however, that all operations may
restart. Restarts are particularly undesirable for reads, because they
are predominant in many workloads. We therefore present a sec-
ond synchronization technique that still uses locks for writes, but
where reads always succeed and never block or restart. We call this
technique Read-Optimized Write EXclusion (ROWEX).

4.1 General Idea
ROWEX is a synchronization paradigm that lies between tra-

ditional locking and lock-free techniques (cf. Figure 1). It pro-
vides the guarantee that reads are non-blocking and always suc-
ceed. Synchronizing an existing data structure with ROWEX is
harder than with (optimistic) lock coupling, but generally still eas-
ier (i.e., at least possible) than designing a similar lock-free data
structure. The main tool of ROWEX is the write lock, which pro-
vides additional leverage in comparison with lock-free approaches
that must confine themselves with primitive atomic operations like
compare-and-swap. The write locks are acquired only infrequently
by writers and never by readers.

The basic idea with ROWEX is that, before modifying a node,
the lock for that node is first acquired. This lock only provides
exclusion relative to other writers, but not readers, which never ac-
quire any locks (and never check any versions). The consequence
is that writers must ensure that reads are always consistent by using
atomic operations. As we describe in the following, ROWEX gen-
erally requires some modifications to the internal data structures.

Although the name ROWEX indicates that reads are fast, writes
are not slow either (despite requiring locks). The reason is that writ-
ers only acquire local locks at the nodes that are actually changed,
i.e., where physical conflicts are likely. Even lock-free designs
will often have cache line invalidations that impair scalability when
writing to the same node. ROWEX thus provides very good scala-
bility while still being realistically applicable to many existing data
structures.



4.2 ROWEX for ART
One important invariant of ART is that every insertion/deletion

order results in the same tree because there are no rebalancing op-
erations. Each key, therefore, has a deterministic physical location.
In B-link trees [11], in contrast, a key may have been moved to a
node on the right (and never to the left due to deliberately omitting
underflow handling).

To synchronize ART using ROWEX, we first discuss local mod-
ifications within the 4 node types before describing how node re-
placement and finally path compression are handled.

To allow concurrent local modifications, accesses to fields that
may be read concurrently must be atomic. These fields include
the key bytes (in Node4 and Node16), the child indexes (in
Node48), and the child pointers (in all node types). In C++ 11
this is done by using the std::atomic type, which ensures that
appropriate memory barriers are inserted2. These changes are al-
ready sufficient for the Node48 and Node256 types and allow
adding (removing) children to (from) these nodes. For the lin-
ear node types (Node4 and Node16), which are structurally very
similar to each other, some additional conceptual changes are nec-
essary. In the original design, the keys in linear nodes are sorted
(cf. Figure 2) to simplify range scans. To allow for concurrent mod-
ifications while reads are active, we avoid maintaining the sorted
order and append new keys at the end of the node instead. Deletions
simply set the child pointer to null, and slots are reclaimed lazily
by replacing the node with a new one. With this change, lookups
must check all keys (i.e., 4 for Node4 and 16 for Node16). How-
ever, this is not a problem since SIMD instructions can be used to
perform the comparison.

Node replacement can become necessary due to (1) the node
becoming too full to encompass another insert or due to (2) the node
becoming underfull. In both cases, the required steps for replacing
a node are the same:

1. Both the node and its parent are locked.

2. A new node of the appropriate type is created and initialized
by copying over all entries from the old node.

3. The location within the parent pointing to the old node is
changed to the new node using an atomic store.

4. The old node is unlocked and marked as obsolete. The parent
node is unlocked.

Like with Optimistic Lock Coupling, once a node is not reachable
in the most recent version of the tree (after step 3), the node must
be marked as obsolete before being unlocked. Any writer waiting
for that lock will detect that the node is obsolete and will restart the
entire insert or delete operation. For readers, in contrast, it is safe
to read from obsolete nodes.

Path compression is illustrated in Figure 4. In the 2-level tree on
the left-hand side, the blue node contains the “R” prefix. In order to
insert the new key “AS”, it is necessary to (1) install a new (green)
node and (2) truncate the prefix (at the blue node). Individually,
both steps can be performed atomically: Installing the new node
can be done by a single (atomic) store. To change the prefix of the
node atomically, we store both the prefix and its length in a single

2 The std::atomic type does not change the physical layout.
Also note that on x86 an atomic load adds very little overhead, as
it does not introduce a memory barrier. Making the fields atomic
merely prevents the compiler from reordering instructions but does
not introduce additional instructions for readers.
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Figure 4: Path compression changes for inserting “AS”

8 byte value, which can be changed atomically3.
The main difficulty with path compression is that it is not pos-

sible to install a new node and truncate the prefix in a single oper-
ation. As a consequence, a reader may see the intermediate state
in Figure 4. To solve this problem, we augment each node with
a level field, which stores the height of the node including the
prefix and which never changes after a node has been created. With
this additional information, the intermediate state in Figure 4 is
safe, because a reader will detect that the prefix at the blue node
has to be skipped. Similarly, it is also possible that a reader sees
the final state of the blue node without having seen the green node
before. In that situation, the reader can detect the missing prefix
using level field and retrieve the missing key from the database.

To summarize, whereas in Optimistic Lock Coupling readers de-
tect changes and restart, with ROWEX it is the responsibility of
writers to ensure that reads are safe. Thus ROWEX is not a simple
recipe that can be applied to any data structure, but must be care-
fully adapted to it. In some cases, it might even prove impossible
without major changes to the underlying data structure. Neverthe-
less, we believe that ROWEX is an interesting design point between
lock-free techniques and locking.

5. EVALUATION
In this section we experimentally compare a number of ART

variants: unmodified ART without support for concurrent modi-
fications, lock coupling with read-write spinlocks, Optimistic Lock
Coupling, ROWEX, and hardware transactional memory (HTM)
with 20 restarts using a global, elided lock as fallback (as described
in [14]). The additional space consumption per node is 4 bytes for
lock coupling, 8 bytes for Optimistic Lock Coupling, and 12 bytes
for ROWEX. As a competitor we chose Masstree [18], which, to
the best of our knowledge, is the fastest publicly available4, syn-
chronized, order-preserving data structure. Note that the compar-
ison between ART and Masstree is not really “apples-to-apples”,
as both the synchronization protocol and the data structures them-
selves differ. All implementations use the jemalloc memory
allocator and, when required, low-overhead epoch-based memory

3In comparison with the original ART implementation this decision
reduces the maximum prefix length from 9 to 4. On x86, 16 byte
values can also be accessed atomically, which would also allow
storing 12 byte prefixes.
4https://github.com/kohler/masstree-beta

https://github.com/kohler/masstree-beta


lookup insert remove

0

25

50

75

100

5 10 15 20 5 10 15 20 5 10 15 20
threads

M
 o

pe
ra

tio
ns

/s
ec

on
d no sync.

lock coupling

Opt. Lock Coupling

ROWEX

HTM

Masstree

Figure 5: Scalability (50M 8 byte integers)

reclamation. We use a Haswell EP system with an Intel Xeon E5-
2687W v3 CPU, which has 10 cores (20 “Hyper-Threads”) and
25 MB of L3 cache.

5.1 Scalability
In our first experiment we investigate the scalability using 50M

random (sparse) 8-byte integers. This is a low contention work-
load, because conflicts are unlikely with random keys. Figure 5
shows the results for individually executing lookup, insert, and re-
move. As expected, the variant without synchronization, which
is only shown for the read-only experiment, performs best. Lock
coupling does not scale well, even in the lookup experiment and
although we use read-write locks. Optimistic Lock Coupling and
ROWEX, in contrast, scale very well and have very similar perfor-
mance, with Optimistic Lock Coupling being slightly (around 7%)
faster for lookup. The HTM variant also performs very well on the
lookup experiment, but is slightly slower for insert and significantly
slower for remove. We verified that the reason for this is (unneces-
sary) contention in the memory allocator causing frequent aborts.
Masstree scales well but with short keys its overall performance is
significantly lower than with ART.

To better understand the lookup results in Figure 5, we measured
some important CPU statistics:

1 thread / 20 threads [per lookup]
cycles instruct. L1 misses L3 misses

no sync 211 / 381 123 / 124 4.3 / 4.5 1.7 / 1.8
lock coupling 418 / 2787 242 / 243 5.2 / 9.0 1.8 / 2.0
Opt. Lock Coup. 348 / 418 187 / 187 5.3 / 5.7 1.8 / 2.0
ROWEX 375 / 427 248 / 249 5.6 / 5.8 1.9 / 1.9
HTM 347 / 428 132 / 135 4.3 / 4.5 1.7 / 2.1
Masstree 982 / 1231 897 / 897 20.5 / 21.1 6.5 / 7.1

Single-threaded, the overhead of Optimistic Lock Coupling in
comparison with the non-synchronized variant is around 65%,
mostly due to additional instructions. With 20 threads, the overhead
is reduced to only 10%, likely due to longer delays in the memory
controller. With lock coupling, because of cache line invalidations
caused by lock acquisitions, the number of L1 misses (highlighted)
increases significantly when going from 1 to 20 threads and the
CPU cycles increase by a factor of 6.6×. The slowdown would
be even larger on multi-socket systems, since such systems do
not have a shared cache for inter-thread communication. The CPU
statistics also explain why ART is significantly faster than Masstree
with integer keys. The Optimistic Lock Coupling variant of ART,
for example, requires 4.8× fewer instructions and 3.6× fewer L3
misses than Masstree.
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5.2 Contention
In order to show the effect of contention, we measured simulta-

neous lookup and update operations (insert+remove) in a tree with
10M dense 8 byte integer keys. We used 1 lookup thread and 1 up-
date thread and varied the skewness of the keys going from uniform
to extremely skewed (reading and modifying the same key 83% of
the time). The lookup results (left-hand side of Figure 6) show
that with higher skew most variants initially become faster (due to
better cache locality), before eventually slowing down under very
high contention. ROWEX is the only exception, as its lookup per-
formance stays very high even under extreme contention due to the
non-blocking reads. The performance of the update thread (right-
hand side of Figure 6) is generally similar to the lookup perfor-
mance. One exception is HTM, which has higher performance for
the update thread than for the lookup thread, because Intel’s trans-
actional memory implementation favors writers over reader [17].

5.3 Strings
Besides integer keys, we also measured the lookup performance

for three real-world string data sets. The “genome” data set has
256K strings of average length 10.0, “Wikipedia” contains 16M ar-
ticle titles of average length 22.4, and “URL” has 6.4M URLs of
average length 63.3. The lookup and insert performance with 20
threads is shown in Figure 7. Masstree closes its performance gap
to ART with longer keys. Again, lock coupling is very slow and the
synchronized ART variants are slightly slower than the unsynchro-
nized variant.
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5.4 Code Complexity
To give a rough indication for the relative complexity of the im-

plementations, we counted the core algorithmic C++ code lines ex-
cluding the lock implementations, garbage collection, comments,
and empty lines:

lookup insert remove
no synchronization 29 95 87
HTM 30 96 88
lock coupling 41 136 139
Optimistic Lock Coupling 44 148 143
ROWEX 34 200 156

Using HTM is quite trivial, it merely requires wrapping each
transaction in a hardware transaction, which we implemented with
a Transaction object that starts the HTM transaction in the con-
structor and commits the transaction in the destructor. The two
lock coupling variants require more changes, with the optimistic
variant being only marginally larger. ROWEX requires most ad-
ditional code, in particular for the insert and remove operations.
The ROWEX numbers actually underestimate the complexity of
ROWEX, since its protocol is fairly subtle in comparison with the
other variants.

6. RELATED WORK
Concurrency control is one of the major areas in the database

field. Most prior work, however, focuses on high-level user transac-
tions, and not so much on low-level synchronization of data struc-
tures, which is what we study in this work.

Hand-over-hand locking, i.e., the idea underlying Optimistic
Lock Coupling, was used to synchronize binary search trees [2].
ROWEX-like ideas have also been used before, for example by the

FOEDUS system [9]. The goal of this paper has been to consoli-
date these ideas and to present them as general building blocks as
opposed to clever tricks used to synchronize individual data struc-
tures.

The traditional method of synchronizing B-trees, lock coupling,
was proposed by Bayer and Schkolnick [1]. Graefe’s surveys [6, 5]
on low-level synchronization of B-trees, which summarize decades
of accumulate wisdom in the database community, focus on fine-
grained locking. Unfortunately, as was already observed by Cha
et al. [4] in 2001, lock coupling simply does not scale on modern
multi- and many-core CPUs. Since then, the problem has become
even more pronounced and the trend is likely to continue. Like
Optimistic Lock Coupling, Cha et al.’s solution (OLFIT) uses ver-
sions to detect changes within a node. In contrast to Optimistic
Lock Coupling, OLFIT does not keep track of versions across mul-
tiple nodes, but uses the B-link tree idea [11] to support concurrent
structure modification operations.

Both the Bw-Tree [15] and Masstree [18] are two B-tree pro-
posals published in 2012, and both eschew traditional lock cou-
pling. The Bw-Tree is latch-free and its nodes can be, due to their
relatively large size, moved to disk/SSD [16]. To allow concur-
rent modifications, delta records are pre-pended to a list of existing
changes and the (immutable) B-tree node at the end of the list itself.
Nodes do not store physical pointers but offsets into a mapping ta-
bles that points to the delta lists and allows one to atomically add
new delta records. After a number of updates the deltas and the
node are consolidated to a new node. The Bw-Tree has been de-
signed with concurrency in mind and its synchronization protocol is
highly sophisticated; structure modification operations (e.g., node
splits) are very complex operations involving multiple steps.

Masstree [18] is a hybrid B-tree/trie data structure and, like ART,
exclusively focuses on the in-memory case. Like the Bw-Tree,
Masstree was designed with concurrency in mind, but the design-
ers took different design decisions. The synchronization protocol
of Masstree relies on a mix of local locks, clever use of atomic
operations, and hand-over-hand locking (the idea underlying Opti-
mistic Lock Coupling). Like Optimistic Lock Coupling, but unlike
ROWEX, Masstree lookups must, in some cases, be restarted when
a conflict with a structure-modifying operation is detected.

Previous work has shown that Hardware Transactional Memory
can be used to synchronize ART [13, 14] and B-trees [7] with very
little effort using elided coarse-grained HTM locks. Makreshan-
ski et al. [17] confirmed these findings in an in-depth experimental
study but found that performance with HTM can degrade with large
tuples or heavy contention. Cervini et al. [3] found that replacing
fine-grained locks with (elided) HTM locks at the same granularity
does not improve performance. HTM also has the obvious dis-
advantage of requiring special hardware support, which is not yet
widespread.

7. SUMMARY AND DISCUSSION
We presented two synchronization protocols for ART that have

good scalability despite relying on locks. The first protocol, Opti-
mistic Lock Coupling is very simple, requires few changes to the
underlying data structure, and performs very well as long as con-
flicts are not too frequent. The Read-Optimized Write EXclusion
(ROWEX) protocol is more complex, but has the advantage that
reads never block. ROWEX generally requires changes to the data
structure itself, as opposed to simply adding a lock at each node.
However, in our experience, while synchronizing an existing, non-
trivial data structure using ROWEX may be non-trivial, it is, at
least, realistic. Truly lock-free algorithms, in contrast, are much
more complicated. They also generally require radical changes and



additional indirections to the underlying data structure. The Bw-
Tree, for example, requires an indirection table that causes addi-
tional cache misses whenever a node is accessed. Similarly, the
state-of-the-art lock-free hash table, the split-ordered list [19], re-
quires “dummy” nodes—again at the price of more cache misses.

It is an open question how a lock-free variant of ART would
look like and how well it would perform. We speculate that it
would likely be significantly slower than the Optimistic Lock Cou-
pling and ROWEX implementations. We therefore argue that one
should not discount the use of locks as long as these locks are infre-
quently acquired like in our two protocols. Optimistic Lock Cou-
pling and ROWEX are two pragmatic paradigms that result in very
good overall performance. We believe both to be highly practical
and generally applicable.
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APPENDIX
A. Implementation of Optimistic Locks
The following pseudo code implements optimistic locks. Each
node header stores a 64 bit version field that is read and writ-
ten atomically. The two least significant bits indicate if the node is
obsolete or if the node is locked, respectively. The remaining bits
store the update counter.

struct Node
atomic<uint64_t> version
...

uint64_t readLockOrRestart(Node node)
uint64_t version = awaitNodeUnlocked(node)
if isObsolete(version)

restart()
return version

void checkOrRestart(Node node, uint64_t version)
readUnlockOrRestart(node, version)

void readUnlockOrRestart(Node node, uint64_t version)
if version != node.version.load()

restart()

void readUnlockOrRestart(Node node, uint64_t version,
Node lockedNode)

if version != node.version.load()
writeUnlock(lockedNode)
restart()

void upgradeToWriteLockOrRestart(Node node, uint64_t version)
if !node.version.CAS(version, setLockedBit(version))

restart()

void upgradeToWriteLockOrRestart(Node node, uint64_t version,
Node lockedNode)

if !node.version.CAS(version, setLockedBit(version))
writeUnlock(lockedNode)
restart()

void writeLockOrRestart(Node node)
uint64_t version
do

version = readLockOrRestart(node)
while !upgradeToWriteLockOrRestart(node, version)

void writeUnlock(Node node)
// reset locked bit and overflow into version
node.version.fetch_add(2)

void writeUnlockObsolete(Node node)
// set obsolete, reset locked, overflow into version
node.version.fetch_add(3)

// Helper functions
uint64_t awaitNodeUnlocked(Node node)

uint64_t version = node.version.load()
while (version & 2) == 2 // spinlock

pause()
version = node.version.load()

return version

uint64_t setLockedBit(uint64_t version)
return version + 2

bool isObsolete(uint64_t version)
return (version & 1) == 1



B. Insert with Optimistic Lock Coupling
The following pseudo code implements the insert operation using
optimistic lock coupling. Initially, the traversal proceed like in the
lookup case without acquiring write locks. Once the node that
needs to be modified is found, it is locked. In cases where the
node must grow the parent is also locked.

insertOpt(key, value, node, level, parent, parentVersion)
version = readLockOrRestart(node)
if !prefixMatches(node, key, level)

upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertSplitPrefix(key, value, node, level, parent) 
writeUnlock(node)
writeUnlock(parent)
return

nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if nextNode == null

if node.isFull()
upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertAndGrow(key, value, node, parent)
writeUnlockObsolete(node)
writeUnlock(parent)

else
upgradeToWriteLockOrRestart(node, version)
readUnlockOrRestart(parent, parentVersion, node)
node.insert(key, value)
writeUnlock(node)

return
if parent != null

readUnlockOrRestart(parent, parentVersion)
if isLeaf(nextNode)

upgradeToWriteLockOrRestart(node, version)
insertExpandLeaf(key, value, nextNode, node, parent)
writeUnlock(node)
return

// recurse to next level
insertOpt(key, value, nextNode, level+1, node, version)
return
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