Rethinking Logging, Checkpoints, and Recovery for
High-Performance Storage Engines

Michael Haubenschild Caetano Sauer

mhaubenschild@tableau.com csauer@tableau.com
Tableau Software Tableau Software

ABSTRACT

For decades, ARIES has been the standard for logging and re-
covery in database systems. ARIES offers important features
like support for arbitrary workloads, fuzzy checkpoints, and
transparent index recovery. Nevertheless, many modern in-
memory database systems use more lightweight approaches
that have less overhead and better multi-core scalability
but only work well for the in-memory setting. Recently, a
new class of high-performance storage engines has emerged,
which exploit fast SSDs to achieve performance close to pure
in-memory systems but also allow out-of-memory work-
loads. For these systems, ARIES is too slow whereas in-
memory logging proposals are not applicable.

In this work, we propose a new logging and recovery
design that supports incremental and fuzzy checkpointing,
index recovery, out-of-memory workloads, and low-latency
transaction commits. Our continuous checkpointing algo-
rithm guarantees bounded recovery time. Using per-thread
logging with minimal synchronization, our implementation
achieves near-linear scalability on multi-core CPUs. We im-
plemented and evaluated these techniques in our LeanStore
storage engine. For working sets that fit in main memory, we
achieve performance close to that of an in-memory approach,
even with logging, checkpointing, and dirty page writing
enabled. For the out-of-memory scenario, we outperform a
state-of-the-art ARIES implementation by a factor of two.

ACM Reference Format:

Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Vik-
tor Leis. 2020. Rethinking Logging, Checkpoints, and Recovery for
High-Performance Storage Engines. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3318464.3389716

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3389716

Thomas Neumann

Viktor Leis

viktor.leis@uni-jena.de
Friedrich-Schiller-
Universitiat Jena

neumann@in.tum.de
Technische Universitit
Miinchen

1 INTRODUCTION

Durability and recovery after failure are key features of
database management systems. The design and implemen-
tation of recovery has implications across the entire data-
base system architecture and affects overall performance.
For decades, ARIES-style write-ahead logging (WAL) [38]
has been the de facto standard for logging and recovery in
disk-based database systems. This is due to the large feature
set ARIES provides: it works with datasets and transaction
footprints much larger than main memory, enables fast re-
covery in the presence of repeated crashes, provides native
and transparent support for indexes and space management,
allows page-based fuzzy checkpoints with low interference,
and is able to recover from media failures.

Decades of rising DRAM capacities made it possible to
keep many datasets in main memory rather than on disk.
This hardware trend revealed major overheads in the tradi-
tional database system architecture. A study by Harizopoulos
et al. [20] found that the Shore storage engine spends more
than 50% of time on buffer management and logging. This
has led to the development of in-memory database systems
like Silo [49] and VoltDB [36], which avoid buffer manage-
ment altogether by keeping all data in main memory and rely
on lightweight logging techniques rather than full-blown
ARIES. Modern in-memory database systems are therefore
much more efficient (and scalable) than traditional disk-based
implementations. Whereas Shore requires over 200k instruc-
tions per neworder TPC-C transaction only for logging [20],
Silo executes the entire TPC-C transaction (including log-
ging) using fewer than 100k instructions.

More recently, fast PCle-attached solid-state drives (SSD)
have emerged, changing the hardware landscape once again.
During the last five years, DRAM prices and capacities have
stagnated, while flash-based SSDs have become much cheaper
and faster [18]. Currently, main memory costs about 20 times
more per gigabyte than SSD. A modern SSD typically has a
bandwidth of over 3 GB/s, and a single server has enough
PCle lanes to directly attach 8 or 16 SSDs. This results in a
hitherto unprecedented secondary storage bandwidth. SSDs
are also much faster at random access than disks, making
them suitable for both OLAP and OLTP.

https://doi.org/10.1145/3318464.3389716
https://doi.org/10.1145/3318464.3389716

Because SSDs provide block-wise access, and data needs
to be loaded into DRAM before it can be processed, a num-
ber of high-performance storage engines have recently been
proposed to exploit fast SSDs [7, 31, 39, 50]. Using tech-
niques like pointer swizzling [31] and scalable optimistic
synchronization [32, 33], systems like LeanStore [31] offer
transparent buffer management with very little overhead.
This SSD-optimized approach is a new database architecture
that significantly differs from both the disk-based and the
in-memory designs.

Another potential alternative to SSDs is persistent mem-
ory. Unfortunately, the first generation of byte-addressable
persistent memory (“Intel Optane DC Persistent Memory”)
is currently almost as expensive as DRAM, and is therefore
not (yet) the ideal medium for primary data storage. How-
ever, its low write latency makes it a perfect technology for
persisting the log. Therefore, for high-performance storage
engines, an economical design is to store the data itself on
SSD and use a small amount of persistent memory to store
just the tail of the WAL. What currently remains unclear is
how to best implement logging and recovery for this new
class of database systems.

Neither of the existing approaches (ARIES or in-memory)
is a good fit for SSD-optimized high-performance storage en-
gines. Conceptually, traditional ARIES-based designs have all
the required features and are designed for the page-wise stor-
age access, but have too much overhead and do not scale well
on modern multi-core CPUs due to the centralized logging
component. State-of-the-art in-memory recovery techniques,
as used by SiloR [55] and Hekaton [13, 30], have little over-
head and good scalability, but are not optimized for data sets
larger than memory.

In this work, we propose a logging and recovery design
that is well suited for modern high-performance storage en-
gines. It extends the scalable logging scheme proposed by
Wang and Johnson [52] with a novel continuous checkpoint-
ing algorithm, an efficient page provisioning strategy, and
an optimized cross-log commit protocol. We integrate all
these components into LeanStore [31], a lightweight buffer
manager that uses pointer swizzling and optimistic synchro-
nization. The resulting system can sustain transaction rates
close to that of a pure in-memory system when all data fits
in DRAM, as well as handle out-of-memory workloads trans-
parently. Our approach has low CPU overhead, scales well
on multi-core CPUs, balances I/O overhead and recovery
time, and exploits modern storage devices such as persistent
memory for low-latency commits and PCle-attached SSDs
for larger-than-memory data sets. It offers many of the fea-
tures typically associated with ARIES, including fuzzy check-
points, index recovery, and transaction footprints larger than
memory (steal), but has much lower overhead than ARIES im-
plementations used in disk-based systems. Compared to over

200k instructions per TPC-C transaction spent for logging
in Shore [20], our approach requires only 15k instructions,
and scales well on multi-core CPUs.

The key contributions of this work are (1) a framework of
practical techniques for all recovery- and durability-related
components in flash-optimized high-performance storage
engines, (2) a logging and commit protocol that uses re-
mote flush avoidance for low-latency transactions on persis-
tent memory, (3) a novel design for low-overhead, continu-
ous checkpointing that bounds recovery time and smoothly
spreads writes over time, (4) a thorough discussion of page
provisioning in the context of high-performance buffer man-
agers, and (5) an implementation and evaluation of our ap-
proach with real persistent memory against existing disk-
based and in-memory designs, demonstrating its low instruc-
tion footprint, good scalability, and fast recovery.

2 BACKGROUND

This section reviews system designs that are relevant to the
approach proposed in this paper.

2.1 ARIES

ARIES [37, 38] has become the standard logging and recovery
mechanism of disk-based DBMSs. One of the cornerstones
of the ARIES design is physiological logging, which assigns
a page identifier to each log record but permits logical up-
dates within a page. Logging in such a page-oriented fashion
implies that pages can be recovered in parallel and provides
a good trade-off between log volume and replay efficiency.
ARIES also supports in-place updates on database storage
with a steal policy, i.e., uncommitted changes can be written
to disk. In order to remove such changes during recovery, an
undo phase executes and logs compensation operations that
are the logical inverse of the operations performed during
forward processing or redo recovery. Such logical compen-
sation steps enable record-level locking (i.e., concurrency
control at the sub-page level) and system transactions that
perform maintenance steps such as page splits.
Physiological logging and logical undo also provide two
key benefits, the first of which is fuzzy checkpointing. This
means that a dirty page can be written at any time, regard-
less of transaction activity, as long as no physical operations
are in progress on that page—i.e., as long as appropriate
latches are acquired. Fuzzy checkpointing introduces very
low overhead on running transactions and permits constant
propagation of updates to disk, which guarantees bounded
recovery time, steady forward processing performance, and
well-balanced I/O throughput. In addition, fuzzy checkpoint-
ing makes it much easier to produce both full and incremen-
tal backups, and thus provides support for efficient media
recovery. The second benefit is the ability to log and recover

arbitrary page-based data structures, which implies that in-
dexes can be recovered along with primary data and thus
need not be fully rebuilt during recovery.

Despite all the advantages mentioned here, ARIES has
been deemed obsolete by many recent proposals for its ex-
cessive forward-processing overhead and lack of scalability.
Unfortunately, most of these approaches (as detailed below)
also forego the features and advantages mentioned here.
Therefore, a key design objective of this work is to main-
tain the features of ARIES-style write-ahead logging without
abandoning performance and scalability.

2.2 In-memory Database Systems

In-memory database systems, in contrast to ARIES, employ
lightweight logging techniques. While many variations of
logical and physical logging exist (which we review in Sec-
tion 5), the value logging approach used in Silo [49, 55] is
the most relevant for this paper. With value logging, a log
record does not contain a page identifier; rather, it simply
stores a logical tuple identifier and a transaction ID, along
with the modified tuple’s contents. The main advantage of
this approach is that it removes the dependency between log
records of the same page, which in physiological logging is
a source of additional thread synchronization during both
normal processing and recovery.

To eliminate the bottleneck of a centralized log, Silo em-
ploys distributed logging among CPU cores [28, 49, 52]. This
approach uses multiple log buffers, where each transaction
is assigned to a log buffer (i.e., logs are partitioned by trans-
action) and each buffer is written to its own file without any
coordination with other threads. Since durability is guided
by epochs and a group commit protocol, recovery processing
requires establishing the maximum epoch that is persisted
in every log file. Then, each log file can be replayed in par-
allel and in an arbitrary order, thanks to the value logging
mechanism and the use of monotonically-increasing trans-
action IDs (largest ID wins). Despite these advantages, value
logging suffers from the following inherent disadvantages: it
does not support index recovery, requires the entire data set
to live in main memory, and lacks incremental checkpoints.
Our approach combines the best of both worlds: the scala-
bility and low overhead of value logging and the features of
physiological logging.

2.3 Checkpoints

Checkpoints in a physiological logging system require writ-
ing dirty pages to persistent storage. Unfortunately, as we
detail in Section 3.4, the state of the art has not been devel-
oped beyond the traditional disk-based techniques. Instead,
recent research has mostly focused on in-memory databases
that must write the entire database at a tuple granularity. This

GSN increment

>

Page Access

1
TXN; GsN7 +1,G\SN8 lGSN7+1,GSN8
GsN9 I \ GSN5
TXn, 6sn2 § GSN2
Y
X 1 ;L\,
GSN1 GSN1
GSNg GSN9 ! GSN8
! GSN5
GSN4 1GSN4

(a) Same Page I (b) Independent

Figure 1: GSNs establish a partial order between log
records sufficient for recovery. If two changes depend
on each other, the second one will have a higher GSN
(a). For independent changes, GSNs are unordered (b).

paper bridges this gap by proposing checkpointing and evic-
tion techniques that are appropriate for the high transaction
rates and I/O volume made possible by modern hardware.

2.4 Scalable Logging

The obvious approach for improving the scalability of ARIES
is to replace the single global log with multiple logs, and
assign one or a few threads to each. Thus, when transac-
tions write log records, they do not contend on a single
global lock. However, on commit, a transaction has to per-
sist the log records in other log partitions upon which their
own changes depend. When the logs are stored on HDD,
or even on SSD, flushing several logs becomes prohibitively
expensive. Furthermore, distributed logs require additional
measures for correct recovery: since each log assigns its own
local LSN, the order in which to replay changes for a given
page from different logs becomes nondeterministic.

Wang and Johnson [52] propose a scalable logging tech-
nique that tackles both issues by exploiting persistent mem-
ory and introducing the concept of global sequence numbers
(GSN). Persistent memory, which is by now commercially
available (e.g., Intel Optane DC Persistent Memory), reduces
the latency until changes are drained from CPU caches to
persistent storage by more than an order of magnitude. Fur-
thermore, these flushes can be done fully in parallel.

GSNs are a lightweight, decentralized mechanism which
establishes a partial order between log records from differ-
ent log partitions similar to distributed clocks [29] (also
known as “Lamport timestamps”). In a distributed clock
analogy, both transactions and pages act like processes in a
distributed system, with log records being the events that
need to be ordered. A transaction’s txnGSN (timestamp) is
set to max (txnGSN, pageGSN) whenever it accesses a page
(synchronizes its local clock). New log records (events) are
created with txnGSN+1. When two transactions access the
same page (Figure 1a), the protocol ensures that the log
record for the first change has the smaller GSN. On the other

hand, when two transactions access distinct pages, their
GSNss are not synchronized, and the latter event can even
have a smaller GSN (Figure 1b). Note that the full protocol
also ensures GSN ordering of log records inside each log,
which we omitted from Figure 1 for simplicity. During recov-
ery, log records for a page are gathered from all individual
logs, and sorted by GSN before they are applied.

For durability, Wang and Johnson propose passive group
commit: When a transaction commits, it first flushes its own
log and then waits in a group commit queue. Once all other
logs are durable up to the transaction’s commit record GSN,
its commiit is finally acknowledged. This design effectively
solves the scalability issue for logging, and indeed we use it
as the basis for logging in our system. However, its imple-
mentation in Shore-MT still suffers from high instruction
overhead, has unnecessarily high transaction latencies and
relies on a custom kernel module. For reference, the reported
TPC-C throughput [52] with 40 threads is below what our
system achieves with a single thread (26k vs. 41k txn/s).

3 LOW-LATENCY LOGGING AND
ROBUST CHECKPOINTING WITH
BOUNDED RECOVERY

In this paper, we propose a holistic approach for logging,
checkpointing, and dirty page writing that combines the
benefits of ARIES with those of lightweight logging tech-
niques. In our approach, each worker thread is assigned its
own log, which eliminates the single point of contention and
improves scalability on multi-core CPUs. Log records consist
of a type, page ID, transaction ID, GSN (see Section 2.4), and
the before and after image of each change. Using a small
persistent memory buffer, transactions commit immediately
when they are finished, without being appended to a group
commit queue first. We improve over existing distributed
logging schemes with a new mechanism we call Remote
Flush Avoidance (RFA), which can detect and skip unnec-
essary flushes in logs of other threads. Furthermore, our
system uses a novel continuous checkpointing algorithm that
smoothly spreads I/O over time and thus avoids write bursts
and spikes in transaction latency. Compared to traditional
ARIES implementations, the instruction overhead for cre-
ating log entries and writing them to persistent storage is
much lower in our system. Finally, we support larger-than-
memory workloads, since we build our logging framework
on top of the state-of-the-art LeanStore engine.

3.1 Two-Stage Distributed Logging

The main scalability issue of ARIES is the synchronized ac-
cess to the global log. Approaches such as Aether [22, 23],
ELEDA [24], and Border-Collie [25] reduce contention on
the log by minimizing the time spent in critical sections, but

Log Partition 1
Stage 2: SSD

! free chunks
Etag:3r:1‘ EI EI F \;E::l?t
og Archive
@ B Bl

! Stage 1: Persistent Memory

I chunks

worker,

Q[Log Partition 2 ,

[Log Partition n , kaej
Figure 2: Overview of two-stage distributed logging.
with a large-enough core count, the single log still becomes
the scalability bottleneck. Therefore, in our system, each
worker thread has its own separate log as shown in Figure 2.
Every transaction is pinned to a worker thread, so that its
log records are all written to exactly one of those logs. Dif-
ferent transactions can still operate on the same page, so
log records for a certain page can end up in different logs.
This design is based on the transaction-level log partitioning
approach of Wang and Johnson [52] explained in Section 2.4.

The log is organized into three stages. The first stage con-
sists of a small number of log chunks organized in a circular
list as shown in Figure 2. One of the chunks is always des-
ignated as the current chunk, which is where transactions
append their log records. Whenever the current log chunk
becomes full, it enters the full portion of the list. From there,
chunks are picked up by a dedicated WAL writer thread—also
one for each log—which flushes them into the second stage.
After a chunk is successfully written, its buffer is zeroed out
and placed into the free portion of the list, from which it will
eventually be picked up as the current chunk to append new
log records. Lastly, log files are archived into the third stage
for media recovery—this is shown on the left side of Figure 2.

In the hardware configuration assumed throughout this
paper, the first stage resides on persistent memory or battery-
backed DRAM. Thus, transactions only need to flush CPU
caches when they want to persist log records upon transac-
tion commit, and do not have to wait for the staging of full
log chunks to SSD. This allows for very low commit latency
and high transaction throughput without the need for group
commit. For the second stage, SSD storage is a good can-
didate because it is much cheaper than persistent memory.
Furthermore, SSD bandwidth is sufficient for the amount
of log volume that even the fastest transaction systems can
produce.

Notwithstanding the benefits of logging to persistent mem-
ory, our design is not restricted to it. An alternative solution
that keeps the first stage in DRAM and guarantees persis-
tence once log chunks are flushed to SSD still achieves high
throughput by employing an RFA-optimized version of group
commit. This alternative is presented at the end of Section 3.2.

Partition 1 Partition 2 Partition n

Remote Flush Avoidance
Partition 1 Partition 2 Partition n

Distributed Logging

@ @ @ @ @ @

I

Logical Dependencies : ARIES :

TX, TX, 1 Log 1

1 1

UPDATE(P,,by) 1 &)

INSERT(P,,a;) ' '
INSERT(P,,b)) .

COMMIT(Tx,) : :
COMMIT(TX,) 1 :

1 1

1 1

1 X global latch 1

X flushes on n partitions

//no contention /no remote flushes

Figure 3: Two independent transactions and the synchronizing operations in different logging strategies.

3.2 Low-Latency Commit Through RFA

Splitting the log into multiple partitions and pinning each
transaction to one of those partitions allows worker threads
to create log entries without synchronization. However, to
guarantee consistency all log partitions need to be flushed up
to the transaction’s current GSN as depicted for “Distributed
Logging” in Figure 3.

Let us give an example of why this is necessary: suppose
transaction Txn; deletes a tuple on page P4 and records this
change with GSN12 in log L1, but does not yet commit. Then
transaction Txn, also inserts a tuple on P4 and records this in
its own log L,. The GSN protocol mandates that this change
will be recorded with a higher GSN, e.g., GSN13. When Txn,
commits, it has to ensure that all prior changes on this page
have been persisted in the log. It therefore needs to flush all
other log partitions up to GSN13.

Profiling our system showed that these remote log flushes
lead to significantly reduced scalability (see experiment in
Section 4.1). Wang and Johnson’s approach [52] works around
this issue by using passive group commit, where transactions
only flush their own log and are put in a commit queue.
A group commit thread periodically checks the minimum
flushed GSN of all logs, and sets those transactions to commit-
ted for which all necessary log records are persisted. Group
commit is a good solution for workloads with a lot of con-
current transactions without low-latency requirements.

We propose a new technique called Remote Flush Avoid-
ance (RFA), which enables high throughput and scalability
while still providing low-latency single transaction commits.
The motivation for RFA comes from the observation that,
for most transactions, there is neither logical conflict nor
do they modify the same set of physical pages. A commit
dependency is therefore not necessary. Consider the example
shown in Figure 1b, in which Txn; pessimistically flushes the
log of Txn; since GSN5 < GSNg, despite the fact that the two
transactions modify different pages (P4 and Pg). The basic
distributed logging approach fails to catch the independence
of Txny and Txn; as it projects the dependency graph onto a
single time axis. In other words, it linearizes the partial order-
ing of GSNss back to a total ordering, and thereby sacrifices
some of its scalability advantages. When two independent

transactions create log records concurrently, one of them
will unavoidably have the smaller GSN, and thus the other
transaction needs to flush it.

RFA adds a few lightweight steps to the GSN protocol that
enable it to skip most remote partition flushes:

(1) For each page, we remember L,, the log that contains
the record for the most recent modification of this page.
This information does not need to be persisted, and
can be stored in the buffer frame for that page.

(2) When a transaction starts, it determines GSNyyshed, the
maximum GSN up to which all logs have been flushed
at that point. Any log record created afterwards is
guaranteed to have a higher GSN (see Section 2.4).

(3) Lastly, each transaction maintains a needsRemoteFlush
flag, which is initially set to false.

Whenever a transaction accesses a page (either for read or
write), it checks if the page GSN is below GSNyygheq. If that
is the case, then all previous log records of that page have
already been flushed and the page access can proceed. Oth-
erwise, if the page GSN is above GSNyysped, the algorithm
further checks if the committing transaction’s log is the same
as Ly, If that is the case, then page access can also proceed,
because it means that the last modification is from the same
transaction and thus will be flushed anyway when the cur-
rent transaction commits. Only if both checks fail, then the
needsRemoteFlush flag is set to true, which causes all logs
to be flushed when the transaction commits. In a nutshell,
remote flushes are avoided whenever the log records of a
transaction depend only on (1) guaranteed flushed changes
or on (2) changes from its own log.

Figure 3 summarizes the benefits of RFA. Given two in-
dependent transactions, ARIES requires synchronized ac-
cess for each log record, while standard distributed logging
frequently requires synchronization on commit. In order to
avoid this, one could explicitly track dependencies, but this is
prohibitively expensive as noted previously [52]. Therefore,
RFA detects such dependencies without expensive bookkeep-
ing data structures, allowing the two transactions shown in
Figure 3 to commit without any synchronization.

RFA and group commit are orthogonal optimizations that
can be combined or used individually, yielding four designs.

When persistent memory is available, we argue that RFA
without group commit is the best approach as it enables low-
latency commits. However, even in the absence of persistent
memory, RFA helps to reduce transaction latency when com-
bined with group commit. Without RFA, group commit re-
quires a transaction to wait on all logs to be persisted before
its commit is acknowledged. With RFA, transactions with
their needsRemoteFlush flag set to false can commit as soon
as their own log is persisted. In this design, in addition to a
global group commit queue, each log has its own queue for
transactions that do not require a remote flush.

3.3 Challenges of Checkpointing

In a broad sense, a checkpoint is any technique that aims to
bring the persistent state of a database up to date in order
to reduce recovery time and recycle log space. The classic
paper by Harder and Reuter [19] provides an abstract classi-
fication of checkpointing techniques and how they relate to
the granularity of logging. Most in-memory systems write
the entire contents of a database in a transaction-consistent
manner when taking a checkpoint. To achieve that, these
systems require shadow copies of individual tuples in main
memory, usually in combination with multiversion concur-
rency control [49], or in some cases by duplicating the en-
tire database [10]. These systems are usually slower while a
checkpoint is being taken, because individual records must
be versioned and transaction activity must halt—or at least
be coordinated in multiple phases [45]—to establish a point
of consistency. Given these restrictions, it is advisable to take
checkpoints sparingly in such systems. However, this trans-
lates to longer recovery times, which is further worsened by
the fact that log replay is substantially slower (see Section 5).

For the reasons given above, this paper focuses on page-
based checkpointing to complement our page-based buffer
management and logging schemes. Robust page-based check-
pointing is a difficult challenge in practice because it requires
finding an acceptable trade-off between opposing goals. In
order to bound recovery time to an acceptable level, a system
must flush dirty pages at a rate that is compatible with the
rate of incoming transactions. If the flush rate is too high,
this results in a waste of I/O resources and a needless in-
crease in write amplification. On the other hand, if the flush
rate is too low, the log size cannot be bounded, which can
result in service outage when the log device fills up, and long
recovery time in case of a failure. A low rate may also cause
the buffer manager to be saturated with dirty pages, which
can cause a drop in transaction throughput if insertions or
queries cannot allocate memory. Even if an appropriate flush
rate is found, the checkpointer must be smart about which
pages to flush, since some dirty pages are worth flushing at a
lower rate than others (e.g., hot pages with frequent updates).
These issues have been largely ignored in recent research,

which has focused mainly on alternative architectures that
propagate changes at record (rather than page) granularity.

One good example of a checkpointing implementation in
traditional WAL systems is PostgreSQL [48]. It uses two in-
dependent processes to write dirty pages: a checkpointer and
a background writer. The former is responsible for bounding
the size of the log and thus recovery time; it is triggered
when the log reaches a certain size, or by a timeout (5 min-
utes by default). The checkpointer flushes every dirty page
in the buffer pool (i.e., a direct checkpoint [19]). As such, the
LSN of the checkpoint log record also establishes the starting
point of redo recovery. One problem with this approach is
that it incurs periodic bursts of high I/O activity and con-
tention on the buffer manager data structures, leading to
performance dips. To solve this problem, the background
writer is triggered at fixed time intervals and writes a cer-
tain number of dirty pages calculated from configuration
parameters. Besides PostgreSQL, other approaches argue
that checkpointing should be done “periodically” [38], “every
few seconds” [10], or “roughly 10 seconds after the previous
checkpoint completed” [55]. The inherent problem of such
time-based policies is that they fail to adapt to changes in the
workload and shift the problem of setting reasonable values
to the database administrator.

3.4 Continuous Checkpointing

Since the principal goal of checkpointing is to bound recov-
ery time, which mainly depends on the amount of log that
needs to be processed, it makes sense to couple the check-
pointing policy to the amount of log written. Suppose we
want to limit the size of the WAL to 20 GB. To achieve this,
we need to write out certain (but not all) dirty pages. To be
precise, all pages in the buffer pool that contain unflushed
changes captured in log records that are more than 20 GB
away from the tail of the log need to be written out before
the log can be truncated to 20 GB. At the same time, we do
not want the checkpointer to cause high CPU overhead and
heavy write bursts by constantly scanning the whole buffer
pool just to be able to truncate a few MB of WAL.

To solve this problem, we propose a new technique called
continuous checkpointing. Instead of taking a checkpoint over
the whole buffer pool at once, we incrementally checkpoint
fractions of it, which avoids bursts in disk writes and leads
to a steadier performance. After each step, a small fraction
of the WAL can be truncated.

To achieve this, we logically partition the buffer pool into
S buffer shards. In each checkpointer invocation, which we
call a checkpoint increment, the checkpointer picks a shard in
a round-robin fashion, and writes out all dirty pages in it. An
increment is triggered whenever 1/S of the configured log
limit is moved to the second stage of the log (see Figure 2).
For example, with a WAL limit of 20 GB, a buffer pool of

// Maintain the persisted GSN for each shard
GSN maxChkptedInShard[num_shards]; // Initially zero
unsigned current_incr = 0;
// Triggered by writing a certain amount of WAL
void checkpoint_increment() {
min_current_gsn = logs.getMinCurrentGsn();
shard = current_incr % num_shards;
pages = bufferPool.getPagesInShard(shard);
foreach (page in pages) {
if (page.isDirty()) write(page);
3
maxChkptedInShard[shard] = min_current_gsn;
// Get the minimum GSN up to which all
// shards are checkpointed
chkpted_gsn = min_val (maxChkptedInShard);
min_tx_gsn = txManager.getMinActiveTxGsn();
logs.prune(min(chkpted_gsn, min_tx_gsn));
++current_incr;

3

Figure 4: Pseudo code for continuous checkpointing.

50 GB, and S = 10 shards, for every 2 GB of generated WAL,
a checkpoint increment of a 5 GB shard is triggered.

The checkpointer maintains a table that, for each buffer
shard, stores the GSN up to which all changes have been per-
sisted in that shard. Before each increment, the checkpointer
remembers the smallest current GSN among all logs, GS N,
Any log records created afterwards are guaranteed to have a
GSN larger than GSNy,;p,. When the checkpointer finishes a
shard, it updates that shard’s table entry with GSNy,;,. The
minimum value among all entries of this table is then used to
determine the point up to which the log can be archived (as
long as the GSN of the oldest active transaction also permits
it—see Section 3.6). The algorithm is shown in Figure 4.

Figure 5 shows an example with a buffer pool of six pages
and S = 3 shards. The most recent checkpoint increment
has been on shard b;, at which point GSN,,;, was GSN34
(table in the center). Since buffer shard b, is the next one
to be checkpointed, it consequently has the oldest persisted
GSN and limits log truncation to records with < GSN8. The
staging of the orange WAL chunk now triggers the check-
point increment of b,. The only dirty page in b, is page G,
which is written out. Next, the checkpointer updates the ta-
ble entry for shard b, with GSN46, since that is the minimum
current GSN across all logs when it started the increment.
This makes GSN24 the new overall minimum log record
needed for recovery. Taking into account the minimum GSN
of all active transactions, which is GSN25, it can now move
the blue log chunk to the log archive, since that chunk only
contains log records up to GSN23.

This technique is the key to continuously making check-
point progress (i.e., increase the maximum persisted GSN)
without time-based configuration settings while still avoid-
ing excessive write amplification. In steady state, for each
new fraction of WAL staged, the oldest one will be pruned

Log Archive Buffer Pool

WAL Shard b;{GSN32| [GSN48§
GSN8

’1:5 3& “&& be |_ Page A ||Page N

[E"—Iﬁ 66“ (’6. @6\‘\1 Shard b,[GsN8 | |[GSN19)

*

Page D || Page G

\Shard b3|GSN15

Z
%
(o]
=
o
o
X
T
e
=]
]
o
=

Persisted GSN
GSN34
GSN46 -~ GSN8

GSN24 GSN32J
page | (oSN
Active Transactions Page G
#|first GSN|current GSN M |_(Gsns]/
Txn,| GSN25 GSN27 | minActiveTxGsn: GSN25 Page F
Txn| GSN32| GSN48 Page D

Figure 5: Checkpointing example. The frequency of
checkpoint increments is coupled to WAL volume.

and the WAL volume will stay stable at its configured size.
Furthermore, this design eliminates both the manual tuning
knob as well as any write bursts that would occur in full
checkpoints, and is effective in keeping the recovery time
bounded. By increasing the number of shards to, e.g., S = 128,
the smoothness of the writes can be increased and the abso-
lute deviation from the configured WAL limit reduced.

3.5 Page Provisioning

Besides checkpointing, there is another reason to persist
dirty pages in a buffer-managed system: when pages have
to be read from disk, but the buffer pool is already full, then
some other pages need to be evicted. If these pages are dirty,
they need to be written out to disk first. Database systems
usually have a dedicated background thread for this (e.g., the
background writer of PostgreSQL [48] mentioned earlier),
so worker threads do not have to issue synchronous writes
before reading a page. However, research so far has looked
at the dirty page writer mostly in isolation.

We take a holistic view on the different page flows that
happen inside the storage manager and how they interact
with each other. LeanStore partitions pages into a hot and a
cool area for page eviction [31]. Pages in the hot area can be
directly referenced by pointers, i.e., they are swizzled, while
cool pages must be looked up with their page ID. As Figure 6
shows, we consider a storage manager to be a closed dynamic
system in which buffer pages flow between different states.
Assuming the workload is in steady state, worker threads
continuously swap buffer pages into the swizzled (hot) state
at a certain rate, e.g., 1,000 pages per second. They do so by
allocating a new page, accessing a page on disk, or (this is
specific to our storage manager design) accessing a page that
is currently in the unswizzled (cool) state.

Since LeanStore achieves several hundred thousand trans-
actions per second, even a moderate amount of additional

read page / new page 1%
) 900/ 0
89% S ' \Free

Hot SWi» e
¢
L,,, 10%

Cool j Lersise
(E9 Brovidery 007
I e
< Jorkers |

Figure 6: The division of LeanStore’s buffer pool into
hot (swizzled), cool (unswizzled) and free pages. Ac-
tions in the system cause pages to transition between
the states. In steady state, worker threads request ex-
actly as many free pages as the page provider supplies.

work, such as consulting the page replacement strategy, can
lead to a significant drop in throughput. Consequently, we
exclude all other transitions (shaded arrows in Figure 6) from
the critical path, so worker threads can focus solely on trans-
action processing. This means that in steady state, a certain
number of pages is in the “free” state. These pages are kept in
a separate list, allowing workers to request new pages with
very little overhead, in particular without consulting global
eviction data structures. The percentage of pages in the free
list can be low, e.g., 1% as shown in Figure 6. It must only
suffice to bridge the gap of short bursts of page requests.

For all support tasks, we introduce a dedicated page provider
thread that does all of the extra housekeeping work:

(1) It unswizzles pages and puts them into the cool area,
which is organized as a FIFO queue. From there they
get re-swizzled if worker threads access them again in
a timely manner. Access to the queue is sped up with
a hash table lookup.

(2) Pages from the older end of the queue are evicted and
put into the free list.

(3) Before a dirty page can be evicted, it is persisted to
disk first.

A classical dirty page writer, as employed by PostgreSQL
for example, is only concerned with the third point. Our
page provisioner, in contrast, is responsible for keeping the
whole buffer pool in an equilibrium. Worker threads wake
up the page provisioner whenever the buffer pool deviates
from the desired composition. It then runs as many rounds
as necessary until the target sizes of the FIFO queue and
the free list are restored. In each round, it first unswizzles
a fixed number of pages, e.g., 256, and inserts them at the
front of the queue. Second, it iterates over the queue from
the back and unlinks clean pages, buffering them in a local
list. Once that list reaches a certain size, it is appended to the

free list with a single latch acquisition. Dirty pages, on the
other hand, are simply marked as writeBack and copied into
a local writeback buffer. Pages in the writeBack state can still
be modified. They can even transition between the swizzled
and unswizzled state. However, they cannot be evicted, as
otherwise it cannot be guaranteed that a subsequent read
from disk will return the latest version. When the writeback
buffer fills up, it is written out in one go and the disk cache
is flushed. Note that the page provisioner gives up all latches
during the I/O operation, so afterwards it starts again at the
back of the queue. There it finds the (hopefully still clean)
pages that it just wrote out and can move them to the free
list. Thus, clean pages in the FIFO queue are accessed exactly
once, while dirty pages are normally accessed twice.

One might wonder whether it would be better to introduce
separate threads for unswizzling, page writing, and page
eviction. But all three actions depend on each other: Pages
are written out at the latest possible moment before they get
evicted, thus avoiding write amplification from writing out
pages multiple times. Also, in order to evict the correct pages,
they need to migrate through the FIFO queue first. Thus, the
queue must always stay appropriately filled. Doing all of this
in the same thread proves to be a simple and robust design,
where pages move continuously, and no single action can
outrun the others, which would introduce imbalance.

3.6 Transaction Abort

Traditional systems implement the steal paradigm, i.e., un-
committed changes may be written back to the persisted
database, whereas for in-memory systems only a no-steal
policy makes sense. In terms of CPU instructions, there is not
much difference whether the undo images are stored in the
log or in a dedicated in-memory rollback segment. For high-
performance storage engines, in principle both approaches
would be possible. With current DRAM sizes, one could con-
sider a system that pins all pages with uncommitted changes
in the buffer pool. The advantages of such a system are the
omission of undo recovery and therefore less WAL volume.
On the other hand, a system that implements steal can han-
dle larger-than-RAM write transactions. Also, tracking all
pages with uncommitted changes incurs overhead and can
hold back the checkpointer from forcing out the necessary
pages for truncating the log, which violates our design goals.
For these reasons, we use a steal architecture and write
before-images in the WAL for each data modification. Trans-
action aborts are done logically, i.e., the regular access path
is used to execute the reverse operation (e.g., delete for insert
and vice versa), including writing new log records. Aborts
are efficient, as all log records for a transaction can be found
in a single log. After all changes are undone, an end-of-
transaction record is inserted into the log. The final log flush
required for successful transactions can be omitted.

1. Partition logs 2. Merge, Sort

1
- 1
by page id . & Redo
Log Partition 1 1 1 |p2,GSN1
=4 9 2,GSN1
X > loocens! I 2
EI p4,GSN7|[p4,GSN2| 4 g
—— [p1,GSN8
1 ~—1>
B e
p5,GSN6 X
Log Partition 2 . _
) p2,GSN5
1 — [p4,GSN7
worker 2) ! 1 [p4,GSN8 z
p6,GSN5|[p1,GSN3|- I3
p5,GSN4 ' o, [P2:GSN4
1 L—T " [p5,GSN8

Figure 7: Overview of the first two recovery phases.
The final undo phase is not shown.

Most transaction aborts are fast because recent log records
still reside in persistent memory. Therefore, only old or large
transactions need to read from SSD. We found that the ad-
ditional space required in the WAL to write undo-images is
often small (e.g., only 20%, or 2230 Byte vs. 1850 Byte on av-
erage for a TPC-C transaction). The reason is that insert log
records do not require a before-image at all, update records
only contain the before and after image of the changed at-
tributes, and deletes are infrequent in common workloads.

3.7 Recovery

Our checkpointing strategy ensures a tight bound on the log
volume that needs to be recovered after a failure. However,
the concrete value should be set in proportion to the buffer
pool size, so that the ratio between the amount of WAL writ-
ten and the corresponding checkpoint work stays constant.
Thus, for large buffer pools, e.g., several hundred gigabytes,
the amount of work during recovery is not trivial.

Similar to ARIES, recovery has three phases: log analysis,
redo, and undo. In order to still be able to recover in an ad-
equate time frame, we parallelize each phase. As Figure 7
shows, in the first phase, each thread scans all chunks of
a log partition, including those residing in persistent mem-
ory, to separate winner and loser transactions. For winner
transactions, it partitions the log records by page ID into a
thread-local redo table. Log records for loser transactions
are put into a separate undo list.

In the redo phase, each thread is assigned a range of page
IDs. For each range, it merges the log records from all redo
tables from the previous phase. Afterwards, it sorts them by
(pageld, GSN), so that all log records for a page end up next
to each other in GSN order. Then, redo recovery can proceed
page by page. All log records for a page, including those of
loser transactions, are applied at this step. Merge, sort, and
redo can happen interleaved and without synchronization,
since threads operate on distinct ranges.

Finally, in the undo phase, all changes from loser trans-
actions are reverted by iterating over the log records in the

undo bucket. Each change is undone logically as explained
for transaction aborts in Section 3.6.

3.8 Implementation Details

This section discusses implementation details and perfor-
mance optimizations that we implemented in our system.

Persistent memory can be accessed either in memory
mode, or in app direct mode. We use app direct mode, which al-
lows us to create an ext4 file system. A log chunk is allocated
in persistent memory by creating a file of the desired size,
which is then memory mapped with the dax option, which
bypasses OS buffers and allows direct access with cache line
granularity. We avoid thrashing the CPU cache when writing
log records by using non-temporal store instructions, which
are conveniently accessible by the Intel Persistent Memory
Development Kit (PMDK) via pmem_memcpy.

Finding the last valid log record in persistent memory
is not trivial, as log records can still leave the CPU in arbi-
trary order. Thus, one could consider storing the end offset
within each chunk explicitly. However, this would require
an expensive cache flush per log entry, as the data needs to
be flushed before offset to ensure correct ordering. Addition-
ally, as Renen et al. [51] observed, repeated updates of the
same persistent memory location are unreasonably expen-
sive. They propose to use the popcnt instruction to compute
a lightweight checksum of each record. During recovery,
these checksums are used to determine the last fully written
log entry. We implemented this approach in our system, and
found that it does not introduce any measurable overhead.
Partially staged log chunks are not problematic, as in that
case the intact copy in persistent memory gets precedence.

The Writeback Buffer mentioned in Section 3.5 accumu-
lates pages locally before writing them out all at once. In
order to saturate the bandwidth of high-speed NVMe SSDs,
we use the asynchronous I/O API of the Linux Kernel. Addi-
tionally, we open the database file with O_DIRECT to avoid
OS caching effects and reduce CPU overhead. Thus, the only
cache that remains to be flushed is on the device itself. We
use the fdatasync call for that instead of the typical fsync,
which provides enough guarantees but allows for a slightly
faster implementation. We issue 1024 page writes at a time
to keep the device queue filled. After a batch of pages has
been written out and flushed, we update the GSNyersissed
field in their buffer frames to the GSN of the copy of the
page. It is important that the GSNs are only updated after
the writes have been flushed, as otherwise the checkpointer
might prune the log too early. The writeback buffer is used
by both the checkpointer and the page provisioner.

Log Compression reduces the amount of data that has
to be transferred to both persistent memory and SSD. We
do not employ a general-purpose compression scheme such
as LZ4, as it would incur a non-negligible CPU overhead,

which would outweigh its benefits. We instead reuse infor-
mation from former log entries of the same category. For
example, we maintain the ID of the last inserted page, and
the transaction that did so. We apply this optimization for
insert and update entries, as they make up the majority of log
volume in common workloads. If we create another insert
entry, we check if it can reuse that information. Note that
we reset the cached IDs on chunk boundaries, so that log
chunks stay independent, and can be processed in parallel.
Furthermore, update records only contain the before and
after image of changed attributes together with a bitmask
with the modified attributes set to 1. We observe that these
two techniques already reduce log volume by 30% in TPC-C.
For performance, it is vital that the checkpointer thread
does not latch all pages in a shard at the same time, which can
be tens of thousands of pages for realistic buffer sizes. Similar
to the page provisioner (see Section 3.5), it only latches each
page briefly to mark it as writeBack and copy it into a local
writeback buffer before proceeding to the next page. The
copy is necessary anyway in our design, because the in-
memory representation of a page contains swizzled pointers,
which must not get serialized to persisted storage. So before
a page gets written out, all pointers in the copy are replaced
by their corresponding page IDs [17]. This design minimizes
the impact of checkpointing, as only one page is latched at
a time, and no page latches are held during I/O. To keep up
with the worker threads on machines with many cores, our
implementation has multiple checkpointer threads, which
can work on distinct checkpoint increments in parallel. This
does not affect correctness, as the minimum GSN in the table
determines how far the log can be truncated. For the results
reported in Section 4, we use two checkpointer threads.

4 EVALUATION

We implemented our logging and recovery approach in the
high-performance LeanStore storage engine, which is writ-
ten in C++17. LeanStore uses pointer swizzling and partitions
the buffer pool into a hot/cold area. For the benchmarks, we
use TPC-C with all five transaction types. The benchmark
driver is directly linked into the engine, so the results are
unimpeded by network overhead. Relations and indexes are
stored in B*-trees with a page size of 16 KB. Because our
system does not yet implement full transaction isolation, we
effectively run all experiments in read uncommitted mode.
All experiments are run on a system with an Intel Xeon
Gold 6212U CPU, which has 24 cores and 48 Hyper-Threads.
The system is equipped with 192 GB DRAM and 768 GB In-
tel Optane DC Persistent Memory. The operating system
(Ubuntu 19.10) is installed on one SSD, while the database
file resides on another PCle-attached NVMe SSD. We put the

12001 "SiloR"-style
—_ |—*— Group Commit
L 1000 Our approach
< 800+ No RFA //‘_‘__‘
==, —a— Aether -
&) 6001—— Arees -
O 400- /
o .
F 200 2

04 J
1 12 24 36 48

threads
Figure 8: TPC-C (500 warehouses, 100 GB buffer pool).

log on the persistent memory device, which is able to absorb
the almost 2 GB/s of log volume we generate.

Each thread gets allocated 5 WAL chunks of 20 MB each,
which has shown to be sufficient for the background staging
thread to offload the WAL. We fix the clock frequency of the
CPU at 2.6 GHz, which is the highest value it can sustain
when all threads are active. This reduces noise and leads to
more comparable benchmark results.

The main goal of this section is to evaluate the different
logging approaches for a high-performance storage engine.
Since Silo is an in-memory system (and its recovery imple-
mentation SiloR is not publicly available), we decided to
implement all competitors in our own system. This allows
us to quantify the exact impact of logging and checkpoint-
ing as all other system parameters, i.e., the benchmark code,
the storage engine, and the data structures, stay unchanged.
The ARIES-style configuration uses a single global log. We
also implemented a state-of-the-art variant that contains the
optimizations proposed by Aether [22], namely consolidation
arrays, flush pipelining (group commit), and decoupled buffer
fill. The SiloR-style approach uses per-thread logs and em-
ploys epoch-based group commit. It is the only competitor
which allocates log chunks in DRAM first. It does not write
GSNs, page IDs or undo images into the WAL. Thus, it does
not support out-of-memory workloads that persist pages
with uncommitted changes to disk. All competitors take full
checkpoints each time the log exceeds its limit, during which
SiloR persists the whole database, while ARIES/Aether writes
out dirty pages.

4.1 Scalability

In our first experiment, we compare transaction throughput
and scalability of our approach against Aether, ARIES, and
SiloR-style logging when the workload fits into memory. We
also compare the scalability of RFA against passive group
commiit [52] and a variant that flushes all logs synchronously
upon commit (labeled “No RFA”). For that, we run TPC-C
with 500 warehouses (which amounts to 50 GB of initial data)
and a memory budget of 100 GB. Figure 8 shows that our
approach is able to scale very well. It achieves 41k TPC-C

transactions per second with one thread and scales to 750k
txn/s with 24 threads. Beyond that, it further benefits from
hyperthreading and reaches its peak performance at 857k
txn/s with 40 threads. The only competitor that performs
significantly better is the in-memory group commit “SiloR”
approach, which achieves 43k txn/s single threaded and 1.2M
txn/s with 48 threads. We investigated why its scalability
is better than the other competitors, even in comparison
with the non-blocking passive group commit variant. We
found that the persistent memory device is the culprit. By
putting the first stage of the WAL into DRAM, and leaving
all other parameters the same, our approach achieves 960k
txn/s instead of 857k txn/s with 40 threads (scalability 22.6x
instead of 20.9x), indicating that our first generation persis-
tent memory platform is oversaturated when many threads
write into persistent memory concurrently.

ARIES-style logging is limited by the global log, so it
reaches its peak performance of 123k txn/s already with
4 threads. Aether performs slightly better and achieves up to
180k txn/s with 16 threads, but eventually also runs into con-
tention. This is consistent with previous reported results [52],
and amplified in our system as our base performance is an
order of magnitude higher, resulting in the single log becom-
ing the bottleneck much sooner. The dashed line in Figure 8
shows the throughput of our system when RFA is disabled. It
performs better than ARIES and Aether as it does not have to
synchronize threads on the creation of log entries. However,
because it still has to synchronize all per-thread logs upon
each transaction commit, it starts to scale worse than RFA or
group commit beyond 8 threads, reaching its peak of 690k
txn/s with 48 threads.

As the scalability results show, RFA manages to avoid
most remote log flushes, resulting in a throughput close
to that of a group commit protocol which does not flush
other logs at all. However, depending on the contention
in the workload, remote log flushes may be inevitable. To
demonstrate this effect, we varied the number of warehouses
(which indirectly controls transaction interference in TPC-
C) with 40 worker threads and measured the percentage of
transactions requiring a remote flush:

w=1 w=5 w=10 w=50 w=100 w=500
rem. flushes 92.0% 91.8% 90.8% 15.5% 14.7% 8.1%
perf [txn/s] 596k 707k 721k 929k 861k 857k

As these results indicate, the more logical independence
the workload has, the more likely it becomes that remote
flushes can be avoided.

4.2 Log Volume and Checkpointing

Among the main features of our approach are the contin-
uous checkpointing algorithm and its capability to bound

in-memory (100GB buf.) ||out-of-memory (40GB buf.)

1200 @ & =

9004 ur approach 8

6004 @ ----- Aether S

"SiloR"-style @ £

300 5

Ourapproach || >

0)

5

=

(0]

10004 =3

© £

500 =

@

0)
1200

el

9004 g

600 =

300 ® E

&

0)
2000 A

15004 =

=

10004 =

5004 e >

N)
150 9

® @ g

100 _o—— <

............................. s

50 ?..?

04 2

1000 + @ 3

7504 B &

500 =

250 4| H—— e =

ol)

0 25 50 75 100 1250 25 50 75 100 125

runtime [sec]
Figure 9: TPC-C performance over time (500 ware-
houses, 100GB WAL limit, 40 worker threads).

the log volume. To understand the behavior of our approach,
we run TPC-C for two minutes with 40 worker threads and
500 warehouses (50 GB of initial data). The left column of
Figure 9 shows that with a buffer pool of 100 GB, our system
achieves a sustained transaction rate of 850k txn/s while con-
stantly writing out 1.7 GB/s of WAL, and over 1 GB/s of pages
necessary for checkpointing. After 32 seconds the WAL vol-
ume reaches its configured limit and stays there (@), which
validates that our continuous checkpointing approach can
keep the WAL bounded. In contrast, the checkpointer in the
SiloR approach cannot keep up with the worker threads (b))
resulting in a growing WAL volume. It has to write out the
entire database ((€))—which grows quickly—for each check-
point. After 66 seconds, when the memory budget of 100GB
is exhausted, the SiloR system stops processing (@) because
it runs out of memory. In our system, in contrast, the page
provisioner starts supporting the checkpointer with writing
out pages at 140 MB/s to free up buffer space ((€)). Since this
is done in the background, and the page replacement strat-
egy is identifying correct eviction candidates, processing
continues with no observable performance drop ((f)).

The right column of Figure 9 shows system behavior when
the buffer pool does not even fit the initial data set. For that,
we set the buffer pool size to 40 GB, while keeping the num-
ber of warehouses at 500. At the beginning of the benchmark,
both Aether and our approach need a few seconds to load

Table 1: TPC-C transaction rates and CPU instructions
(500 warehouses, 40 worker threads). We enable all
necessary logging components step-by-step.

Component txn/s instr. per txn
1 no logging 1.439k 47k
2+ create WAL records 1.110k 59k
3+ stage WAL records 934k 61k
4+ remote log flushes 666k 78k
5 +RFA 854k 65k
6 + checkpointing 850k 66k

the working set into RAM (), starting at over 1 GB/s. After-
wards, both are able to keep a stable performance level, but,
even in this out-of-memory scenario, Aether’s performance
is still a factor of two lower due to log synchronization. This
underlines that the classical disk-based database architec-
ture is unsuited for fast SSDs. In steady state, our system
writes 2 GB/s (checkpointing: 280 MB/s, page persisting to
free up buffer space: 1 GB/s, WAL writing: 650 MB/s) and
reads 700 MB/s (k), while sustaining 300k txn/s (@) and
bounding the WAL to 100 GB.

4.3 Dissecting the Features

In the next experiment, we dissect the performance impact
of the different logging components using TPC-C (40 threads,
500 warehouses, 100 GB buffer pool). Table 1 shows that the
basic storage manager, without any logging, checkpointing
or page cleaning, is able to achieve 1.4M TPC-C transactions
per second (#1). Next, the worker threads allocate, write, and
checksum the log records in persistent memory (#2). This
incurs the highest increase in CPU instructions, from 47k
to 59k per transaction, and decreases performance to 1.1M
txn/s. Staging the log records to SSD (#3) is almost purely an
I/O operation. Thus, the instructions per transaction do not
increase much, but performance drops slightly to 934k txn/s
since staging is done by a background thread that has to ac-
cess the log. However, once transactions flush all logs during
commit (#4), performance drops to 666k txn/s. By introduc-
ing RFA (#5), performance increases to 854k txn/s. Finally,
the fully functioning system including checkpointing (#6)
achieves 850k txn/s. Thus, the total amount of work for the
recovery component is 19k instructions per transaction in
our approach.

4.4 RFA and Contention

To analyze the impact of RFA in more detail, we also run
a YCSB experiment with a fixed table size of 500M records,
each consisting of an 8 Byte key and a 64 Byte value. The
resulting database has a size of 36 GB. We run the benchmark
with 24 threads, each executing a transaction consisting of
a single-tuple update. This stresses log synchronization to

(e}

" "SiloR"-style
4.5% ‘\\ =—— Group Commit
4.8% 4.4% 539, 50.4% Our approach
18.8% No RFA
—&— Acther

—A— ARIES
79.2%

N.Z%
A =]

__‘___‘

N

F

YCSB [Mtxn/s]

o

0.0 025 0.50 0.75 1.0 125 15 1.75
Zipf theta (0)
Figure 10: YCSB-style workload (100% single-tuple up-
dates). Our approach is annotated with the percentage
of remote flushes.

Delivery Neworder Payment YCSB

304

T dd AL

S S S PN S P

FTEELE G FET S F e &E

00 $0 OQ O $0 C)D (\0 $O C)O (\0 $0 QO
O\Q' Q\Q' O\Q' O\Q'

%)
o

o
o

a
o

Latency [microseconds]

Figure 11: TPC-C & YCSB transaction latencies for dif-
ferent commit flush strategies. RFA is close to the op-
timum, while group commit has higher latencies.

the maximum, as much of the work consists of creating log
records. We vary the Zipf theta, resulting in different levels of
skew. As Figure 10 shows, with 8 = 0 (i.e., a uniform distribu-
tion) RFA is most effective and only 4.8% of all transactions
need to synchronize their commit with other logs. Theta
values up to 0.75 do not increase remote flushes significantly.
An even higher 0 increases the number of remote flushes, but
performance stays competitive compared to group commit
and Silo-R. With 6 = 1.25, contention in the workload starts
to dominate, and with even higher values all competitors
converge to a similar performance.

4.5 Transaction Latencies

In this experiment, we compare optimal transaction latencies,
i.e., those that could be achieved by not flushing log records
in other logs at all, to those with and without RFA, and
group commit. Transactions enter the system based on a
Poisson process where the time between two transactions is
exponentially distributed.

Figure 11 shows the execution latencies for the three write
transactions in TPC-C for a transaction rate of 100k txn/s.
Without flushing other logs, a single delivery transaction
has a median execution time of 83 microseconds. With RFA,
the median does not increase, and the 99th percentile only
slightly increases from 113 s to 124 ys. The median when

in-memory (100GB buf.) out-of-memory (40GB buf.)

Our approach

750 4 — WiredTiger (WT)

- WT w/o checkpointing
WT w/o chkpt. or logging

TPC-C [ktxn/s]

Lk
0 25 50 75 100 0 25 50 75 100
runtime [seconds]
Figure 12: WiredTiger performance for TPC-C over

time (40GB buffer pool, 20 threads). We incrementally
disable checkpointing and logging.

always flushing all other logs is 88 us, while with group
commit it rises to 95 us. Neworder and payment transactions
show a similar behavior, while the general trend is that for
short transactions, the added latency of group commit is
more significant. In YCSB, the median latency for group
commit is 7 us, which is more than double the latency of
RFA, which has a median latency of 2.8 us.

For comparison, the epoch-based group commit system
SiloR has transaction latencies in the order of milliseconds,
which is three orders of magnitude higher than in our system.

4.6 Recovery

As the experiment in Section 4.2 shows, our approach is effec-
tive in bounding the log volume that needs to be processed
during recovery. With a WAL limit of 100 GB, we measure
the different phases of recovery time. Using 40 threads, total
recovery time is 38 seconds, of which 14 seconds are spent on
partitioning the log chunks by page ID, and the remaining 24
seconds are used for merging, sorting and applying the log
records (undo time is negligible). This corresponds to 2.6 GB
of WAL recovered per second. Within one second after re-
covery finished, TPC-C transaction performance approaches
the value it had before the crash because recovery implicitly
pre-warmed the buffer cache.

For comparison, Zheng et al. [55] report 0.93 GB/s for pro-
cessing the recovery log in the state-of-the-art SiloR system
using 32 cores. However, because their checkpointing ap-
proach fails to put a tight upper bound on the log, it grows up
to 180 GB in their TPC-C experiment. This leads to a much
higher recovery time of 211 seconds (which includes loading
time for the last checkpoint). Therefore, despite frequent
checkpointing, their recovery time is more than five times
higher than in our system.

4.7 System Comparison

To the best of our knowledge, WiredTiger is one of the most
efficient open-source storage engines, which we found to be
faster than LevelDB, RocksDB, BerkeleyDB, and PostgreSQL

on TPC-C. Furthermore, WiredTiger implements a typical
recovery approach close to textbook ARIES and allows one
to disable logging and checkpointing individually. We inte-
grated WiredTiger 2.9.3 into our TPC-C benchmark driver.
To make for a fair comparison with our persistent-memory-
based approach, we deactivate fsync in WiredTiger.

As in previous experiments, we run TPC-C with 500 ware-
houses. Figure 12 shows the performance of WiredTiger over
time, once with a buffer pool of 100 GB where the workload
fits in memory, and once with 40 GB where the workload
exceeds it. One apparent observation is that WiredTiger has
very high variability, especially when checkpoints are en-
abled. This shows that checkpoints cause major drops in
performance, and are thus an issue in existing systems. The
performance of our system, in contrast, is not only much
more stable, but also one order of magnitude faster in the
out-of-memory case.

5 RELATED WORK

This section reviews alternative designs for logging, check-
pointing, and recovery as well as complementary techniques.

In-memory database systems make various trade-offs
in order to improve forward-processing performance at the
expense of recovery performance. Broadly speaking, there
are two classes of systems that represent these kinds of trade-
offs, namely physical and logical logging. In the previous
sections, we reviewed Silo as a representative for physical
logging systems; in this section, we discuss the latter class.

Command logging [36] is a logical logging approach in
which every transaction must run as a stored procedure, and
it is logged as a single log record containing the procedure
ID and its arguments. This approach has three major limi-
tations: first, checkpoints must not only scan and write the
entire database, but they must also be transaction-consistent,
which incurs additional overhead. Second, recovery requires
re-executing transactions serially, leading to prohibitively
long outages in case of system failures. Adaptive logging [54]
is a hybrid approach that attempts to improve recovery time
of command logging by tracking dependencies among trans-
actions and selectively producing physical log records that
eliminate such dependencies, thus speeding up log replay by
permitting a higher degree of parallelism.

Hekaton [13] has a unique approach among in-memory
systems. It takes checkpoints by sorting and merging log
files (with value logging), essentially behaving like a log-
structured merge tree [40]. As such, it permits incremental
checkpoints, i.e., writing only recent modifications rather
than the entire database. FineLine [46] employs a similar con-
cept but it relies on physiological logging instead of value
logging. FOEDUS [28] is a persistent-memory system that
propagates changes from volatile images of pages into their
persistent representation by means of log replay, which can

be seen as a single-level merge tree. In contrast, the staging
approach used in HANA [47]—with its L1 and L2 deltas—
can be seen as a two-level merge tree. However, in HANA
changes are propagated at the granularity of whole columns
instead of pages. Such log-structured approaches have two
fundamental caveats: first, merging log files potentially in-
creases /O load and write amplification; second, they forbid
evicting uncommitted changes to disk (i.e., they are no-steal).

The first designs proposed for in-memory databases had
the limitation that the entire dataset had to fit into main
memory. Given the advent of fast SSDs and persistent mem-
ory, this limitation can be a “deal breaker”, especially from
the economic perspective [4]. Thus, some techniques such as
Anti-Caching [12] and Siberia [2, 34] were proposed to allow
an in-memory database to grow larger than main memory
without relying on a page-based buffer manager. Instead,
they identify less-frequently used tuples and migrate them
to separate data structures on persistent storage. To support
reads, additional lookups in such data structures are required,
which can be optimized with techniques like Bloom filtering.
A buffer manager with pointer swizzling performs better
when data is larger than main memory, since it does not
require such lookups or tuple-level tracking of accesses.

Persistent memory provides byte addressability and low
latency. It has been explored in multiple logging design pro-
posals [11, 14, 21, 27]. These approaches aim to reduce com-
mit latency while still relying on a centralized log at some
point, thus overlooking the scalability issue. Our design not
only addresses scalability but also considers the wider con-
text of both logging and checkpointing.

Some designs for persistent-memory database systems
also consider the radical approach of eliminating redo log-
ging altogether (i.e., force) by performing out-of-place up-
dates directly on the persisted database [8, 15, 41, 43, 44],
in some cases delegating all storage to specialized search
structures [5, 42]. However, this fundamental design trade-
off presents some major limitations. First, since durability
requires random persistent writes, commit latency is un-
avoidably higher than in logging approaches, as one flush
operation is required per tuple modified. Second, data must
not be updated in-place, which results in lower performance
for some workloads [6, 44], and introduces garbage collection
overhead as well as issues with indexing and space manage-
ment. Third, since a system without redo logging cannot
support media recovery, replication to a stand-by secondary
server is required [53] to handle device failures.

Instant recovery [16] is a family of algorithms that al-
low new transactions to execute immediately after a sys-
tem or even media failure, including localized single-page
corruptions. A complementary technique is constant-time
recovery [3], which exploits multi-version storage to allow in-
stantaneous undo of arbitrarily long user transactions. Since

both techniques rely on physiological logging, they can be
combined with our approach to achieve efficient logging and
checkpointing as well as faster recovery.

ERMIA [26] is a physiological logging system that im-
proves the scalability of centralized logging by leveraging
multi-version storage, which is used both for concurrency
control as well as recovery purposes. Our approach, in con-
trast, is orthogonal to concurrency control and also works
with single-version storage.

The general problem of synchronizing transaction ac-
tivity in the presence of multiple logs has also been
explored by Bernstein and Das [9], who propose a mech-
anism to parallelize the validation phase of an optimistic
concurrency control algorithm (OCC) by partitioning the
database. The key difference is that our approach considers
a distributed log partitioned by transaction and not by data-
base contents (i.e., by page), and that the focus here is not on
OCC validation but on guaranteeing durability regardless of
the employed concurrency control protocol.

Other concurrency-control techniques of both the pes-
simistic [1] and optimistic [35] kind require tracking depen-
dencies among transactions to enforce commit-time ordering,
but such tracking happens at the granularity of individual
records. The RFA technique proposed in this paper, on the
other hand, only tracks dependencies at the page level, and
once detected, a dependency neither has any influence on
the serializability order or the decision to commit or abort,
nor does it cause any delay in the logical execution of other
transactions—it just triggers the flush of different log buffers.

6 SUMMARY

Neither ARIES nor in-memory logging approaches work
well for high-performance storage managers. We present
a design that covers all aspects of logging, checkpointing,
and page provisioning. Using continuous checkpointing, we
eliminate spikes in transaction performance and I/O. Remote
Flush Avoidance enables low-latency transaction commit and
makes our approach scalable on multi-core CPUs. Overall,
our implementation inside LeanStore achieves not only the
rich feature set and robustness of a classical disk-based data-
base architecture, but also the performance and scalability
of state-of-the-art in-memory systems.

REFERENCES

[1] Divyakant Agrawal, Amr El Abbadi, Richard Jeffers, and Lijing Lin.
1995. Ordered Shared Locks for Real-Time Databases. VLDB 7. 4, 1
(1995).

[2] Karolina Alexiou, Donald Kossmann, and Per-Ake Larson. 2013. Adap-
tive Range Filters for Cold Data: Avoiding Trips to Siberia. PVLDB 6,
14 (2013).

[3] Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu,
Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth
Purnananda, Adrian-Leonard Radu, Chaitanya Sreenivas Ravella, and

(11

[12

[13

(14

(15

[16

(17

[18
[19

[20

(21

[22

[23

[24

—

—

=

=

=

=

—

[t e

=

—_

[l

Girish Mittur Venkataramanappa. 2019. Constant Time Recovery in
Azure SQL Database. PVLDB 12, 12 (2019).

Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, and Anastasia
Ailamaki. 2017. The Five-minute Rule Thirty Years Later and its Impact
on the Storage Hierarchy. In ADMS.

Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. 2018. BzTree: A High-Performance Latch-free Range Index
for Non-Volatile Memory. PVLDB 11, 5 (2018).

Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. 2015. Let’s
Talk About Storage & Recovery Methods for Non-Volatile Memory
Database Systems. In SIGMOD.

Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. 2019. Multi-Tier
Buffer Management and Storage System Design for Non-Volatile Mem-
ory. CoRR (2019).

Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind
Logging. PVLDB 10, 4 (2016).

Philip A. Bernstein and Sudipto Das. 2015. Scaling Optimistic Concur-
rency Control by Approximately Partitioning the Certifier and Log.
IEEE Data Eng. Bull. 38, 1 (2015).

Tuan Cao, Marcos Antonio Vaz Salles, Benjamin Sowell, Yao Yue,
Alan J. Demers, Johannes Gehrke, and Walker M. White. 2011. Fast
checkpoint recovery algorithms for frequently consistent applications.
In SIGMOD.

Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven
Swanson. 2013. From ARIES to MARS: transaction support for next-
generation, solid-state drives. In SOSP.

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker,
and Stanley B. Zdonik. 2013. Anti-Caching: A New Approach to
Database Management System Architecture. PVLDB 6, 14 (2013).
Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL server’s memory-optimized OLTP engine. In SIGMOD.

Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. 2011. High
performance database logging using storage class memory.

Shen Gao, Jianliang Xu, Theo Harder, Bingsheng He, Byron Choi, and
Haibo Hu. 2015. PCMLogging: Optimizing Transaction Logging and
Recovery Performance with PCM. IEEE Trans. Knowl. Data Eng. 27, 12
(2015).

Goetz Graefe, Wey Guy, and Caetano Sauer. 2016. Instant Recovery
with Write-Ahead Logging: Page Repair, System Restart, Media Restore,
and System Failover, Second Edition. Morgan & Claypool Publishers.
https://doi.org/10.2200/S00710ED2V01Y201603DTM044

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph
Tucek, Mark Lillibridge, and Alistair C. Veitch. 2014. In-Memory
Performance for Big Data. PVLDB 8, 1 (2014).

Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting
Directly-Attached NVMe Arrays in DBMS. In CIDR.

Theo Hiarder and Andreas Reuter. 1983. Principles of Transaction-
Oriented Database Recovery. ACM Comput. Surv. 15, 4 (1983).
Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. 2008. OLTP through the looking glass, and what we
found there. In SIGMOD.

Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014.
NVRAM-aware Logging in Transaction Systems. PVLDB 8, 4 (2014).
Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,
and Anastasia Ailamaki. 2010. Aether: A Scalable Approach to Logging.
PVLDB 3, 1 (2010).

Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,
and Anastasia Ailamaki. 2012. Scalability of write-ahead logging on
multicore and multisocket hardware. VLDB 7. 21, 2 (2012).
Hyungsoo Jung, Hyuck Han, and Sooyong Kang. 2017. Scalable Data-
base Logging for Multicores. PVLDB 11, 2 (2017).

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Jong-Bin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong
Kang, and Hyungsoo Jung. 2019. Border-Collie: A Wait-free, Read-
optimal Algorithm for Database Logging on Multicore Hardware. In
SIGMOD.

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pan-
dis. 2016. ERMIA: Fast Memory-Optimized Database System for Het-
erogeneous Workloads. In SIGMOD.

Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. 2016. NVWAL: Exploiting NVRAM in Write-Ahead Log-
ging. In ASPLOS.

Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores
and NVRAM. In SIGMOD.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (1978).

Per-Ake Larson, Mike Zwilling, and Kevin Farlee. 2013. The Hekaton
Memory-Optimized OLTP Engine. IEEE Data Eng. Bull. 36, 2 (2013).
Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. 2018. LeanStore: In-Memory Data Management beyond Main
Memory. In ICDE.

Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Op-
timistic Lock Coupling: A Scalable and Efficient General-Purpose Syn-
chronization Method. IEEE Data Eng. Bull. 42,1 (2019).

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
2016. The ART of practical synchronization. In DaMoN. ACM.

Justin J. Levandoski, Per-Ake Larson, and Radu Stoica. 2013. Identify-
ing hot and cold data in main-memory databases. In ICDE.

David B. Lomet, Alan Fekete, Rui Wang, and Peter Ward. 2012. Multi-
version Concurrency via Timestamp Range Conflict Management. In
ICDE.

Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-
braker. 2014. Rethinking main memory OLTP recovery. In ICDE.

C. Mohan. 1999. Repeating History Beyond ARIES. In VLDB.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Pe-
ter M. Schwarz. 1992. ARIES: A Transaction Recovery Method Support-
ing Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM TODS (1992).

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In CIDR.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J.
O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33,
4(1996).

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. 2014. SOFORT: a hybrid SCM-DRAM storage engine
for fast data recovery. In DaMoN.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In SIGMOD.

Ismail Oukid, Wolfgang Lehner, Thomas Kissinger, Thomas Will-
halm, and Peter Bumbulis. 2015. Instant Recovery for Main Memory
Databases. In CIDR.

Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. 2013.
Storage Management in the NVRAM Era. PVLDB 7, 2 (2013).

Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson.
2016. Low-Overhead Asynchronous Checkpointing in Main-Memory
Database Systems. In SIGMOD.

Caetano Sauer, Goetz Graefe, and Theo Harder. 2018. FineLine: log-
structured transactional storage and recovery. PVLDB 11, 13 (2018).
Vishal Sikka, Franz Farber, Wolfgang Lehner, Sang Kyun Cha, Thomas
Peh, and Christof Bornhévd. 2012. Efficient transaction processing in
SAP HANA database: the end of a column store myth. In SIGMOD.
Hironobu Suzuki. 2016. The Internals of PostgreSQL. Self-published.
http://www.interdb.jp/pg/

https://doi.org/10.2200/S00710ED2V01Y201603DTM044
http://www.interdb.jp/pg/

[49] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy transactions in multicore in-memory databases.
In SIGOPS.

[50] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and
Mitsuru Sato. 2018. Managing Non-Volatile Memory in Database
Systems. In SIGMOD.

[51] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. 2019. Persistent Memory I/O Primitives. In DaMoN.

[52] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through
Emerging Non-Volatile Memory. PVLDB 7, 10 (2014).

[53] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query
Fresh: Log Shipping on Steroids. PVLDB 11, 4 (2017).

[54] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai
Wau. 2016. Adaptive Logging: Optimizing Logging and Recovery Costs
in Distributed In-memory Databases. In SIGMOD.

[55] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014.
Fast Databases with Fast Durability and Recovery Through Multicore
Parallelism. In OSDL

	Abstract
	1 Introduction
	2 Background
	2.1 ARIES
	2.2 In-memory Database Systems
	2.3 Checkpoints
	2.4 Scalable Logging

	3 Low-Latency Logging and Robust Checkpointing with Bounded Recovery
	3.1 Two-Stage Distributed Logging
	3.2 Low-Latency Commit Through RFA
	3.3 Challenges of Checkpointing
	3.4 Continuous Checkpointing
	3.5 Page Provisioning
	3.6 Transaction Abort
	3.7 Recovery
	3.8 Implementation Details

	4 Evaluation
	4.1 Scalability
	4.2 Log Volume and Checkpointing
	4.3 Dissecting the Features
	4.4 RFA and Contention
	4.5 Transaction Latencies
	4.6 Recovery
	4.7 System Comparison

	5 Related Work
	6 Summary
	References

