Computational Databases: Inspirations from Statistical Software

Linnea Passing, linnea.passing@tum.de
Technical University of Munich
Data Science Meets Databases

Data Cleansing
- Pipelines
- Fuzzy joins
- Data input errors
- e.g., Alteryx

Statistics
- Pre-tests
- Handling missing data
- e.g., SPSS, R

Big Data, BI
- OLAP cubes
- Joins and aggregation
- Roll-up and drill-down
- e.g., Spark, DBS

Data Mining
- Classification
- Clustering
- Forecasting
- Regression
- e.g., R, python

ML, AI
- Neural networks
- Linear algebra
- e.g., TensorFlow
Inspirations from Statistical Software

Similarities
• Connecting to flat files, RDBMS, Big Data environments
• Fixed-point numerics as main datatype
• Extensions for e.g. geospatial and streaming data

Differences
• New queries (e.g. statistical properties)
• Higher quality requirements (e.g. numerical stability)
• New workflows (e.g. metadata output)
• Richer semantics (e.g. handling missing values)
OPTIMIZING COMMON QUERIES
QUALITY IMPROVEMENTS
WORKFLOWS
SELF-CONTAINED DATABASE
Schema, Joins, Enums

Inspirations from statistical software
One big fact table, user-defined enum datatypes¹
Derived columns are added to the fact table

State-of-the-art in database systems
Normalized schema with fact and dimension tables (avoid anomalies, keep database small, …)
Derived columns can be added to (materialized) views (then joins are required to query all columns) or via

```
ALTER TABLE ADD COLUMN
```

Take-away
Column stores: light-weight `ALTER TABLE ADD COLUMN`, maybe even for non-materialized columns?

¹ e.g. education: {(0, none), (1, highschool diploma), (2, college degree), (3, PhD degree), …}
Cumulative and total values

Inspirations from statistical software
E.g. variance explained using 1, 2, 3, … factors
E.g. number of participants per age group and total

State-of-the-art in database systems
Running sums (cumulative values) supported via window functions
No native support for analyses on multiple levels in one query, one has to use multiple `GROUP BY` expressions and `UNION ALL` or non-standardized `ROLLUP/CUBE`

Take-away
Combination of rollup/cube (implemented as part of `GROUP BY`) and windows required
Common Statistical Properties/Pretests

Inspirations from statistical software
Often required for statistical methods
E.g. homoscedasticity¹ for Pearson correlation coefficient, normal distribution for T-test

State-of-the-art in database systems
Small materialized aggregates for common aggregates (SUM, MIN, ...)

Take-away
Small materialized aggregates for common statistical properties/pre-tests, also spanning multiple columns
e.g. standard deviation of column x; covariance of columns x,y

¹ variance around regression line is the same for all values, not given in e.g. weather forecast data
High-quality Sampling Techniques

Inspirations from statistical software
For running expensive statistical simulations on representative subsets
To adjust weights for underrepresented participant groups in a survey

State-of-the-art in database systems
Often only low-quality sampling using `LIMIT` or `WHERE (ROWID%X)=0` or expensive `ORDER BY RAND()` sampling is supported

Take-away
Providing high-quality sampling techniques that go with the query execution flow of databases
Numerical Stability

Inspirations from statistical software
Often deals with small (e.g. z-transformed) numbers
Stable two-pass implementation

State-of-the-art in database systems
AVG rewritten to SUM/COUNT
Naive one-pass implementation of covariance

Take-away
Stable implementations require re-streaming or materialization of input data which is expensive
OPTIMIZING COMMON QUERIES
QUALITY IMPROVEMENTS
WORKFLOWS
SELF-CONTAINED DATABASE
Data Provenance and Scripts

Inspirations from statistical software
A single GUI action often corresponds to multiple queries, e.g. adding statistical pre- and post-tests
Running algorithms often to overcome local minima
Interactive data preparation

State-of-the-art in database systems
Transactional guarantees allow executing pre-tests and actual actions on exactly the same data

Take-away
Capture and replay of queries
Provenance metadata attached to tables and views
Multiple Output Tables

Inspirations from statistical software
One action/query often results in multiple output tables, e.g. containing additional statistics, results of pre- and post-tests, comments about result quality, footnotes

State-of-the-art in database systems
The output of an operator/query can only be one relation. Thus while many temporary tables can be created using common table expressions, a query can only materialize/output one table

Take-away
Being able to output multiple relations?
OPTIMIZING COMMON QUERIES
QUALITY IMPROVEMENTS
WORKFLOWS
SELF-CONTAINED DATABASE
Handling Missing Values / Replacing \texttt{NULL} values

Inspirations from statistical software
Replacement value for missing data is stored as part of the schema and applied throughout all functions that use the column.

State-of-the-art in database systems
Replacement values for missing data can only be given per query, using \texttt{COALESCE} clauses, not as part of the schema.

Take-away
Achieving self-contained databases, where less business logic or domain knowledge is stored solely in applications.
Restricting Computations / Levels of measurement

Inspirations from statistical software
nominal (enum, e.g. gender), ordinal (ordered enum, e.g. educational degree), interval (number with arbitrary zero-point, e.g. degree Celsius), ratio (number with meaningful zero-point, e.g. quantity)
Operations restricted to what the level allows (e.g. no mean for ordinal data, no ratio for interval data)

State-of-the-art in database systems
String, bool, numbers, (sometimes enum), and more
Operations restricted to what is mathematically possible

Take-away
Enrich table metadata to achieve a more self-contained database
Can speed up computations, e.g. group by on a known-to-be limited number of groups
Summary and Outlook

Enabling new types of data scientists to do new types of analytics in computational databases

Focus on statistics also benefits other types of data scientists and workloads

Further inspirations for database systems