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ABSTRACT
Data volume and complexity continue to increase, as does
the need for insight into data. Today, data management and
data analytics are most often conducted in separate systems:
database systems and dedicated analytics systems. This sep-
aration leads to time- and resource-consuming data transfer,
stale data, and complex IT architectures.

In this paper we show that relational main-memory data-
base systems are capable of executing analytical algorithms
in a fully transactional environment while still exceeding
performance of state-of-the-art analytical systems rendering
the division of data management and data analytics unnec-
essary. We classify and assess multiple ways of integrating
data analytics in database systems. Based on this assess-
ment, we extend SQL with a non-appending iteration con-
struct that provides an important building block for analyti-
cal algorithms while retaining the high expressiveness of the
original language. Furthermore, we propose the integration
of analytics operators directly into the database core, where
algorithms can be highly tuned for modern hardware. These
operators can be parameterized with our novel user-defined
lambda expressions. As we integrate lambda expressions into
SQL instead of proposing a new proprietary query language,
we ensure usability for diverse groups of users. Additionally,
we carry out an extensive experimental evaluation of our
approaches in HyPer, our full-fledged SQL main-memory
database system, and show their superior performance in
comparison to dedicated solutions.
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Figure 1: Overview of approaches to data analytics
using RDBMS. Our system supports the novel layer
4, where data mining is integrated directly into the
database core leading to higher performance. To
maintain expressiveness, high-order functions (lamb-
das) are passed as parameters.

1. INTRODUCTION
The current data explosion in science and technology poses

difficulties for data management and data analytics. Es-
pecially stand-alone data analytics applications [2, 16] are
prone to have problems due to their simple data manage-
ment layer. Being optimized for read-mostly or read-only
analytics tasks, most stand-alone systems are unsuitable for
frequently changing datasets. After each change, the whole
data of interest needs to be copied to the application again,
a time- and resource-consuming process.

We define data analytics to be algorithms and queries that
process the whole dataset (or extensive subsets), and there-
fore are computation-intensive and long-running. This do-
main contains, for example, machine learning, data mining,
graph analytics, and text mining. In addition to the differ-
ences between these subdomains, most algorithms boil down
to a model-application approach: i.e., a two phase process
where a model is created and stored first and then applied
to the same or different data in a second step.

In contrast to dedicated analytical systems, classical DBMS
provide an efficient and update-friendly data management
layer and many more useful features to store big data reli-
ably, such as user rights management and recovery proce-
dures. Database systems avoid data silos as data has to be
stored only once, eliminating ETL cycles (extraction, trans-



formation, and loading of data). Thus, we investigate how
data analytics can be sensible integrated into RDBMS to
contribute to a “one-solution-fits-it-all” system. What level
of efficiency is possible when running such complex queries
in a database? Can a database actually be better than sin-
gle purpose standalone systems? According to Aggarwal et
al. [4], seamless integration of data analytics technology into
DBMS is a major challenge.

Some newer database systems, for example SAP HANA [15]
and HyPer [20], are designed to efficiently handle different
workloads (OLTP and OLAP) in a single system. Main-
memory RDBMS, such as HyPer, are specifically well-suited
for high analytics workload due to their efficient use of mod-
ern hardware, i.e., multi-core CPUs with extensive instruc-
tion sets and large amounts of main memory.

How is an analytics algorithm best integrated into an
RDBMS? While existing database systems that feature data
analytics include the algorithms on a very high level, we pro-
pose to add a specific set of algorithmic building blocks as
deep in the system as possible. To describe and assess differ-
ent approaches of integrating data analytics algorithms into
an RDBMS, we distinguish four layers ranging form the least
to the most deeply integrated:

(1) DBMS as data storage with external analytics algo-
rithms—the currently most commonly used approach.

(2) User-defined functions (UDFs)—code snippets in high-
level languages executed by the DBMS.

(3) SQL queries—including recursive common table ex-
pressions (CTE) and our novel iteration construct.

(4) Integration as physical operators—the deepest integra-
tion, providing the highest performance.

We propose user-defined code snippets as parameters to
our operators to increase flexibility within (4). These so-
called lambda functions, containing for instance distance
metrics, are able to change the semantics of a given ana-
lytical algorithm.

These four approaches trade performance versus flexibil-
ity in a different way, as depicted in Figure 1. We propose
implementing several of these approaches into one system to
cover the diverse needs regarding performance and expres-
siveness of different user groups and application domains.
The novel operator integration (4) combines the highest per-
formance with high flexibility but can only be implemented
by the database system’s architects. Approaches (2) and
(3) provide environments in which expert users can imple-
ment their own algorithms. All three integrated approaches
[(2), (3), (4)] avoid ETL costs, stale data, and assembling
and administrating complex system environments, thereby
facilitating ad-hoc data analytics.

This paper focuses on two approaches, SQL- and operator-
centric approaches to data analytics in databases. Figure 2
gives a first idea of how these approaches are integrated into
query plans. As depicted, both approaches handle arbitrar-
ily pre-processed input. Both approaches result in a rela-
tion; this result can thus be post-processed within the same
query. The operator-centric approach features a specialized
operator that processes data as would any other relational
operator such as a join. In the SQL-centric approach, an-
alytical algorithms are expressed in SQL. k-Means is an it-
erative algorithm, hence Figure 2 shows an iteration as the
most important part of the query.

Scan data

Scan data Selection

k-Means Selection

initial centers

distance function

λ

(a) Operator-centric approach. The iterative k-Means algo-
rithm is implemented as physical relational operator. The
distance function is specified as a lambda expression.

Scan data

Scan data Selection Iteration Selection

initial centers

while
stop condition

false

(b) SQL-centric approach. The iterative algorithm, including
initialization and stop condition, is expressed in SQL. The it-
eration operator can either be the standard recursive common
table expression, or our optimized non-appending iteration
construct.

Figure 2: Query plans for k-Means clustering.

1.1 Contributions
In this paper, we present how data analytics can effi-

ciently be integrated into relational database systems. Our
approach targets different user groups and application do-
mains by providing multiple interfaces for defining and using
analytical algorithms. High expressiveness and performance
are achieved via a unique combination of existing and new
concepts including1:

• A classification and assessment of approaches to inte-
grate data analytics with databases.

• The iteration construct as extension to recursive com-
mon table expressions (with recursive) in SQL.

• Analytical operators executed within the database en-
gine that can be parameterized using lambda expres-
sions (anonymous user-defined functions) in SQL.

• An experimental evaluation with both dedicated ana-
lytical systems and database extensions for analytical
tasks.

The remainder of this paper is organized as follows: An
overview of the related work is provided in Section 2. In
Section 3 we discuss what characteristics make HyPer es-
pecially suited for in-database analytics. We continue by
explaining the in-database processing in Section 4. The
method by which analytics are integrated into SQL is de-
fined in Section 5 and our building blocks (operators) of the
fourth layer are shown in detail in Section 6. Our operators
are very flexible due to their lambda functions, which we
describe in Section 7. The evaluation of our operators in
HyPer is given in Section 8. We discuss the conclusions of
our work in Section 9.

1Partially based on our prior publication [29].



2. RELATED WORK
Data analytics software can be categorized into dedicated

tools and extensions to DBMS. In this section, we introduce
major representatives of both classes.

2.1 Dedicated Data Analytics Tools
The programming languages and environments R2, SciPy3,

theano4 and MATLAB5 are known by many data scientists
and are readily available. For these reasons, they are heavily
used for data analytics, and implementations of new algo-
rithms are often integrated. In addition, these languages and
environments provide data visualizations and are well-suited
for exploration and interactive analytics. However, their
algorithm implementations often are only single-threaded,
which is a major drawback concerning currently used multi-
core systems and data volumes.

The next group of existing data analytics tools are data
analytics frameworks. Most representatives of this category
are targeted at teaching and research and do not focus on
performance for large datasets. Their architecture makes it
easy to implement new algorithms and to compare differ-
ent variants of algorithms regarding quality of results. No-
table examples of data analytics frameworks include ELKI 6,
which supports diverse index structures to speed up analyt-
ics, RapidMiner7, used in industry as well as research and
teaching, and KNIME8, which allows users to define data
flows and reports via a GUI.

Recently, Crotty et al. presented Tupleware, a high-per-
formance analytical framework. Tupleware is meant for pure-
ly analytical tasks and the system does not take into ac-
count transactions.The authors endorse interactive data ex-
ploration by not relying on extensive data preparation [12]
and by providing a data exploration GUI. Tupleware re-
quires users to annotate their queries with as much seman-
tics as possible: Queries may solely consist of simple building
blocks, e.g., loop or filter, augmented with user-defined
code snippets such as comparison functions. Relational op-
erators—the building blocks of SQL queries—are fairly sim-
ilar to Tupleware’s building blocks but are more coarse-
grained, more robust against faulty or malicious user input,
and can be used in a more general fashion. They therefore do
not guarantee as many invariants. SQL implementations of
algorithms could be optimized in a similar fashion, although
this requires major changes to relational query optimizers.

The cluster computing framework Apache Spark [31] sup-
ports a variety of data analytics algorithms. Analytical algo-
rithms, contained in the Machine Learning Library (MLlib),
benefit from Spark’s scale-up and scale-out capabilities. Or-
acle PGX 9 is a graph analytics framework. It can run pre-
defined as well as custom algorithms written in the Green-
Marl DSL and is focused on a fast, parallel, and in-memory
execution. GraphLab [22] is a machine learning framework
that provides many machine learning building blocks such

2http://www.r-project.org/
3http://www.scipy.org/
4http://deeplearning.net/software/theano/
5http://www.mathworks.com/products/matlab/
6http://elki.dbs.ifi.lmu.de/
7http://rapidminer.com/
8http://www.knime.org/
9http://www.oracle.com/technetwork/oracle-labs/
parallel-graph-analytics/

as regression or clustering, which facilitate building com-
plex applications on top of them. All of these frameworks
use dedicated internal data formats making it necessary to
use time-consuming data loading steps. Furthermore, the
synchronization of results back to the RDBMS is a complex
job that often must be implemented explicitly by the user.

2.2 Data Analytics in Databases
In addition to standalone systems there are database sys-

tems which contain data analytics extensions. Being faced
with the issue of integrating data analytics and relational
concepts, the systems mentioned below come up with differ-
ent solutions: Either analytical algorithms are executed via
calls to library functions, or the SQL language is extended
with data analytics functions.

MADlib [17] is an example for the second level of our clas-
sification, user-defined functions. This library works on top
of selected databases and heavily uses data parallel query
execution if provided by the underlying database system.
MADlib provides analytical algorithms as user-defined func-
tions written in C++ and Python that are called from SQL
queries. The underlying database executes those functions
but cannot inspect or optimize them. While the output pro-
duced by the functions can directly be post-processed using
SQL, only base relations are allowed as input to data ana-
lytics algorithms. Thus, full integration of the user-defined
functions and SQL queries is neither achieved on a query
optimization and execution level nor in the language and
query layer.

Another example for the UDF category is the SAP HANA
Predictive Analytics Library (PAL) [25, 15]. This library of-
fers multi-threaded C++ implementations of analytical al-
gorithms to run within the main-memory database system
SAP HANA. It is integrated with the relational model in a
sense that input parameters, input data, as well as interme-
diate results and the output are relational tables. The algo-
rithms, so-called application functions, are called from SQL
code. They are compiled into query plans and executed in-
dividually. In contrast to the afore-mentioned MADlib, PAL
integrates in one ecosystem only and is therefore capable of
connecting to SAP HANA’s user and rights management.

Oracle Data Miner [27] is focused on supervised machine
learning algorithms. Hence, training data is used to create a
model that is then applied to test data using SQL functions.
Both steps are run multi-threaded to make use of modern
multi-core systems. Results of the algorithms are stored in
relational tables. Interactive re-using and further processing
of results within the same SQL query is not possible, but can
be applied in precedent and subsequent queries.

EmptyHeaded [1] uses a datalog-like query language for
graph processing. This system follows the “one-solution-fits-
all” approach: Graph data is processed in a relational engine
using multiway join algorithms that are more suitable for
graph patterns than classical pairwise join algorithms.

LogicBlox [6] is also a relational engine that does not use
SQL for queries. It relies on functional programming, as
does Tupleware, but is a full relational DBMS. The func-
tional programming language of LogicBlox, LogiQL, can be
combined with declarative programming and features a rela-
tional query optimizer. LogicBlox exploits constraint solving
to optimize the functional code.

SimSQL [11] is another recent relational database with
analytical features. Users write algorithms from scratch



which are then translated into SQL. Several SQL extensions,
such as for-each style loops over relations as well as vector
and matrix data types, facilitate analytics in the database.
While recognizing that its tuple-oriented approach to matrix-
based problems results in low performance [10], SimSQL em-
phasizes its general-purpose approach. As a result of those
design decisions, SimSQL is able to execute complex ma-
chine learning algorithms which many other computation
platforms are not able to do [10], but lacks optimizations for
standard analytical algorithms.

To conclude, while all presented database systems strive
for integration of analytical and relational queries, the achieved
level of integration vastly differs between systems. Most pre-
sented systems rely on black box execution of user-defined
functions by the database while others transform analytical
queries into relational queries to allow for query inspection
and optimization by the database.

3. HYPER FOR DATA ANALYTICS
HyPer [20] is a hybrid main-memory RDBMS that is op-

timized for both transactional and analytical workloads. It
offers best-in-class performance for both, even when operat-
ing simultaneously on the same data. Adding capabilities to
execute data analysis algorithms is the next step towards a
unified data management platform without stale data.

Several features of HyPer contribute to its suitability for
data analytics. First, HyPer generates efficient data-centric
code from user queries thus reducing the user’s responsi-
bility to write algorithms in an efficient way [24]. After
transforming the query into an abstract syntax tree (AST),
multiple optimization steps, and the final translation into
a tree of physical operators, HyPer generates code using
the LLVM compiler framework. Computation-intensive al-
gorithms benefit from this design because function calls are
omitted. As a result, users without knowledge in efficient
algorithms can write fast analytical queries.

Second, data locality further improves performance. Data-
centric execution attempts keeping data tuples in CPU reg-
isters as long as possible to avoid copying of data. If possi-
ble, a tuple is kept in registers while multiple operators are
executed on it. This so-called pipelining is important for
queries that touch tuples multiple times. For ad-hoc analyt-
ical queries pre- and post-processing steps can be combined
with the data processing to generate highly efficient machine
code. As many analytical algorithms are pipeline breakers,
in practice we pipeline pre-processing and data materializa-
tion as well as result generation and post-processing.

Third, HyPer focuses on scale-up on multi-core systems
rather than on scale-out on clusters; hence, parallelization
of the operators and the generated code is a performance-
critical aspect. Characteristics of modern hardware, such
as non-uniform memory access (NUMA), cache hierarchies,
and vector processing must be taken into account when new
features are integrated into the DBMS. Avoiding data distri-
bution onto multiple nodes is especially important when the
input data cannot be chunked easily, e.g., when processing
graph-structured data.

In addition to efficient integration of algorithms, other
characteristics further encourage the use of HyPer for data
analysis use-cases such as: the system provides a PostgreSQL-
compatible SQL interface, is fully ACID-compliant and of-
fers fast data loading [23], which is especially important for
data scientists.

4. IN-DATABASE PROCESSING
Existing systems for data analysis often use their own pro-

prietary query languages and APIs to specify algorithms
(e.g., Apache Spark [31] and Apache Flink [5]). This ap-
proach has several drawbacks. For example, unusual query
languages make it necessary to extensively train the domain
experts that write queries. If common high-level program-
ming languages like Java are used, many programmers are
available, but they usually lack domain knowledge. Addi-
tionally, optimizing high-level code is a hard problem that
compiler designers have been working on for decades, espe-
cially in combination with additional query execution logic.

Our goal is to enable data scientists to create and execute
queries in a straightforward way, while keeping all flexibility
for expert users. In this chapter, we assess multiple ap-
proaches to integrate data analytics into HyPer. The first
layer shown in Figure 1 using the database system solely as
data storage is omitted here as it does not belong to the in-
database processing category. Layers two and three, UDFs
and SQL queries, respectively, are already implemented in
various database systems. Layer four describes our novel
approach of deeply integrating complex algorithms into the
database core to maximize query performance while retain-
ing flexibility for the user.

4.1 Program Execution within the Database
Many RDBMS allow user-defined functions (UDFs) in

which database users can add arbitrary functionality to the
database. This eliminates the need to copy data to external
systems. The code snippets are registered with the database
system and are usually run by the database system as a black
box, although first attempts to “open the black box” have
been made [18]. If UDF code contains SQL queries, execut-
ing these queries potentially requires costly communication
with the database. This is because for most UDF languages
it is not possible to bind together the black box code and the
code that executes the embedded SQL query thus foregoing
massive optimization potential. Because of the dangers to
stability and security that go along with executing foreign
code in the database core, a sandbox is required to separate
database code and user code.

4.2 Extensions to SQL
There is general consensus that relational data should be

queried using SQL. By extending SQL to integrate new algo-
rithms, the vast amount of SQL infrastructure (JDBC con-
nectors and SQL editors) can be reused to work with ana-
lytical queries. Furthermore, the declarative nature of SQL
makes it easy to continuously introduce new optimizations.
By using this common language, one avoids the high effort
of creating a new language and of teaching it to users.

Some algorithms, such as the a-priori algorithm [8] for fre-
quent itemset mining, work well in SQL but others are dif-
ficult to express in SQL and even harder to optimize. One
common difficulty is the iterative nature of many analytical
algorithms. To express iterations in SQL, recursive com-
mon table expressions (CTE) can be used. CTEs compute
a monotonically growing relation, i.e., tuples of all previous
iterations are kept. As many iterative algorithms need to ac-
cess one previous iteration only, memory is wasted if the op-
timizer does not optimize this hard-to-detect situation. This
is a problem especially for main-memory databases where
memory is a scarce resource.



To solve this issue, we suggest an iteration concept for
SQL that does not append to the prior iteration but in-
stead replaces it and therefore drastically reduces the mem-
ory footprint of iterative computations. As the intermedi-
ate results become smaller, less data has to be read and
processed, thus, non-appending iterations also improve an-
alytics performance. We explain the details of our iteration
concept in Section 5.

4.3 Data Analytics in the Database Core
In contrast to other database systems, HyPer integrates

important data analytics functionality directly into the core
of the database system by implementing special highly-tuned
operators for analytical algorithms. Because the internal
structures of database systems are fairly different, such op-
erators have to be specifically designed and implemented for
each system. Differentiating factors between systems are,
among others, the execution model (tuple-at-a-time vs. vec-
torized execution) as well as the storage model (row store
vs. column store). For example, an operator in the ana-
lytical engine Tupleware, which does not support updating
datasets, would look significantly different from an operator
in the full-fledged database system HyPer, which needs to
take care of updates and query isolation.

HyPer can arbitrarily mix relational and analytical op-
erators leading to a seamless integration between analyt-
ics with other SQL statements into one query plan. This
is especially useful because the functionality of existing re-
lational operators can be reused for common subtasks in
analytical algorithms, such as grouping or sorting. Analyt-
ical operators can focus on optimizing the algorithm’s core
logic such as providing efficient internal data representa-
tions, performing algorithm-dependent pre-processing steps,
and speeding up computation-intensive loops. A further
advantage of custom-built analytical operators is that the
query optimizer knows their exact properties and can choose
an optimal query plan based on this information. Having
all pre- and post-processing steps in one language—and one
query—greatly simplifies data analytics and allows efficient
ad-hoc queries. In Section 6 we elaborate on our implemen-
tation of (physical) operators.

Of the integration layers presented in this section, special
operators are integrated most deeply into the database. As
a result, they provide unrivaled performance but reduce the
user’s flexibility. To regain flexibility, we propose lambda
expressions as a way of injecting user-defined code into op-
erators. Lambdas can, for example, be used to specify dis-
tance metrics in the k-Means algorithm or to define edge
weights in PageRank.

By implementing multiple layers, we can offer data an-
alytics functionality to diverse user groups. User-defined
algorithms are attractive for data scientists wanting to im-
plement specific algorithms in their favorite programming
language without having to copy the data to another sys-
tem. Persons knowledgeable in analytical algorithms and
SQL might prefer to stick to their standard data querying
language making extensions to SQL their best choice. Al-
gorithm operators implemented by the database developers
are targeted towards users that are familiar with the data
domain but not with data analytics algorithm design.

Syntactically, UDFs, stored SQL queries and special op-
erators cannot and should not be distinguished by the user.

In this way, DBMS architects can decide on an algorithm’s
level of integration, which is transparent to the user.

In the following sections, we delve into the details of data
analytics using SQL and using specialized analytical oper-
ators with λ-expressions. We omit the details on the first
two layers—using the database solely as data storage, and
running UDFs in a black box within the database—because
the first layer does not incorporate any analytical algorithms
on the database system side and the second layer uses the
database system as a runtime environment for user-defined
code. When the database is only used to provide the data,
the performance is bound by data transfer performance and
the data analytics software used to run the algorithms. In
case the database is used to execute code in a black box,
again, the runtime depends on the programming language
and implementation used in these UDFs.

5. DATA ANALYTICS USING SQL
Our overall goal is to seamlessly integrate analytical al-

gorithms and SQL queries. In the third layer, which is de-
scribed in this section, SQL is used and extended to achieve
this goal. Standard SQL provides most functionality nec-
essary for implementing analytical algorithms, such as fix
point recursion, aggregation, sorting, or distinction of cases.
However, one vital construct is missing: a more general con-
cept of iteration has to be added to the language. Section 5.1
introduces this general-purpose iteration construct, called it-
erate operator. Query optimization for analytical queries is
discussed in Section 5.2.

Our running example is the three algorithms k-Means,
Naive Bayes, and PageRank which are well-known [30, 3]
examples from vector and graph analytics and used as ex-
ample building blocks in other state-of-the-art analytics sys-
tems [12]. Their properties are shared by many other data
mining and graph analytics algorithms. Furthermore, they
represent the areas of data mining, machine learning, and
graph analytics. Thus, these three algorithms are appropri-
ate examples for this paper.

5.1 The Iterate Operator
The SQL:1999 standard contains recursive common table

expressions (CTE) that are constructed using the with re-

cursive. Recursive CTEs allow for computation of growing
relations, e.g., transitive closures. In these queries, the CTE
can be accessed from within its definition and is iteratively
computed until no new tuples are created in an iteration. In
other words, until a fixpoint is reached. Although it is possi-
ble to use this fixpoint recursion concept for general-purpose
iterations, this is clearly a diversion from its intended use
case, and can thus result in incorrect optimizer decisions.

Our iterate operator has similar capabilities as recursive
CTEs: it can reference a relation within its definition al-
lowing for iterative computations. In contrast to recursive
CTEs, the iterate operator replaces the old intermediate re-
lation rather than appending new tuples. Its final result is
a table with the tuples that were computed in the last it-
eration only. This pattern is often used in data and graph
mining algorithms, especially when some kind of metric or
quality of data tuples is computed. In PageRank, for exam-
ple, the initial ranks are updated in each iteration. In clus-
tering algorithms, the assignment of data tuples to clusters
has to be updated in every iteration. These algorithms have
in common that they operate on fixed-size datasets, where



SELECT * FROM ITERATE ([ initialization], [step], [stop
condition ]);

-- find smallest three-digit multiple of seven
SELECT * FROM ITERATE (( SELECT 7 "x"),

(SELECT x+7 FROM iterate),
(SELECT x FROM iterate WHERE x >=100));

Listing 1: Syntax of the ITERATE SQL language
extension. A temporary table iterate is created,
that in the beginning contains the result of the
initialization subquery. Iteratively, the subquery
step is applied to the result of the last iteration, until
the boolean condition stop condition is fulfilled.

only certain values (ranks, assigned clusters, et cetera) are
updated. This means the stop criterion has to be changed;
rather than stopping when no new tuples are generated, our
iterate operator stops when a user-defined predicate evalu-
ates to true. We show the syntax of the iteration construct in
Listing 1. By providing a non-appending iteration concept
with a while-loop-style stop criterion, we are adding more
semantics to the implementation, which has been shown to
massively speed up query execution due to better optimizer
decisions [12].

Although it is possible to implement the afore-mentioned
algorithms using recursive CTEs, the iterate operator has
two major advantages:

• Lower memory consumption: Given a dataset with n
tuples, and i iterations. With recursive CTEs, the
table is growing to n ∗ i tuples. Using our operator,
the size of the relation remains n. For comparisons of
the current and the last iteration, we need to store 2∗n
tuples and discard all prior iterations early. The iterate
construct saves vast amounts of memory in comparison
to recursive CTEs. Furthermore, if the stop criterion
is the number of executed iterations, recursive CTEs
have to carry along an iteration counter, which is a
huge memory overhead because it has to be stored in
every tuple.

• Lower query response times: Because of the smaller
relation size, our algorithm is faster in scanning and
processing the whole relation, which is necessary to
re-compute the ranks, clusters, et cetera.

Lower memory requirements are particularly important in
main-memory databases like HyPer, where memory is a scarce
resource. This is especially true when whole algorithms are
integrated into the database because they often need addi-
tional temporary data structures. Our evaluation, Section 8,
shows how algorithm performance can be improved by us-
ing our iterate operator instead of recursive CTEs, while
keeping the flexibility of with recursive statements. Both
approaches share one drawback, they can both produce infi-
nite loops. Those situations need to be detected and aborted
by the database system, e.g., via counting recursion depth
or iterations, respectively.

A conceptually similar idea that also features appending
and non-appending iterations can be found in the work of
Binnig et al. [7]. Being a language proposal for a functional
extension to SQL, their paper neither discusses where which

type of iteration is appropriate, nor does it list advantages
and drawbacks regarding performance or memory consump-
tion. Ewen et al. [14] also argue that many algorithms only
need small parts of the data to compute the next iteration
(so-called incremental iterations). Their work focuses on
parallelizing those iterations as they are only sparsely de-
pendent on each other. The SciDB engine features sup-
port for iteration processing on arrays where “update op-
erations typically operate on neighborhoods of cells” [26].
Soroush et al.’s work enables efficient processing of this type
of array iterations as well as incremental iterations.

5.2 Query Optimization and Seamless Integra-
tion with the Surrounding SQL Query

Keeping intermediate results small by performing selec-
tions as early as possible is a basic principle of query op-
timization. This technique, called pushing selections, is in
general not possible when analytical algorithms are affected.
This is because the result of an analytical algorithm is not
determined by single tuples (as it is for example for joins),
but potentially influenced by the whole input dataset. A
similar behavior can be found in the group-by operator,
where the aggregated results also depend on all input tu-
ples. This naturally narrows the search space of the query
optimizer and reduces optimization potentials.

One major influencing factor for query optimization is the
cardinality of intermediate results. For instance, precise car-
dinality estimations are necessary for choosing the best join
ordering in a query. It is, however, hard to estimate the
output cardinality of the generic iterate operator because
it can contain diverse algorithms. Some algorithms, e.g.,
k-Means, iterate over a given dataset and the number of tu-
ples stays the same before and after the iterate operator.
Other algorithms, e.g., reachability computations, increase
the dataset with each iteration, which makes the final cardi-
nality difficult to estimate. Cardinality estimation on recur-
sive CTEs faces the same difficulty so that similar estimation
techniques can be applied.

To conclude, the diverse nature of analytical algorithms
does not offer many generic optimization opportunities. In-
stead, relational query optimization has to be performed
almost independently on the subqueries below and above
the analytical algorithm while the analytical algorithm itself
might benefit from different optimization techniques, e.g.,
borrowed from general compiler design or constrained solv-
ing as suggested by [6]. Because of the lacking potential for
standard query optimization, low-level optimizations such as
vectorization and data locality, as introduced in Section 3,
become more important.

6. OPERATORS
The most in-depth integration of analytical algorithms

into a DBMS is by providing implementations in the form
of physical operators. Physical operators like hash join or
merge sort are highly optimized code fragments that are
plugged together to compute the result of a query. All
physical operators, including the analytical ones introduced
in this paper, use tables as input and output. They can
be freely combined ensuring maximal efficiency. Figure 3
shows how physical analytics operators are integrated into
query translation and execution. Physical operators are
performance-wise superior to the general iteration construct,
introduced in Section 5.1, as these specialized operators know
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Figure 3: Query translation and execution with re-
lational and analytical operators. A SQL query is
translated to an abstract syntax tree (AST) consist-
ing of both relational and analytical operators. The
optimizer can inspect both types of operators. This
approach provides highest integration and perfor-
mance.

SELECT * FROM PAGE RANK(( SELECT src , dest FROM edges),
0.85, 0.0001);

Listing 2: Operator integration in SQL. Arbitrary
preprocessing of input data and arbitrary post-
processing of the results is possible. Additional
parameters define the algorithm’s behavior.

invariants of their algorithms such as the estimated output
cardinality or data dependencies in complex computations.
These specialized operators know best how to distribute
work among threads or how to optimize the memory lay-
out of internal data structures.

For example, the query shown in Listing 2 computes the
PageRank value for every vertex of the graph induced by
the edges relation10. The query is processed by a table scan
operator followed by our specialized physical PageRank op-
erator. The PageRank operator implementation defines, for
example, whether parallel input (from the table scan op-
erator) can be processed, information that is used by the
optimizer to create the best plan for the given query.

In the next sections, we describe the chosen algorithms,
k-Means, Naive Bayes, and PageRank, and how we imple-
mented them in HyPer. Furthermore, we describe necessary
changes to the optimizer.

6.1 The Physical k-Means Operator
k-Means is a fast, model-based iterative clustering algo-

rithm, i.e., it divides a set of tuples into k spherical groups
such that the sum of distances is minimized. It can be uti-

10Parentheses around the subquery are necessary because ar-
bitrary queries are allowed there. The sole use of commas
would have lead to an ambiguous grammar.

lized as a building block for advanced clustering techniques.
The classical k-Means algorithm by Lloyd [21] splits each
iteration into two steps: assignment and update. In the as-
signment step, each tuple is assigned to the nearest cluster
center. In the update step, the cluster centers are set to be
the arithmetic mean of all tuples assigned to the cluster. The
algorithm converges when no tuple changes its assigned clus-
ter during an iteration. For practical use, the convergence
criterion is often softened: Either, a maximum number of
iterations is given, or the algorithm is interrupted if only a
small fraction of tuples changed its assigned cluster in an
iteration.

In our implementation, the k-Means operator requires two
input relations, data and initial centers, that are passed via
subqueries. An additional parameter defines the maximum
number of iterations. Using parallelism, our implementa-
tion benefits from modern multi-core systems. Each thread
locally assigns data tuples to their nearest center and to pre-
pare the re-computation of cluster centers, each thread sums
up the tuples values. The data tuples themselves are con-
sumed and directly thrown away after processing. For the
next iteration, tuples are requested again from the underly-
ing subquery. As a result, the query optimizer can decide
to compute the data relation each time, or use materialized
intermediate results, whatever is faster in the given query.
Data locality is ensured because all centers and interme-
diate data structures are copied for each thread. Thread
synchronization is only needed for the very last steps, global
aggregation of the local intermediate results and the final
update of the cluster centers. This procedure is repeated
until the solution remains stable (i.e., no tuple changed its
assignment during an iteration), or until the maximum num-
ber of iterations is reached. The operator then outputs the
cluster centers.

6.2 The Physical Naive Bayes Operator
Naive Bayes classification aims at classifying entities, i.e.,

assigning categorical labels to them. Other than k-Means or
PageRank, it is a supervised algorithm and consists of two
steps performed on two different datasets: First, a dataset
A with known labels is used to build a model based on the
Bayesian probability density function. Second, the model is
applied to a related but un-labeled (thus unknown) dataset
B to predict its labels. When implemented in a relational
database, one challenge is storing the model as it does not
match any of the relational entities, relation or index, com-
pletely.

We implemented model creation and application as two
separate operators, Naive Bayes training and Naive Bayes
testing, respectively. The generation of additional statistical
measures is handled by two additional operators that are not
limited to Naive Bayes but can be used as a building block
for multiple algorithms, for example k-Means.

Similar to k-Means, the Naive Bayes training operator is a
pipeline breaker. Each thread holds a hash table to manage
its input data with the class as key while not storing the
tuples itself. In addition, the number of tuples N is stored
for each class, as well as the sum of the attribute values∑

n∈N n.a and the sum of the square of each attribute value∑
n∈N n.a2 for each class and attribute. After the whole

input is consumed, the training operator computes the a-
priori probability for each class as well as the mean and
standard deviation for each class and attribute:



Let a given training set D with |D| instances d ∈ D con-
tain a set of classes C with |C| instances c ∈ C. Let |c|
denote the number of instances of this class c in D. Then,
the a-priori probability of class c is given by:

PR(c) =
|c|+ 1

|D|+ |C|

Afterwards, the results and the class labels are fed into the
next operator: the testing operator.

6.3 The Physical PageRank Operator
PageRank [9] is a well-known iterative ranking algorithm

for graph-structured data. Each vertex v in the graph (e.g.,
a website or a person), is assigned a ranking value that can
be interpreted as its importance. The rank of v depends on
the number and rank of incoming edges, i.e., v is important
if many important vertices have edges to it. A PageRank
iteration is a sparse matrix-vector multiplication. In each
iteration, part of each vertex’s importance flows off to the
vertices it is adjacent to, and in turn each vertex receives im-
portance from its neighbors. Similar to k-Means, PageRank
converges towards a fixpoint, i.e., the vertex ranks change
less than a user-defined epsilon. It is common to specify a
maximum number of iterations.

The sparse matrix-vector multiplication performed in the
PageRank iterations is similar to many graph algorithms in
that its performance greatly benefits from efficient neighbor
traversals. This means for a given vertex v it has to be
efficiently possible to enumerate all of its neighbors. Our
PageRank implementation ensures this by efficiently creat-
ing a temporary compressed sparse row (CSR) representa-
tion [28] that is optimized for the query at hand. We avoid
storage overhead and an access indirection in this mapping
by re-labeling all vertices and doing a direct mapping. Af-
ter the PageRank computation we use a reverse mapping
operator that translates our internal vertex ids back to the
original ids.

The PageRank operator uses only the CSR graph index
and no longer needs to access the base data. In each itera-
tion we compute the vertices’ new PageRank values in par-
allel without any synchronization. Because we have dense
internal vertex ids we are able to store the current and last
iteration’s rank in arrays that can be directly indexed. Thus,
every neighbor rank access only involves a single read. At
the end of each iteration we aggregate each worker’s data
to determine how much the new ranks differ from the previ-
ous iterations. If the difference is less or equal to the user-
defined epsilon or if the maximum iteration count is reached,
the PageRank computation finishes.

7. LAMBDA EXPRESSIONS
In Section 4.3 we described the integration of specialized

data analytics operators into the database core. These oper-
ators provide unrivaled performance in executing the algo-
rithms they were designed for. However, without modifica-
tion they are not flexible, i.e., they are not even applicable in
the context of similar but slightly different algorithms. Con-
sider the k-Medians algorithm. It is a variant of k-Means
that uses the L1-norm (Manhattan distance) rather than
the L2-norm (Euclidean distance) as distance metric. While
this distance metric differs between the variants, their im-
plementations have in common predominant parts of their
code. Even though this common code could be shared, dif-

CREATE TABLE data (x FLOAT , y INTEGER , z FLOAT ,
desc VARCHAR (500));

CREATE TABLE center (x FLOAT , y INTEGER , z FLOAT);
INSERT INTO data ...
INSERT INTO center ...

SELECT * FROM KMEANS(
-- sub-queries project the attributes of interest
(SELECT x,y FROM data),
(SELECT x,y FROM center),
-- the distance function is specified as λ-expression
λ(a, b) (a.x-b.x)^2+(a.y-b.y)^2,
-- termination criterion: max. number of iterations
3

);

Listing 3: Customization of the k-Means operator
using a lambda expression for the distance function.

ferent metrics would make necessary different variants of our
algorithm operators.

Instead, when designing data analytics operators, we iden-
tify and aim to exploit such similarities. Our goal is to have
one operator for a whole class of algorithms with variation
points that can be specified by the user. To inject user-
defined code into variation points of analytics operators we
propose using lambda expressions in SQL queries.

Lambda expressions are anonymous SQL functions that
can be specified inside the query. For syntactic convenience,
the lambda expressions’ input and output data types are
automatically inferred by the database system. Also, for all
variation points we provide default lambdas that are used
should none be specified. Thus, non-expert users can easily
fall back to basic algorithms. With lambda-enabled opera-
tors we strive not only to keep implementation and main-
tenance costs low, but especially to offer a wide variety of
algorithm variants required by data scientists. Also, because
lambda functions are specified in SQL, they benefit from ex-
isting relational optimizations.

Listing 3 shows how our k-Means operator benefits from
lambdas. In the kmeans function call’s third argument, a
lambda expression is used to specify an arbitrary distance
metric. The operator expects a lambda function that takes
two tuple variables as input arguments and returns a (scalar)
float value. At runtime, these variables are bound with the
corresponding input tuples to compute the distance. Thus,
by providing a k-Means operator that accepts lambda ex-
pressions we do not only cover the common k-Means and k-
Medians algorithms but also allow users to design algorithms
that are specific to their task and data at hand. These cus-
tom algorithms are still executed by our highly-tuned in-
database operator implementation and because all code is
compiled together, no virtual function calls are involved.

8. EXPERIMENTAL EVALUATION
In this section, we evaluate our implementations of k-

Means, PageRank, and Naive Bayes. As introduced in Sec-
tion 4, we implemented multiple versions of the algorithms,
that reflect different depths of integration. We compare our
solutions to other systems commonly used by data scien-
tists. This includes middle-ware tools based on RDBMS,
analytics software for distributed systems, and standalone
data analysis tools.



#tuples n #dimensions d k

Varying 160 000 10 5
number of 800 000 10 5
tuples 4 000 000 10 5?

20 000 000 10 5
100 000 000 10 5
500 000 000 10 5

Varying 4 000 000 3 5
number of 4 000 000 5 5
dimensions 4 000 000 10 5?

4 000 000 25 5
4 000 000 50 5

Varying 4 000 000 10 3
number of 4 000 000 10 5?

clusters 4 000 000 10 10
4 000 000 10 25
4 000 000 10 50

? same experiments, for connecting the three lines
of experiments

Table 1: Datasets for k-Means experiments.

8.1 Datasets and Parameters
We use a variety of datasets to evaluate the influence of

certain characteristics of the datasets and workload to the
resulting performance.

8.1.1 k-Means Datasets and Parameters
k-Means is an algorithm targeted at vector data, i.e., tu-

ples with a number of dimensions. This data model fits
perfectly into relations. The data is characterized by the
number of tuples n, the number of dimensions d used for
clustering, and the data types of the dimensions. We chose
to perform experiments for varied n and d while keeping the
data types constant. In addition to the dataset, the algo-
rithm itself has multiple parameters: the number of clusters
k, the cluster initialization strategy, and the number of it-
erations i that are computed. The number of clusters k
drastically influences the query performance because it de-
fines the number of distances to be computed and compared,
and is an important parameter in our evaluation. To pro-
duce comparable results with a wide range of systems, our
experiments use the simplest cluster initialization strategy:
random selection of k initial cluster centers. We chose to
perform three iterations i, which keeps the experiment du-
ration short while leveling out a possible overhead in the
first iteration.

While modifying one parameter, we keep the other two
fixed to focus on the effect on that parameter only. The re-
sulting list of experiments is shown in Table 1. We conduct
five to six experiments per parameters, which allows us to
assess not only the performance but also the scaling behavior
of the different systems. The dataset sizes, determined by n
and d, were chosen to be processable by all evaluated systems
within main memory and within a reasonable time given the
vast performance differences between the systems. We cre-
ate artificial, uniformly distributed, datasets because they
provide an important advantage over real-world datasets in
our use case. As the performance of plain k-Means with a
fixed number of iterations is irrespective of data skew, our

decision to use synthetic datasets does not introduce any
drawbacks.

8.1.2 Naive Bayes Datasets and Parameters
The Naive Bayes experiments are conducted using the

same synthetic datasets as k-Means. We vary the number of
tuples N and the number of dimensions d. For the labels we
chose a uniform probability density function of two labels
0 and 1. Our experiments cover the training phase of the
algorithm only as it has a much higher complexity and thus
runtime than the testing step.

8.1.3 PageRank Datasets and Parameters
PageRank is an algorithm targeted at graph data, i.e., ver-

tices and edges with optional properties. The algorithm is
parameterized with the damping factor d modeling the prob-
ability that an edge is traversed, e, the maximum change be-
tween two iterations for which the computation continues,
and the maximum number of iterations i. For the damp-
ing factor d we chose the reasonable value 0.85 [9], i.e., the
modeled random surfer continues browsing with a probabil-
ity of 85%. To better compare different systems, we set e
to 0 and run a fixed number of 45 iterations in all systems.
As datasets we use the artificial LDBC graph designed to
follow the properties of real-world social networks. We gen-
erated multiple LDBC graphs in different sizes up to 500,000
vertices and 46 million edges, using the SNB data genera-
tor [13], and used the resulting undirected person-knows-
person graph.

8.2 Evaluated Systems
We evaluate our physical operators, denoted as HyPer Op-

erator, SQL queries with our iterate operator, denoted as
HyPer Iterate, and a pure SQL implementation using re-
cursive CTEs, denoted as HyPer SQL, against diverse data
analysis systems introduced in Section 2. We chose MAT-
LAB R2015 as a representative of the “programming lan-
guages” group. The next category is “big data analytics”
platforms, in which we evaluate Apache Spark 1.5.0 with
MLlib. As contender in the “database extensions” cate-
gory, we chose MADlib 1.8 on top of the Pivotal Greenplum
Database 4.3.7.1.

To ensure a fair comparison, all systems have to imple-
ment the same variant of k-Means: Lloyd’s algorithm. Note
that we therefore disabled the following optimizations im-
plemented in Apache Spark MLlib. First, the MLlib imple-
mentation computes lower bounds for distances using norms
reducing the number of distance computations. Second, dis-
tance computation uses previously computed norms instead
of computing the Euclidean distance (if the error introduced
by this method is not too big). litekmeans11, a fast k-Means
implementation for MATLAB, uses the same optimizations.
We therefore use MATLAB’s built-in k-Means implementa-
tion in our experiments.

8.3 Evaluation Machine
All experiments are carried out on a 4-socket Intel Xeon

E7-4870 v2 (15×2.3 GHz per socket) server with 1 TB main
memory, running Ubuntu Linux 15.10 using kernel version
4.2. Greenplum, the database used for MADlib, is only avail-
able for Red Hat-based operating systems. We therefore set

11http://www.cad.zju.edu.cn/home/dengcai/Data/
Clustering.html
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Figure 4: k-Means experiments. From left to right: varying the number of tuples N , dimensions d, and
clusters k. Default parameters: 4,000,000 tuples, 10 dimensions, 5 clusters, 3 iterations.
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Figure 5: PageRank and Naive Bayes experiments. From left to right: PageRank using the LDBC SNB
dataset, damping factor 0.85, and 45 iterations. Naive Bayes experiment varying the number of tuples N .
Naive Bayes experiment varying the number of dimensions d.

up a Docker container running CentOS 7. The potential in-
troduced overhead is considered in our discussion. As men-
tioned, we chose the datasets to fit into main memory, even
when considering additional data structures. MATLAB does
not contain parallel versions of the chosen algorithms, as
mentioned in Section 2. This issue is also considered in the
discussion of our results.

8.4 Results and Discussion
Figures 4 and 5 display the total measured runtimes. In

general, the results match our claims regarding the four lay-
ers of integration as shown in Figure 1: Systems using UDFs
(layer 2), in our experiments represented by MADlib, are
slower than HyPer Iterate and HyPer SQL using SQL (layer
3). The fastest implementation, HyPer Operator, uses ana-
lytical operators (layer 4). Runtime of dedicated analytical
systems, such as MATLAB and Apache Spark, heavily de-
pends on the individual system.

8.4.1 Recursive CTEs and HyPer Iterate
As claimed in Section 5, using the iteration concept im-

proves runtimes over plain SQL. While the pure SQL imple-
mentation, using recursive CTEs, has to store and process
intermediate results that grow with each iteration, the iter-
ation operator’s intermediate results have constant size. In
our implementations this means additional selection predi-
cates for the pure SQL variant and more expensive aggre-
gates due to the larger intermediate results. k-Means is more

affected by this difference because it operates on larger data
and is less computation-intensive than PageRank.

8.4.2 Hyper Operator and HyPer Iterate
The k-Means experiments show almost no difference be-

tween the HyPer Operator and the HyPer Iterate approach.
k-Means is a rather simple algorithm: there is no random
data access, only few branches, vectorization can be applied
easily, and the data structures are straightforward. Fur-
thermore, k-Means operates on vector data; both operator
and SQL implementations use similar internal data struc-
tures. This results in very similar code being generated by
the operator and the query optimizer resulting in the similar
runtimes.

For PageRank, the experiments reveal a different picture:
HyPer Operator runs significantly faster than HyPer Iterate
because of its optimized CSR graph data structure. In con-
trast, HyPer Iterate has to work on relational structures, an
edges table and a derived vertices table, and subsequently
needs to perform many (hash) joins. As a result, its runtime
is dominated by building and probing hash tables. This be-
havior is also found in [19] where a SQL implementation
of PageRank also showed performance only comparable to
stand-alone-systems. The following rule of thumb can be
applied: The more similar optimized SQL code and code
generated from the hand-written operator are, the smaller
the runtime difference between HyPer Iterate and HyPer
Operator approaches.



8.4.3 HyPer, MATLAB, MADlib, and Apache Spark
Among the contender systems, Apache Spark shows by

far the best runtimes, which was expected because Spark
was especially built for these kinds of algorithms. Still,
Apache Spark is multiple times slower than our HyPer Op-
erator approach for all three evaluated algorithms, as shown
in Figures 4 and 5. HyPer’s one-system-fits-all approach
comes with some overhead of database-specific features not
present in dedicated analytical systems like Apache Spark.
Therefore, it is important that these features do not cause
overhead when they are not used. For instance, isolation of
parallel transactions should not take a significant amount
of time when only one analytical query is running. Some
database-specific overhead, stemming for example from mem-
ory management and user rights management, cannot be
avoided. Nevertheless, HyPer shows far better runtimes
than dedicated systems, while also avoiding data copying
and stale data. MATLAB runs both algorithms single-threa-
ded and therefore cannot compete, but was included because
multiple heavily used data analytics tools do not support
parallelism. MADlib, even taking into account the runtime
impairment caused by the virtualization overhead, cannot
compete with solutions that integrate data analytics deeper
and produce better execution code.

Interestingly, Spark and MADlib almost seem not to be
affected by the number of dimensions or clusters in the ex-
periments. As algorithm-wise more complex computations
are necessary if either of the numbers increases, we suspect
those computations to be hidden behind multi-threading
overhead. For example, if each thread handles one clus-
ter, even the 50 clusters in the largest experiment still fit
into the 120 hyper-threads of the evaluation machine. But
k-Means with larger number of dimensions or clusters is not
common, because their results are impaired by the curse of
dimensionality or cannot be interpreted by humans. Re-
garding the scaling for larger datasets, log-scaled runtimes
fail to show runtime differences appropriately. Plots with
log-scaled runtimes counter-intuitively show converging lines
when in fact the runtime difference between two systems is
constant, which is the case for HyPer Operator/Iterate and
Apache Spark in the leftmost sub-figure of Figure 4.

The results presented above support our claim that a
multi-layer approach helps targeting diverse user groups.
DBMS manufacturers benefit from the identical interface
and syntax of UDFs, stored SQL queries, and hard-coded
operators. The decision as to in which layer an algorithm
should be implemented is solely affected by the implemen-
tation effort versus the gain in performance and flexibility.
Laypersons can use these manufacturer-provided algorithms
without having to care whether it is a UDF, an SQL query,
or a physical operator. Database users with expertise, op-
posed to laypersons wanting to implement their own ana-
lytical algorithms can choose to implement either UDFs or
SQL queries.

Briefly stated, the experiments match the expected order
of runtimes: the deeper the integration of data analytics,
the faster the system. Our results also support our idea of
one database system being sufficient for multiple workloads.
While this has been shown for combining OLTP and OLAP
workloads [15, 20], our contribution was to integrate one
more workload, data analytics, while keeping performance
and usability on a high level.

9. CONCLUSION
We described multiple approaches of integrating data an-

alytics into our main-memory RDBMS HyPer. Like most
database systems, HyPer can be used as a data store for
external tools. However, doing so exposes data transfer as
a bottleneck and prevents significant query optimizations.
Instead, we presented three layers of integrating data ana-
lytics directly into the database system: data analytics in
UDFs, data analytics in SQL, and analytical operators in
the database core. The layers’ depth of integration and their
analytics performance increases with each layer.

UDFs allow the user to implement arbitrary computations
directly in the database. However, because the database
runs UDFs as a black box, automated optimization poten-
tials are limited. To prevent this lack of optimization po-
tential, we proposed performing data analytics in SQL. As
iterations are hard to express in SQL and difficult to opti-
mize, we presented the iteration operator and a correspond-
ing language extension that serves as a building block for
arbitrary iterative algorithms directly in SQL. Compared to
recursive common table expressions, the iteration construct
significantly reduces runtime overhead, especially in terms
of memory consumption, as it only materializes the interme-
diate results of the previous iteration.

For major analytical algorithms that are used frequently
(e.g., k-Means, PageRank, and Naive Bayes), we proposed
an even deeper integration: integrating highly-tuned analyt-
ical operators into the database core. Using our novel SQL
lambda expressions, users can specialize analytical operators
directly within their SQL queries. This adds flexibility to
otherwise fixed operators and allows, for example, for ap-
plying arbitrary user-defined distance metrics in our tuned
k-Means operator. Just like the iterate operator and the an-
alytics operator, lambda expressions are part of the logical
query plan and are subject to query optimization and code
generation. Hence, they benefit from decades of research in
database systems.

Our presented approaches enable complete integration of
data analytics in SQL queries, ensuring both efficient query
plans and usability. In our experiments we saw that HyPer
data analytics on both graph and vector data is significantly
faster than in dedicated state-of-the-art data analytics sys-
tems: 92 times faster than Apache Spark for PageRank.
This is especially significant because as an ACID-compliant
database, HyPer must also be able to handle concurrent
transactional workloads. Thus, we showed that HyPer is
suitable for integrated data management and data analytics
on large data, with multiple interfaces targeted at different
user groups.
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