
Adaptive Optimization of Very Large JoinQueries
Thomas Neumann

Technische Universität München
neumann@in.tum.de

Bernhard Radke
Technische Universität München

radke@in.tum.de

ABSTRACT
The use of business intelligence tools and other means to generate
queries has led to great variety in the size of join queries. While
most queries are reasonably small, join queries with up to a hundred
relations are not that exotic anymore, and the distribution of query
sizes has an incredible long tail. The largest real-world query that
we are aware of accesses more than 4,000 relations. This large
spread makes query optimization very challenging. Join ordering is
known to be NP-hard, which means that we cannot hope to solve
such large problems exactly. On the other hand most queries are
much smaller, and there is no reason to sacrifice optimality there.

This paper introduces an adaptive optimization framework that
is able to solve most common join queries exactly, while simultane-
ously scaling to queries with thousands of joins. A key component
there is a novel search space linearization technique that leads to
near-optimal execution plans for large classes of queries. In addi-
tion, we describe implementation techniques that are necessary
to scale join ordering algorithms to these extremely large queries.
Extensive experiments with over 10 different approaches show that
the new adaptive approach proposed here performs excellent over a
huge spectrum of query sizes, and produces optimal or near-optimal
solutions for most common queries.

CCS CONCEPTS
• Information systems→ Query optimization;

ACM Reference format:
Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of
Very Large Join Queries. In Proceedings of 2018 International Conference
on Management of Data, Houston, TX, USA, June 10–15, 2018 (SIGMOD’18),
16 pages.
https://doi.org/10.1145/3183713.3183733

1 INTRODUCTION
Joins are the backbone of query processing. They occur in nearly
every query, and they can affect query runtime dramatically. Choos-
ing a proper join order is thus one of the most important, if not
the most important task of the query optimizer. Besides joins being
ubiquitous, the huge variety in join queries adds to the complexity
of the problem. Most join queries are reasonably small, joining less
than 20 relations. But the advent of business intelligence tools has

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceed-
ings of 2018 International Conference on Management of Data, June 10–15, 2018,
https://doi.org/10.1145/3183713.3183733.

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08

normalized cost (log scale)

fre
qu

en
cy

Figure 1: Normalized Cost Distribution of RandomPlans for
a Data-Warehouse-Style Query with 50 Relations

lead to (generated) ad-hoc queries that can easily touch a hundred
relations, and a database system must be able to handle these, too.

Even moderately sized queries with, e.g., 50 relations are far be-
yond what can be optimized exactly. In such cases, optimizers have
to sacrifice optimality and employ heuristics to keep optimization
time reasonable. Figure 1 shows the distribution of the costs normal-
ized to the best plan of 10,000 random plans for a data-warehouse
style query with 50 relations. The cost of most plans are at least
100× higher than the cheapest plan found. At that scale, it becomes
hard for a heuristic to find one of the very few good plans.

This however is by far not the end of the spectrum, there is an
incredible long tail in query sizes. The largest real-world query that
we are aware of includes, after view expansion, 4,598 relations ([19]).
Admittedly these mega queries [7] are outliers even in the SAP
context (the next largest has 2,298 relations and only a handful
have over 1,000), but queries with several hundred relations are not
that uncommon in this workload. The public query log from the
Tableau Public data visualization tool shows a similar distribution,
with most queries being small, but a long tail of queries with more
than 100 relations reaching up to 369 in a single join query. Note that
especially in such exploratory scenarios, the workload is not known
up-front and most queries are issued only once. Other techniques
to improve query performance or reduce their complexity like, e.g.,
materialization, may thus not always be desirable or applicable.

Large ad-hoc queries thus are a reality that database systems have
to deal with. PostgreSQL for example uses dynamic programming to
find the optimal join order for queries with less than 12 relations and
switches to genetic algorithms for larger queries. DB2 uses dynamic
programming and switches to a greedy strategy when the query
becomes too large. Other systems use similar fallbacks. Often these
switching points imply “falling off a cliff”, i.e., we get good plans up
to a certain point, and significantly worse results once queries get
slightly larger, which is highly unsatisfying. The query optimizer
should try to solve the problem exactly, and adaptively tune down
the result quality if optimality can no longer be guaranteed.

https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733

Admittedly, the huge spread in complexity causes immense prob-
lems for the query optimizer. Fundamentally, the problem is known
to be NP-hard [13], which would seem to suggest that we cannot do
better than use a heuristic anyway for all but the smallest queries.
But this argument is defeatist. In reality, we can optimize surpris-
ingly large queries exactly, and even if we cannot, we can find very
good join orders for even larger classes of queries.

In this paper we therefore introduce an adaptive optimization
framework that finds optimal solutions for most common queries,
near optimal solutions for very large classes of queries, and that
scales down gracefully for mega queries with up to 5,000 relations.
We achieve this by combining dynamic programming with a novel
search space linearization technique, and by introducing implemen-
tation tricks to existing algorithms that are necessary to handle
very large queries efficiently. Extensive experiments show that this
combination works extremely well, and allows us to build a query
optimizer that can handle the whole query spectrum efficiently.

Looking at the immense span of query complexity from 2 to 5,000
relations, one has to realize that there are different requirements
and expectations depending on the query size. For small queries,
which make up the bulk of most workloads, we clearly want to find
the optimal order. For medium sized queries of up to 100 relations,
which are still quite common, we in general can no longer guarantee
optimality, but we want to be close to optimal. For large queries of
up to 1,000 relations, which are rare, we must accept that we cannot
find the best plan, but we nevertheless want good results, and we
want quality to degrade gracefully. For the unique mega-queries
with more than 1,000 relations we must be happy if we are able to
construct a decent plan at all; most optimizers simply break for such
queries [7]. Our adaptive framework handles this span gracefully,
combining good or even optimal plans with low optimization times
across the whole spectrum from 2 to 5,000 relations.

The rest of this paper is structured as follows: Section 2 formal-
izes the problem, and Section 3 discusses related work. Then, we
introduce our adaptive optimization framework in Section 4. The
various implementation details necessary for very large queries
are shown in Section 5. The algorithms are evaluated in Section 6.
Finally, we draw conclusions and discuss future work in Section 7.

2 SETTING
Before going into algorithms, we briefly formalize the problem.
This paper is targeted at query optimizers that can be used in
commercial database systems, therefore we have to support all
kinds of SQL queries, including unusual predicates and non-inner
joins. We assume that we are given the query in the form of a query
graph, as shown in Figure 2: A query graphG = (V ,E) has as nodes
V the set of relations, and as edges E the join possibilities as implied
by the join conditions of the query. We say that a join treeT adheres
to a query graphG if for every subtreeT ′ = T1 1 T2 ofT there exist
relations R1,R2 such that R1 ∈ T1 and R2 ∈ T2 and (R1,R2) ∈ E.
Now given a query graph G and a cost function C , the task is to
construct a join tree T that adheres to G and that minimizes C .

Note that in the general case, namely for queries with non-inner
joins, the query graph can be a hyper-graph instead of a graph [22].
This means that a join edge connects not just two relations but
instead sets of relations, and accordingly,R1 andR2 in our adherence

select *
from R1,R2,R3,R4
where R1.a=R2.b and R2.c=R3.d
 and R2.e=R3.f and R2.g=R4.h

R1

R4

R2

R3

Figure 2: A Query and its Query Graph

definition can be sets of relations instead of single relations. We
assume that all reordering constraints for non-inner joins have
been encoded in the query graph, as described in [20].

For the algorithms we assume that the query graph is connected.
If the original query graph is not connected (i.e., if it contains im-
plicit cross products), we connect the connected components with
cross product edges. Note that we do not consider (additional) im-
plicit cross products during optimization. There are two reasons
for that. First, there is the performance argument, as ignoring cross
products dramatically reduces the search space, and in practice
cross products are rarely useful: A cross product is inherently an
O(n2) operation, which means that it only makes sense for very
small relations. This observation is the reason why most existing
systems ignore cross products, too. Even more important however
is a correctness argument: In the presence of non-inner joins, in-
troducing cross products between arbitrary relations can lead to
wrong results. We therefore always adhere to the query graph. If a
system deems cross products attractive for a particular query, for
example because there are two very small relations involved, it must
explicitly add that join possibility to the query graph, updating the
edges for non-inner joins as needed.

For the cost function the dynamic programming parts assume
nothing except the Bellman principle, any reasonable cost function
will do. The ranking steps used by some algorithms require a cost
function with ASI property (as discussed in Section 3), for example
theCout function that minimizes the size of intermediate results. If
the overall cost function does not have ASI properties we can still
use Cout for ranking and the true cost function for the dynamic
programming part. As shown in [17], simple cost functions like
Cout [5] or Cmm [17] are usually good enough even for full plans.

We describe all algorithms as constructive ones, i.e, we construct
a join tree for a given query graph. When integrating them into a
transformative optimizer, the technique from [25] can be used.

3 RELATEDWORK
Selinger et al. pioneered the use of dynamic programming (DP) for
join ordering by constructing optimal partial plans of increasing
size [24]. We will refer to that algorithm as DPSize. To reduce the
search space, many systems only consider left-deep instead of bushy
trees. We call that variant DPSizeLinear. Considering left-deep trees
only is tempting, as this significantly speeds up optimization, but
bushy plans are often much more efficient than linear plans.

This size-based dynamic programming is well known and widely
used, but it is not the most efficient approach. Graph-based dynamic
programming strategies that organize the search by the structure
of the query graph can perform significantly better than DPSize, as
they avoid considering relation combinations that cannot lead to
a final join tree [21]. There have been a number of improvements
to that original approach, including top-down formulations that

can outperform bottom-up DP algorithms for some queries as they
allow for cost-based pruning [6, 9] and generalizations to non-inner
joins [22]. We will refer to the latter approach as DPHyp.

While the join ordering problem is NP-hard in general, this does
not mean that every instance of the problem is hard. If the query
graph forms a chain, DPHyp can find the optimal solution inO(n3),
which is tractable even for relatively large values of n1. Other query
shapes are more difficult. As the difficulty follows from the shape
of the query graph, we can 1) predict the optimization time by
looking at the query graph, and 2) reduce the optimization time by
manipulating the query graph. This observation lead to the idea of
query simplification, where the query graph is successively made
more restrictive using a greedy heuristic until it becomes tractable
for dynamic programming [23]. This works very well if the query is
just a bit too complex for dynamic programming, as then only a few
greedy steps are needed, but for very large queries this approach
breaks as then the greedy step dominates and results can be poor.

Another idea to handle dynamic programming for large queries
is Iterative Dynamic Programming [14]. It combines dynamic pro-
gramming with a greedy step, and comes in two flavors: The IDP-1
algorithm from [14] runs DPSize up to a given size k , greedily
chooses the cheapest plan of that size, conceptually transforms it
into a base relation, and repeats the processes until all relations
have been joined. While plausible in general, the approach has the
problem that each iteration has a runtime in O(nk), which means
that for large values of n we have to choose very small values for k ,
which lets the algorithm degenerate into a greedy approach. More
relevant for our use case is the IDP-2 variant, which first constructs
a complete join tree using a greedy approach, and then optimizes
subtrees of size k using DP. This works well even for large queries,
and we refer to that algorithm as iterative dp.

Greedy algorithms are commonly used to optimize large queries.
One commonly used variant is themin-sel heuristic, where the joins
are ordered by increasing selectivity [27]. There are multiple ways
to implement it, the most elaborate one tries out every relation as
start relation, and tries the most selective sequence for each start
relation, picking the cheapest overall. While easy to implement, the
quality of the generated plans can be quite poor. And due to the
repeated computations the algorithm is not as cheap as one might
think, which becomes noticeable for extremely large queries. One of
the best known greedy heuristics is Greedy Operator Ordering [8],
which greedily constructs bushy join trees by repeatedly picking
the pair with the minimum result cardinality. The result quality is
usually good, and the algorithm can handle large queries as well, at
least when implemented carefully. We refer to it as GOO within the
paper. Recent follow-up work on GOO explores alternative plans by
considering relation pull-up or push-down during tree merge [2].
We do not consider this variant here, as the additional exploration
adds non-negligible optimization overhead. Other approaches use
meta-heuristics or randomized algorithms to find good join orders
[26], but the result quality can be quite poor.

Besides algorithms specifically designed for query optimization,
there has been work on utilizing generic solvers for join order-
ing [30]. By translating the query graph into a mixed integer linear

1DPSize needs O (n4) for chain queries, which is still polynomial, but stops being
tractable for much smaller values of n.

program (MILP) existing solvers can be used to obtain a linear join
tree. Such an approach benefits from the decades of research effort
put into those solvers. Furthermore, such solvers can be stopped at
any time and still deliver a solution (although no longer optimal).
However, this approach considers cross products which makes the
search space much larger. And the complexity of the join ordering
problem remains, whether it is solved by specialized algorithms or
by a general purpose solver. Hence, utilizing MILP solvers is not an
alternative for the large queries considered in this paper.

Another very interesting approach is the IK/KBZ family of al-
gorithms [13, 15], called IKKBZ in this paper. It can construct the
optimal join plan in polynomial time, which is an extremely attrac-
tive property, but it comes with a number of limitations. First, it
needs a cost function that has Adjacent Sequence Interchange (ASI)
properties, which means that it must be possible to compute a
cost/benefit ratio (called the rank) for every join. That is possible
for cost functions like Cout , but not in general. Second, it requires
an acyclic query graph. And finally, it can only construct linear join
trees, which are inferior to bushy trees. These limitations usually
prevent practical usage, but its good properties are so attractive
that we will use it as intermediate step within this paper.

One of the few papers that explicitly discusses large queries is
[7]. They show that existing optimizers are often simply unable to
handle queries with 1,000 relations, in particular the transformative
approaches used in many commercial systems. Instead of optimiz-
ing these mega queries as a whole, the authors propose to greedily
select parts of the query and to optimize only those. Another paper
also mentions queries with thousands of tables [4], but few details
are given beyond contructing partial join orders greedily.

4 ADAPTIVE OPTIMIZATION
After discussing related work, we now introduce our adaptive opti-
mization framework. It analyzes the query graph, and then picks the
most appropriate algorithm: If the query is small enough (or more
precisely: if the query graph is simple enough), it uses dynamic
programming to construct the optimal join tree. If that is not possi-
ble within the given optimization budget, it switches to a heuristic.
But instead of switching to a greedy approach, as some other sys-
tems do, it uses a novel search space linearization technique to
make dynamic programming tractable. This works extremely well
in practice (see Section 6) and allows us to construct optimal or
near-optimal solutions for queries with up to 100 relations. For even
larger queries we have to introduce a greedy step, but we again use
the linearization to improve the greedy solution. We now discuss
the different optimization stages in more detail.

4.1 Small Queries
For small queries we clearly want to find the optimal join order.
The only question is: what is a small query? The answer to this
question depends on the shape of the query graph: For the best case,
chain queries with a linear query graph, we can easily solve queries
with 100 relations exactly with a graph-based DP like DPHyp, as
the algorithms complexity is O(n3) then. For the worst case, clique
queries, however the runtime is in O(3n), which means we can
probably only solve queries of with about 14 relations exactly. Per-
haps slightly more than 14 on fast machines, but not much more,

countCC(Q = (V ,E),budget)
// counts the number of connected subgraphs of Q
// stops after finding budget graphs
label node v in V from 0 to |V |-1
c=0
for each vi ∈ V
if (c = c + 1) >budget return c
Bi = {vj |vj ∈ V ∧ j < i}
c=countCCRec(Q ,vi ,Bi ,c ,budget)

return c

countCCRec(Q = (V ,E),S ,X ,c ,budget)
// expands the subgraph S of Q \ X recursively
// updates the count c for every subgraph
NS = v |v ∈ V ∧v < X ∧ ∃s ∈ S ∧ s is connected to v
for each S ′ ⊆ NS
if (c = c + 1) >budget return c
c =countCCRec(Q ,S ∪ S ′,X ∪ NS ,c ,budget)

return c

Figure 3: Counting the number of connected subgraphs of a
query graph Q with a given enumeration budget

the exponential growth kills the algorithm. Real queries are in be-
tween these extremes, and it is not obvious how to predict the
optimization time.

However, what we can do reasonably cheaply is counting the
number of connected subgraphs of a query graph. The number of
connected subgraphs is identical to the size of the full dynamic
programming table [21], i.e., the memory consumption of the DP
algorithm, and indirectly determines its optimization time. If the
number of connected subgraphs is reasonably small, for example
up to 10,000, we know that a graph-based DP algorithm will be fast.
This is the case for the examples given above, i.e., chain queries with
up to 100 relations and clique queries with less than 14 relations.

Thus, if the query joins less than 14 relations, we unconditionally
use DPHyp [22] to find the optimal join order. Otherwise, if the
query has up to 100 relations, we use the algorithm from Figure 3 to
count the number of connected subgraphs up to the budget of 10,000.
It counts the subgraphs by choosing each relation as start node, and
then recursively expands the subgraph, skipping the parts of the
graph that will be handled by functions higher up in the call stack.
The algorithm is a streamlined variant of DPHyp that is reduced
to the graph traversal without any DP table. It is much faster than
a real DP algorithm because we are only interested in the count,
not in the actual join trees, and it stops once we have seen more
than the given budget because we only want to know if the count
is within the budget or not. If the number of connected subgraphs
is within our chosen budget of 10,000, we solve the query optimally
using DPHyp, regardless of the number of relations. Otherwise,
if dynamic programming is no longer feasible, we switch to the
search space linearization stage that we will describe next.

4.2 Medium Queries
At some point we simply cannot use DP any more, because opti-
mization becomes too expensive. However, we have seen that the

R1

R5

R2

R3 R4

R6

R1 R5R2 R3 R4R6

0 1 2 3 4 5

enumerations by full DP: enumerations by linearized DP:
{R1,R2}, {R2,R3}, {R2,R5}, {R3,R4}, {R5,R6},
{R1,R2,R3}, {R1,R2,R5}, {R2,R3,R4}, {R2,R3,R5},
{R2,R5,R6}, {R1,R2,R3,R4}, {R1,R2,R3,R5},
{R1,R2,R5,R6}, {R2,R3,R4,R5}, {R1,R2,R3,R4,R5},
{R2,R3,R4,R5,R6}, {R1,R2,R3,R4,R5,R6}

{R1,R2}, {R5,R6}, {R1,R2,R3}, {R1,R2,R3,R5},
{R1,R2,R3,R5,R6}, {R1,R2,R3,R4,R5,R6}

Figure 4: Example for Search Space Linearization

IKKBZ(Q = (V ,E))
// construct an optimal left-deep tree
// for the acyclic query graph Q
b = ∅

for each v ∈ V
Pv = Q directed away from v
while Pv is not a chain
pick v ′ in Pv that has chains as input
IKKBZ-normalize each input chain of v ′

merge the input chains by rank
if b = ∅ ∨C(Pv) < C(b)
b = Pv

return b

IKKBZ-normalize(c)
// normalizes the chain c such that it is sorted by rank
while ∃i: rank(c[i])>rank(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

Figure 5: The IKKBZ algorithm [13, 15]

moment where DP becomes too expensive depends upon the shape
of the query graph. For linear query graphs we can solve quite
large queries exactly, while cliques or stars are much more difficult
to optimize. Therefore, we make medium sized queries with up to
100 relations tractable for dynamic programming by linearizing the
search space. The core idea of search space linearization is that
we restrict the DP algorithm to consider only connected subchains
of a linear relation ordering, instead of arbitrary combinations of
relations. An example for that is shown in Figure 4. It shows a
query graph together with a linearized representation of the same
graph. For the original graph a DP algorithm would fill a table with
17 entries, while if we restrict the DP algorithm to consider the
relations only in linearized order, the DP algorithm fills a table
with only 6 entries. Note that this difference grows exponentially
with size the of the query, in general it is O(2n) for the full DP and
O(n2) for the linearized DP. Unfortunately, hyper-graphs cannot be
expressed in such a linearized form. Thus, linearized DP can only
be applied to queries that can be represented by a regular graph.

While this linearization greatly reduces optimization time, the
way we linearize the query graph clearly has a large impact on the
quality of the final plan. If we pick a bad order here, some good join
orders become impossible during the dynamic programming phase,

linearizedDP(Q = (V ,E))
// constructs a bushy join tree for the query Q
// find a linearization using IKKBZ
Q ′=minimal spanning tree of Q
O=IKKBZ(Q ′)
label nodes v in V from 0 to |V | − 1 as ordered in O
// find the optimal plan for the linearization
T =empty DP table of size |V | ∗ |V |

for vi ∈ V
T [i, i] = vi

for s = 2 ... |V |

for i = 0 ... |V | − s
for j = 1 ... s − 1
L = T [i, i + j − 1],R = T [i + s, i + s − 1]
if L can join with R
P = L 1 R
if C(P) < C(T [i, i + s − 1])
T [i, i + s − 1] = P

return T [0, |V | − 1]

Figure 6: Linearization in Combination with DP

and we might lose optimality. Fortunately, we know a very good
way to order relations: The IKKBZ algorithm [13, 15] can find the
optimal left-deep tree for an acyclic query graph in polynomial time
(see Figure 5). It tries to sort all joins by rank, i.e., the cost/benefit
ratio. For Cout that is 1−sel

costs . If sorting by rank is not possible due
to the restrictions of the query graph, the IKKBZ-normalize step
collapses such contradictory sequences into compound relations
until all relations are sorted by rank. It has been shown that this
algorithm produces the optimal left-deep tree for acyclic query
graphs with ASI cost function. And a left-deep tree is a lineariza-
tion, of course. Thus, if a query has up to 100 relations, but is too
complex for the small case from the previous section, we linearize
its query graph by running IKKBZ. Note that while IKKBZ gives
us the optimal left-deep tree, we consider bushy trees here, and
thus IKKBZ does, in general, not produce the optimal join tree for
our setting. Nevertheless, the linearization we get from it is very
good and guarantees desirable properties for the final join tree: If
the optimal join tree is indeed linear (left/right-deep or zig-zag),
the solution generated by the linearized DP is guaranteed to be
optimal. If the optimal tree would be bushy instead, the cost of the
optimal linear tree is an upper bound for the costs of the final plan.
Note that this ensures optimal solutions for the entire class of star
queries as their solutions are inherently linear.

If the query graph is cyclic we construct a minimum spanning
tree (minimizing the join selectivities) before running IKKBZ (as
described in [15]). Note that this spanning tree is only used for
IKKBZ itself, because IKKBZ needs an acyclic query graph. The
subsequent DP step uses the full query graph, including cycles.
As we will see in Section 6, the linearization with IKKBZ leads to
excellent results, often preserving optimality or being near optimal.

The full algorithm is shown in Figure 6. It first runs IKKBZ to
linearize the relation order, and then runs a dynamic programming
algorithm to construct the optimal bushy plan for that linearization.
Note that the DP algorithm is different from normal DP algorithms

GOO-DP(Q = (V ,E),dp,k ,budget)
// use GOO to guide the dp algorithm to problems of size k
// construct a bushy plan using GOO
T = V
while |T | > 1
(L,R) = arдminL,R∈T ,L can join R |L 1 R |
T = T \ {L,R} ∪ {L 1 R}

T = pick the single element of T
// run dp on problems up to size k
while budget> 0
pick T ′ ∈ T such that size of T ′ ≤ k ∧

size of T ′.parent > k ∧ C(T ′) is maximal
replace T ′ with dp(T ′). Consider new T ′ as base relation.
reduce budget by DP table size from last dp call

return T

Figure 7: Using GOO to guide a DP algorithm

like DPSize, it is a custom algorithm for the linearized query graph.
The idea of the DP phase is that the relations form a linear chain,
and thus every subproblem that we solve must be a subchain of
that linearization. We can thus identify each problem with the
start and end node of that chain, and accordingly the DP table T is
organized by |V | × |V |. After filling that table we can extract the
optimal solution for that linearization from T [0, |V | − 1]. Note that
this DP strategy explicitly exploits the fact that our search space
is linear, and that it is much simpler (and thus faster) than general
DP strategies that have to handle arbitrary query graphs.

The linearization stepmakesDP tractable formuch larger queries,
but still there are limits. The DP phase has a runtime ofO(n3), which
is fine for up to 100 relations (or more on a fast machine), but at
some point with must switch to an even cheaper algorithm. We
discuss the optimization of such large queries next.

4.3 Large Queries
When the query becomes too large for theO(n3) algorithm from the
previous section, we have to introduce a greedy step. Here, we use
an idea from Iterative DP [14]: We first construct an execution plan
using a greedy algorithm, and then improve that plan by running
a more expensive optimization algorithm on subplans up to size
k . The nice thing about that approach is that we can control the
optimization time by changing k , interpolating between greedy and
full optimization. A limitation however is that the more complex
optimization cannot go outside the current subtree, i.e., we cannot
move a relation more than k positions within the tree.

This was problematic for the original Iterative DP paper, as
they had to choose relatively small values for k (e.g. 4–7) to keep
optimization time reasonable. We however use the linearized DP
from the previous section as expensive optimization step, which
allows us to choose k = 100. This way the DP phase has much more
freedom to correct mistakes the greedy phase has introduced, as
now relations can move up to 100 places within the tree. For the
greedy phase we use Greedy Operator Ordering (GOO) [8], as GOO
produces good bushy plans, and can be implemented efficiently.

The resulting algorithm is shown in Figure 7. It first runs GOO
to construct a bushy plan, and then runs a dynamic programming

adaptive(Q = (V ,E))
// optimize the query Q adaptively, depending on its complexity
// find the optimal solution if possible
if |V | < 14∨countCC(Q ,10000)≤ 10000
return DPHyp(Q)

// use linearized DP to handle large queries
if Q contains no hyper-edges
if V ≤ 100
return linearizedDP(Q)

return GOO-DP(Q ,linearizedDP,100,10000)
// use DPHyp as inner DP algorithm for hyper-graphs
return GOO-DP(Q ,DPHyp,10,10000)

Figure 8: Adaptive Optimization Algorithm that Considers
the Query Complexity

algorithm on the most expensive subtree of up to size k until the
optimization budget is exhausted. After each iteration we reduce
the optimization budget by the size of the DP table of the inner DP
algorithm, which allows us to control the overall optimization time.

Usuallywe runGOO-DP asGOO-DP(Q , linearizedDP, 100, 10000),
which gives very good results with modest optimization time, as we
will see in Section 6. Only if the query graph contains hyper-edges
due to non-inner joins we cannot easily utilize linearizedDP, as
our linearization algorithm assumes a regular graph. If the query
graph contains hyper-edges we instead call GOO-DP as GOO-DP(Q ,
DPHyp, 10, 10000), which uses the hyper-graph aware DPHyp al-
gorithm as inner DP algorithm. While correct, the downside is that
we have to choose a much smaller k value then. In future work we
therefore plan to generalize the linearization to hyper-graphs, even
though it affects only relatively few queries.

4.4 Putting Everything Together
When given a query Q , our adaptive optimization strategy picks
the most appropriate algorithm depending on the complexity of the
query (shown in Figure 8). If the query graph contains up to 10,000
connected subgraphs we know that graph-based DP strategies are
fast, so we can use DPHyp to optimize the query. If the number of
relations is less than 14 this is always the case, regardless of the
query structure and we can skip counting then. Thus we get the
optimal join order for such simple queries by running DPHyp.

Otherwise, we first check if the query contains hyper-edges due
to non-inner joins. Usually that is not the case, and we optimize it
using linearizedDP if the query contains up to 100 relations. For
even larger queries we use GOO to direct the linearizedDP opti-
mization to problems up to size 100. For queries with hyper-edges
we do the same, but we have to use DPHyp as inner optimization
algorithm and thus consider only problems up to size 10.

A nice property of that adaptive strategy is that it is guaranteed
to find the optimal solution for the common case of reasonably
simple queries, but at the same time scales smoothly up to mega
queries with thousands of relations. We avoid a hard break in plan
quality along that way by 1) switching to the less expensive but
still very powerful linearized DP when the query grows, and then
2) by optimizing very large subproblems of up to 100 relations with
DP if we have to introduce a greedy step.

5 IMPLEMENTATIONS FOR LARGE QUERIES
In the previous section we have introduced our adaptive join order-
ing framework which efficiently handles a wide range of queries.
Once queries become reasonably large, not only the join ordering
algorithm itself plays an important role, but the implementation
of datastructures and the corresponding algorithms have notice-
able impact on optimization times. In this section we thus take a
closer look onto some implementation details necessary to ensure
maximum performance.

5.1 Representing Sets of Relations
An important datastructure for all classical join ordering algorithms
are sets of relations. It is thus crucial to handle such sets as efficient
as possible. We refer to such sets as BitSets and use four different
implementations: for up to 64 relations a 64 bit unsigned integer is
used, where the k-th bit represents the presence of relation k in the
set. Integers allow to perform set operations such as union with
a single machine instruction. For up to 128 relations, we use two
integers requiring two instructions for union or intersection. For
larger queries, a vector of integers is used, where the presence of
relation k in the set is encoded by the bit at position k mod 64 being
set in the ⌊ k64 ⌋-th integer. Union and intersection are still bitwise
operations here, but we have to perform them for all integers in the
vector. A sparse BitSet, that maintains a sorted vector of relations, is
employed for queries with more than 1024 relations. For such a set,
union and intersection become much more expensive to compute.

5.2 Representing Join Edges
Cardinality estimates are the most important measure to determine
the cost of a certain query plan. Initially, only the cardinalities
of the involved base relations and the selectivities of join edges
are known. During join order optimization, the result cardinalities
of joins have to be estimated. As long as a query is acyclic, inde-
pendence between predicates is assumed and the cardinality of an
intermediate result is estimated as the product of the cardinalities of
the covered relations and the respective selectivities of the involved
join predicates. Although this independence assumption has been
shown to systematically underestimate the cardinalities of inter-
mediate results, it is widely used by existing database systems [17].
Providing more accurate estimates for intermediate results of joins
is still a major research topic [18].

Cardinality estimates, however, become unacceptably inaccurate
for cyclic queries. To dampen this effect, we build the minimum
spanning tree (MST) of the involved joins during estimation with
regards to their selectivity and estimate the result cardinality based
on this MST. We employ Kruskal’s algorithm [16] and utilize a
union-find datastructure to efficiently build the MST. As this is
expensive, we only build the MST at the moment we actually build
a cyclic partial solution. Efficient cycle detection is achieved by 1)
utilizing a union-find datastructure to recognize redundant join
edges, and 2) by introducing a join lookup table that gives us all joins
touching a particular relation. By using that lookup for the relations
of the smaller side of a join, we can quickly find all relevant joins.

Both, union-find and the join lookup are not only necessary for
efficient cycle detection and cardinality estimation, but can also
be utilized to directly speed up all cases where we have to find
connecting join edges (e.g. GOO [8] and QuickPick [31]).

6 EVALUATION
We have evaluated our approach over a large spectrum of queries,
and compared it with many competing algorithms, including com-
mercial database systems. In the following, we first discuss the
experimental setup, and then show results for standard bench-
marks like TPC-H and for scalability experiments using very large
synthetic workloads. Finally we show the effect of individual imple-
mentation techniques on the performance of various algorithms.

6.1 Experimental Setup
For the following experiments we extracted the query graphs of
the individual workloads, including cardinalities and selectivities,
using the encoding schema A from [20] to represent non-inner join
edges. We then passed these query graphs to the various algorithms
to construct join trees. Each algorithm was run with a timeout of
60s, i.e., if we report an optimization time of 60s the algorithm was
unable to find a solution in the given time frame. As cost functionwe
used Cout , and we report all costs normalized to the best non-cross-
product solution found. As long as at least one of the DP algorithms
terminates this is guaranteed to be the optimal solution, i.e., then
normalized costs of 1 indeed means optimality. For large queries
the optimal solution is simply unknown, therefore then normalized
costs of 1 only means that the plan is the best plan found, but
that is still useful to compare algorithms. Note that MILP might
produce a solution with normalized cost less than 1 if it deems
cross-products profitable. The experiments were run on a 4 socket
Xeon E7-4870 v2 / 2.30 GHz machine, running Ubuntu 17.04. The
algorithms were compiled with gcc 6.3, using O3 and march=corei7.

As competitors, we implemented a wide range of algorithms,
starting from the classical System R-style dynamic programming
over the size of the join tree [24], implementing both a left-deep
variant (DPSizeLinear) and a bushy-tree algorithm (DPSize). As an
example of a graph-based DP algorithm we implemented DPHyp
[22], which has better asymptotic behavior than DPSize. To cope
with large queries we added the simplification algorithm [23] to
make them tractable for DPHyp. We also implemented the mixed
integer linear programming approach [30] and used Gurobi [10] to
solve the MILP and obtain a linear join tree. As greedy heuristic we
started with theminsel heuristic [27] that orders joins increasing in
selectivity. Greedy Operator Ordering [8] (GOO) is a more advanced
greedy algorithm that can construct bushy plans and often works
quite well. We combine GOO and DPHyp using Iterative DP (more
precisely: IDP-2) [14] and call the resulting algorithm GOO/DP.
IDP-1 would not be suited for the query sizes that we consider.
Furthermore, we implemented the IKKBZ algorithm [13, 15], which
can find the optimal left-deep tree for acyclic query graphs in poly-
nomial time. If the query graph is cyclic, we construct a minimum
spanning tree over the edge selectivities first. If the query graph
contains hyper-edges due to non-inner joins, we fall back to GOO
instead, as the IKKBZ algorithm cannot handle hyper-edges (this
happens only for a handful of queries in our workloads). As a ran-
domized approach we implemented QuickPick [31] to construct
1,000 random join trees, and then pick the cheapest one. Finally, we
added a genetic algorithm (genetic) for join ordering, similar to the
genetic algorithm strategy of PostgreSQL.

Table 1: Total Optimization Time and Geometric Mean of
Normalized Costs in Some Popular Benchmarks

total optimization time (ms) / geomean of normalized costs
benchmark TPC-H TPC-DS LDBC JOB SQLite
minsel <1 / 1.06 <1 / 1.03 <1 / 1.04 3 / 1.03 958 / 1.00
GOO <1 / 1.05 <1 / 1.01 <1 / 1.02 <1 / 1.05 <1 / 1.00
DPSize <1 / 1.00 479 / 1.00 <1 / 1.00 417 / 1.00 33K / 1.00
DPSizeLin. <1 / 1.04 36 / 1.03 <1 / 1.04 100 / 1.02 1.8K / 1.00
MILP 698 / 1.05 7.7K / 0.92 845 / 0.98 290K / 1.58 5.1M / 1.00
DPhyp <1 / 1.00 128 / 1.00 <1 / 1.00 213 / 1.00 2.1K / 1.00
IKKBZ <1 / 1.02 <1 / 1.07 <1 / 1.02 <1 / 1.17 520 / 1.00
linDP <1 / 1.00 <1 / 1.00 <1 / 1.00 3 / 1.07 4.7K / 1.00
GOO/DP <1 / 1.00 1 / 1.00 <1 / 1.00 1 / 1.00 23 / 1.00
GOO/linDP <1 / 1.00 1 / 1.00 <1 / 1.00 3 / 1.05 5.0K / 1.00
QuickPick <1 / 1.00 82 / 1.00 3 / 1.00 113 / 1.01 3.8K / 3.10
Genetic 556 / 1.00 5.6K / 1.00 751 / 1.00 6.6K / 1.02 56K / 4.10
Simpl. <1 / 1.00 17 / 1.02 <1 / 1.00 112 / 1.00 2.2K / 1.00
adaptive <1 / 1.00 5 / 1.00 <1 / 1.00 53 / 1.00 2.3K / 1.00

For our own apporaches, we implemented the search space lin-
earization (linearizedDP), the iterative DP combination of GOO and
linearizedDP (GOO/linDP), and our adaptive strategy (adaptive) that
switches between algorithms based upon query complexity.

All algorithms were carefully implemented using the implemen-
tation tricks from Section 5. In particular, we tried to make sure that
all observed runtime differences stem purely from differences in
the asymptotic behavior, and not from quality-of-implementation
issues. We also compared with existing implementations if possible,
and for example our GOO implementation is about twice as fast
as the already quite cleverly implemented original GOO version
from http://lambda.uta.edu/order/. All algorithms were extended to
handle hyper-edges except IKKBZ, which runs GOO in that case.

6.2 Standard Benchmarks
We tested our algorithms with a wide variety of use cases, and
started with well known standard benchmarks. Unfortunately, most
benchmark queries are too small for the purpose of this paper and
can easily be solved exactly using DPHyp. Nevertheless, we briefly
discuss them here for completeness.

We started with the TPC-H benchmark [29]. From its 22 queries
we extracted 23 query graphs (some queries contain multiple join
blocks and some queries contain no joins at all), with a maximum
graph size of 8 relations and a median size of 3 relations. Accord-
ingly, the join ordering problem is very easy to solve, the results
are shown in the first column of Table 1. We report the total opti-
mization time for all 23 query graphs, followed by the geometric
mean of the normalized costs. All algorithms finish in less than 1ms
(except genetic and MILP), and most of them find optimal solutions.
Of the 343 join plans constructed by all the algorithms only 22 were
suboptimal, with maximum normalized costs of 2.98 for one GOO
plan. Clearly, TPC-H is no challenge for join ordering algorithms.

The TPC-DS benchmark [28] contains much more, and much
more complex queries. From the 99 TPC-DS queries we extracted
236 query graphs, with a maximum of 18 and a median of 3 relations.
Thus, even though TPC-DS contains some large queries, most of

http://lambda.uta.edu/order/

them are still small. Only six query graphs have more than 8 rela-
tions. Nevertheless, they become visible in column two of Table 1.
Most algorithms are still very fast, but the DP based algorithms,
genetic and MILP increase optimization time, mainly due the few
large queries. Note that the reported time is the total time for all
236 query graphs, thus optimization time is still negligible here.
Also note that normalized costs of the MILP solvers solutions are
less than 1 here, as cross products are benficial for a few expensive
queries (none of the other algorithms considers cross products).

Another benchmark we considered is LDBC BI [1] that evaluates
analytical queries on social network data. We extracted 55 query
graphs, with a maximum size of 13 relations and a median size of
3 relations. Only 3 query graphs have more than 7 relations, and
accordingly, all algorithms handle the queries without problems.

The Join Order Benchmark (JOB) [17] aims to stress the query
optimizer, but unfortunately it mainly stresses the quality of cardi-
nality estimation, not the optimization algorithm itself. From the
113 queries we got 113 query graphs, with a maximum size of 17
relations and a median size of 8 relations. This is significantly larger
than the other benchmarks, but due to the exponential nature of
the optimization problem it is overall not much more expensive
than the TPC-DS benchmark with its 18 relation join query.

Another interesting benchmark is included in the SQLite test
suite [12]. The selec5.test file contains join queries of increasing
size, with up to 64 relations. We extracted 732 query graphs, with a
maximum of 64 relations and a median of 34 relations. This is the
only publicly available workload that we are aware of with such
large queries, and it is thus very interesting for join ordering. But
unfortunately all joins are PK/FK joins and all queries contain a
filter predicate that ensures that one can evaluate all queries with
intermediate result sizes of 1 when following the PK/FK structure.
Accordingly, all algorithms always find the optimal plan, except the
randomized strategies QuickPick and genetic. Still, the optimization
time itself is interesting (see fourth column of Table 1). Using the
MILP solver took more than 84 minutes to optimize the 732 queries.
As the MILP considers cross products, it does not benefit from
the simplicity of the query graphs. The dynamic programming
strategies start to have problems, with over 33s for DPSize. DPHyp
handles the workload gracefully because the query graph structure
is very benign (a chain) and DPHyp has polynomial performance
for these cases. It even outperforms linearizedDP here because
DPHyp avoids enumerating disconnected subgraphs and handles
commutativity, while linearizedDP considers all O(n2) possible
subchains, independent of connectedness. Note however that this is
only a constant factor difference. The adaptive strategy (correctly)
picks DPHyp for all test cases, thus guaranteeing optimality, and
only adds a few percent overhead to check the query complexity.

6.3 Scalability Experiments
The queries in the standard benchmarks are too small to highlight
the asymptotic behavior of the different algorithms. We have access
to large queries from commercial workloads, but unfortunately
these are not publicly available. And furthermore, there are too few
of them, at least on the upper end of the spectrum. We are only
aware of a handful of queries with more than 1000 relations, but
that number is too small for meaningful experiments. Instead, we

10 20 40 60 80 100
0

20

40

60

relations

op
tim

iza
tio

n
tim

e
[s]

minsel
GOO
DPSize
DPSizeLinear
DPHyp
IKKBZ
linearizedDP
GOO/DP
GOO/linDP
QuickPick
Genetic
Simplification
adaptive

Figure 9: Median Optimization Time for Random Tree
Queries of Size 10-100 (100 queries per size)

generate synthetic queries for scalability experiments. We follow
the procedure from [23] to generate realistic tree queries with 10 to
5,000 relations (most edges are PK/FK joins, a few are FK/FK joins,
relation sizes vary, etc.). For every size we generate 100 different
queries and optimize all of them using the various algorithms. Note
that tree queries are known to be NP-hard in general [3], and
accordingly the DP algorithms exhibit exponential runtime. In order
to get meaningful plots, we look at different size ranges in sequence.

We start with small and medium sized queries with sizes up
to 100 relations. These make up more than 99% of all queries in
most workloads, and this size class is therefore by far the most
important one. The median optimization time of the different al-
gorithms is shown in Figure 9. All algorithms time out after 60s,
thus optimization times are capped at 60s. Note that we only report
median optimization times here to keep the plots readable. For a
more detailed look at the distribution we refer to Table 5–9 in the
appendix. In this plot we mainly observe two things: 1) the DP
based algorithms fail at some point due to the exponential nature
of the problem. The exact point depends on the algorithm, DPSize
starts to fail for queries with 30 relations, while DPHyp can still
optimize 69% of the queries with 40 relations within one minute,
but for larger query sizes DP is not an option. DPHyp can solve
only 2% of the queries with 50 relations and none of the larger
queries. DPSizeLinear is about the same (85% of size 40, 5% of size
50), and of course it only considers a restricted search space. For
query sizes less than 40, however, DP is a perfectly viable strat-
egy, as it guarantees finding the optimal solution, and optimization
time is not too high, at least for DPHyp. The MILP solver performs
even worse than the DP algorithms as it considers cross products.
It starts experiencing timeouts for queries with 20 relations and
starting with some queries of size 40 it is unable to provide any
solution at all. Thus we can and should use dynamic programming
for small queries, but we have to switch to something else for larger
queries. 2) The other alternatives all do fine with up to 100 relations.
Optimization times for 100 relations are typically between 10ms
and 70ms, and thus insignificant compared to the query size.

However, optimization time is only one aspect when comparing
algorithms, the other question is how good the constructed plans

Table 2: Relative Costs for Random Tree Queries of Sizes 10-100 (100 queries per size)

normalized costs (avg / 95% / max)
number of relations 10 20 30 40 70 100
minsel 5.0 / 6.3 / 309.2 44.5 / 35.1 / 2.8e3 1.0e3 / 292.4 / 8.7e4 125.5 / 160.6 / 1.0e4 308.4 / 1.7e3 / 9.6e3 2.0e4 / 1.2e5 / 1.0e6
GOO 1.0 / 1.2 / 1.6 1.1 / 1.7 / 2.9 1.3 / 2.4 / 6.8 1.2 / 1.9 / 2.5 1.4 / 2.5 / 6.1 1.4 / 2.6 / 4.5
DPSize 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
DPSizeLinear 1.6 / 3.0 / 23.7 2.1 / 4.1 / 58.4 1.5 / 2.0 / 27.9 1.2 / 2.0 / 4.9
MILP (optimal) 2.3 / 8.1 / 23.7 2.8 / 7.1 / 58.8 2.0 / 4.6 / 16.8 1.6 / 3.5 / 3.5 1.1 / 1.3 / 1.3
DPHyp 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
IKKBZ 1.6 / 3.0 / 23.7 2.1 / 4.1 / 58.4 1.5 / 2.0 / 27.9 1.2 / 2.0 / 4.9 1.0 / 1.3 / 1.6 1.0 / 1.2 / 1.5
linearizedDP 1.0 / 1.0 / 1.3 1.0 / 1.4 / 1.8 1.0 / 1.3 / 2.2 1.0 / 1.2 / 1.5 1.0 / 1.0 / 1.3 1.0 / 1.0 / 1.0
GOO/DP 1.0 / 1.0 / 1.0 1.1 / 1.5 / 2.9 1.2 / 2.4 / 6.7 1.1 / 1.7 / 2.5 1.2 / 2.2 / 4.0 1.3 / 2.1 / 4.5
GOO/linDP 1.0 / 1.0 / 1.0 1.0 / 1.4 / 1.8 1.0 / 1.3 / 2.2 1.0 / 1.2 / 1.5 1.0 / 1.0 / 1.3 1.0 / 1.0 / 1.0
QuickPick 1.0 / 1.0 / 1.1 1.2 / 2.2 / 3.3 5.5 / 22.6 / 54.7 9.9 / 35.5 / 120.8 162.1 / 291.2 / 9.4e3 248.4 / 887.8 / 3.8e3
QuickPick (60s) 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.10 1.3 / 2.0 / 19.5 2.1 / 6.1 / 12.5
Genetic 1.0 / 1.0 / 1.0 1.0 / 1.2 / 5.0 1.2 / 2.2 / 3.8 1.3 / 2.5 / 10.5 2.8 / 11.5 / 17.9 5.6 / 18.6 / 42.0
Genetic (60s) 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.5 1.1 / 1.4 / 3.9 1.1 / 1.2 / 3.4 1.3 / 2.6 / 6.5 1.4 / 3.0 / 17.8
Simplification 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.9 1.1 / 1.9 / 2.9 104.2 / 6.6 / 1.0e4 3.5e6 / 342.7 / 3.4e8 1.3e4 / 9.3e3 / 6.6e5
adaptive 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.4 1.0 / 1.3 / 2.2 1.0 / 1.2 / 1.5 1.0 / 1.0 / 1.3 1.0 / 1.0 / 1.0

are. In Table 2 we show for all algorithms the average costs (nor-
malized to the best plan found), the 95% quantile and the maximum
costs. For the MILP solver we only report normalized costs, if it
did not time out, as quality degrades significantly once timeouts
happen. The DP strategies obviously always have normalized costs
of 1, they always find the optimal solution. DPSizeLinear is mostly
ok, but sometimes it has higher costs, up to factor 58 worse than
DPHyp, because it only considers left-deep plans, which are inferior
to bushy plans. The same is true for IKKBZ. The quality of the solu-
tions obtained from the MILP solver are comparable with the ones
constructed by DPSizeLinear. However, as soon as the MILP solver
stops early due to timeout, the plan quality gets significantly worse.
We routinely observe plans orders of magnitude worse than the
best known plan in case of timeouts (not shown in the Table). From
the heuristics minsel performs very poorly, often constructing very
bad plans with normalized costs of up to 106. The GOO algorithm
is much more reasonable, constructing good plans even for large
queries. It is not ideal, though, with a maximum normalized costs of
6.8. The iterative GOO/DP variant performs basically the same, the
plans are slightly better but the differences are a few percent. Query
simplification works well as long as the query is reasonably small,
but for large queries it is forced to heavily rely upon its greedy step,
resulting in poor plan quality. QuickPick shows similar behavior, it
works well for small queries, but as the query size grows, quality
degrades. The genetic algorithms performs ok, but costs are also
quite high in some cases, up to 42 for 100 relations. These random-
ized algorithms can of course simply be run for a longer period of
time to improve their result. Running Quickpick and the genetic
algorithm for 60 seconds (which is much more than our adaptive
framework requires) resulted in better plans (Quickpick (60s) and
Genetic(60s) in Table 2). The number of plans considered however,
increases linearly with the runtime, whereas the search space grows
exponentially with the size of the query. Thus, regardless of how
long the randomized algorithms run, starting at some size, they will
simply explore too few plans to discover one of the few good plans.

10 200 400 600 800 1,000
0

20

40

60

relations

op
tim

iza
tio

n
tim

e
[s]

minsel
GOO
DPSize
DPSizeLinear
DPHyp
IKKBZ
linearizedDP
GOO/DP
GOO/linDP
QuickPick
Genetic
Simplification
adaptive

Figure 10: Median Optimization Time for Random Tree
Queries of Sizes 10–1000 (100 queries per size)

Our own linearized DP algorithm works well over the whole
spectrum, the mean is 1.0 (i.e., perfect), the 95% costs are at most
1.3, and the maximum costs are 2.2. And that with a tiny fraction
of the optimization time of a full blown DP algorithm. Note that
for this size class GOO/linDP is identical to linearizedDP, the linDP
step optimized the whole tree. The adaptive strategy switches be-
tween DPHyp and linearizedDP here before the optimization time
of DPHyp would become noticeable. When interpreting the cost
numbers, note that we normalize to the best plan found. Up to
size 40 that includes the optimal solution in nearly all cases, i.e.,
the costs are correct, but for larger queries we can no longer guar-
antee optimality due to the NP-hardness. This is the reason why
the linearizedDP algorithm (and correspondingly GOO/linDP and
adaptive) seems to get better as the problem size increases: At size
100, it is simply the best algorithm around as the DP algorithms
fail. But as we have seen for the smaller sizes, it works very well in
general, even in cases were regular DP would have been an option.

Next, we look at queries with 100 to 1,000 relations. These are
rare, but they occur from time to time, and they tend to be expensive.
Thus, we need to be able to handle them reasonablywell, concerning
both the quality of the generated plan and optimization time. We
show the optimization times in Figure 10. The regular dynamic
programming strategies already failed for smaller queries, but for
this size class most of the other algorithms tend to have problems.
The linearizedDP algorithm has O(n3) runtime, and thus starts to
get expensive for more than 200 relations. Minsel, simplification
and IKKBZ also start to timeout at different sizes. The genetic
algorithm can still optimize 1,000 relations, but it already needs 35s.
Only QuickPick and the various GOO variants can handle these
sizes reasonably (including our adaptive strategy, which switches
to GOO/linDP for this size). Concerning result quality, QuickPick
deteriorates (median of 106, maximum 1014). GOO is typically doing
ok (median 1.48), but generates poor plans, too, from time to time
(e.g., maximum cost of 19.1 for one query of size 800). The iterative
DP variant GOO/DP is basically identical. Our combination of GOO
with linearizedDP (GOO/linDP) is doing better, because it combines
GOO with a much larger DP correction. Its median costs are 1.00
(maximum cost of 3.89 for size 800). The maximum cost is not
perfect, but still ok, and much better than all alternatives.

The plot also shows that just abandoning optimality is not enough
to handle large queries. Even when implementing heuristics, it can
easily happen that optimization does not terminate in reasonable
time when queries become large. We will also see that below when
looking at existing systems. This emphasizes that one needs to care-
fully implement scalable algorithms, potentially switching between
alternatives multiple times, based upon the query complexity.

Finally, we look at the largest size class, containing queries with
1,000 to 5,000 relations. These are unique beasts that occur very
rarely, but they occur in practice [19] (see Figure 12 in the appendix
for a plot of the optimization times). Only QuickPick and the GOO
variants can handle this size category (and adaptive, that always
uses GOO/linDP here). QuickPick has very poor plan quality (me-
dian costs of 1010), GOO is much better. GOO/linDP has slightly
higher optimization costs due to the extra linearizedDP step, but the
generated plans are better, too, with lower average and maximum
costs. The median normalized costs of GOO/linDP are 1.0, but that
just means that it is the best algorithm around. For these sizes of
queries we must be happy if we can construct reasonable plans at
all, and as mentioned in [7] this is not the case for most optimizers.

Overall our adaptive strategy handles all size classes very well,
choosing the appropriate algorithm based upon the query complex-
ity, and consistently combining the best generated plans with low
optimization time over the whole spectrum of query sizes.

6.4 Cost Models
So far, we evaluated our framework using the rather simplisticCout
cost function. In this section we investigate, whether the results
presented so far also hold true if we use more advanced cost models.

We first investigate the well known cost model for grace-hash
join from [11]. This cost function models IO in great detail. The
following table shows the distribution of the relative costs of the
resulting plans (see Table 10 in the appendix for more details).

Query Set 1 (1,1.1] (1.1,2] >2
standard benchmarks 100% 0% 0% 0%
generated 73.2% 26.3% 0.2% 0.3%

Our framework gives the optimal solution for all the standard
benchmark queries. For the generated tree queries, 73.2% of the
plans are optimal, 26.3% are within 10% of the optimum, four of
the 2,300 plans are worse by up to a factor of 2 and seven plans are
worse than that.

Another interesting cost model is Cmm [17] which accounts for
indexes. This model is particularly interesting, as it cannot be used
for ranking in the IKKBZ algorithm. We thus use Cout for ranking
but useCmm for the other algorithms and the DP phase of linearized
DP. For this experiment, we randomly enabled indexes for 25% of
the joins. As can be seen from the following table even without any
additional effort to make the linearization aware of indexes, plan
quality is still very good (see Table 11 in the appendix for more
details).

Query Set 1 (1,1.1] (1.1,2] >2
standard benchmarks 99.9% 0.1% 0% 0%
generated 65.1% 34.5% 0.4% 0%

All plans for the standard benchmarks are optimal except one
which is suboptimal by at most 10%. The generated queries get
decent plans. 65.1% of them are optimal, 34.5% worse by at most
10% and 0.4% at most twice as expensive as the best known plan.

The results of experiments with different index configurations
(100%, 50%, 10% and 1%) are similar to those reported here.

6.5 Cardinality Estimates
Cost based optimizers largely rely on cardinality estimates to deter-
mine the cost of a query plan. Usually, cardinalities of base relations
can be estimated quite good. However, even small errors in these
estimates can cause enormous errors to estimates of intermediate
results of joins [17]. In the following, we thus investigate the effect
of errors in cardinality estimates on the quality of the plans gener-
ated by our adaptive join ordering framework.We introduce gamma
distributed random noise to the cardinalities of base tables and join
selectivities and run the different optimization algorithms using
these distorted cardinalities. For the resulting plans, we calculate
the true costs using the true cardinalities and report the normalized
true costs for the most prominent algorithms in Table 3.

As expected, the larger queries become, the more the algorithms
suffer from the bad estimates. Minsel again results in many plans
suboptimal by several orders of magnitude. While QuickPick gives
relatively decent plans as long as queries are small, for larger queries
its quality drops significantly. Even dynamic programming, while
mostly doing good, sometimes results in plans being suboptimal
by a factor of up to 14.8. The quality of our adaptive framework
is also influenced by the bad cardinality estimates. Nevertheless,
its plans are decent throughout the whole spectrum of query sizes
compared to the other heuristics. These results suggest, that apply-
ing advanced join ordering algorithms is still beneficial despite bad
cardinality estimates, as the cheap heuristics commonly applied to
such large queries, in general, result in clearly inferior plans.

Table 3: Relative Costs with random noise on base table cardinality estimates and join selectivities for Random Tree Queries
of Sizes 10-100 (100 queries per size)

normalized true costs (avg / 95% / max)
number of relations 10 20 30 40 70 100
minsel 7.6 / 6.9 / 309.2 44.9 / 51.6 / 3.6e3 1.5e3 / 2.0e3 / 8.7e4 188.3 / 1.2e3 / 1.0e4 501.1 / 4.6e3 / 9.7e3 1.5e5 / 3.4e5 / 4.5e6
GOO 1.1 / 1.5 / 2.0 1.4 / 3.3 / 11.3 1.6 / 3.1 / 7.4 3.0 / 16.7 / 54.0 6.4 / 34.2 / 105.0 8.3 / 58.1 / 159.0
DPHyp 1.1 / 1.4 / 2.0 1.1 / 1.7 / 2.3 1.3 / 3.3 / 4.0 1.4 / 1.9 / 14.8
QuickPick 1.1 / 1.4 / 2.0 1.5 / 3.1 / 4.4 8.4 / 35.1 / 101.0 15.9 / 90.0 / 142.0 355.9 / 1.4e3 / 9.5e3 5.4e3 / 1.9e4 / 1.7e5
adaptive 1.1 / 1.4 / 2.0 1.1 / 2.0 / 2.3 1.3 / 2.3 / 4.0 1.7 / 3.2 / 17.5 4.2 / 18.0 / 97.4 1.2 / 2.2 / 4.0

10 200 400 600 800 1,000
0

10

20

30

40

50

60 DBMS A

DBMS B

PostgreSQL

adaptive

relations

op
tim

iza
tio

n
tim

e
[s]

Figure 11: Comparison with Existing Systems; RandomTree
Queries of Size 10–1000 (100 queries per size)

6.6 Other Systems
As most of the investigated algorithms already fail to optimize
queries of modest size in reasonable time, we now investigate how
existing database systems cope with larger queries and if they im-
plement fast algorithms to optimize them.We compare our adaptive
join ordering algorithm with two commercial database systems and
the open source system PostgreSQL. Note that we only report com-
pile times here, as the optimization goals vary between the systems
and thus there is no meaningful way to compare the quality of the
plans generated by the different systems.

If available for a system we ran tools similar to PostgreSQLs
explain to obtain compilation times. Some of the systems, however,
are not reporting such timings even if they offer plan explanation.
In these cases we measured the response time of the explain tool.

The median optimization times of these systems for the set of
generated queries with up to 1,000 relations are shown in Figure 11.
The error bars indicate the range from minimum to maximum
optimization time. All of the investigated systems start struggling
once the queries contain a few hundred joins. For DBMS A, compile
times are already increasing noticeably on queries with 50 relations.
This system fails to compile queries containing 100 relations within
one minute. DBMS B is able to compile queries with 300 relations
in about 10 seconds. For queries larger than 500 relations, it is no
longer able to provide a plan within one minute. Similarly, the
fastest of the investigated systems, PostgreSQL, which uses genetic

algorithms for large queries, is able to optimize queries with 300
relations in less than 10 seconds. However, its compilation times
exceed one minute for queries with 700 relations, a size where our
adaptive approach takes about 500 milliseconds. From these results
we conclude, that neither the algorithms nor the data structures
used by the investigated systems are tailored towards efficient
handling of such large queries.

6.7 Linearized DP
Having shown the quality and performance of our adaptive frame-
work over a wide spectrum of queries, we now take a detailed look
at the properties of the novel linearizedDP presented in Section 4.

Quality. Looking at the quality of the plans generated by lin-
earizedDP we distinguish three sets of queries: those extracted from
the standard benchmarks (for all of them the optimal solution is
known), the generated queries where an exact algorithm finished
and thus the optimal solution is known and the generated queries
where linearizedDP finished successfully but an optimal plan is
not known. In the following table we report the distribution of the
normalized costs of the plans constructed by linearizedDP:

Query Set 1 (1,1.1] (1.1,2] >2
standard benchmarks 1,127 16 13 3
gen. (opt. known) 238 95 37 1
gen. (opt. unknown) 919 31 20 1

LinearizedDP finds the optimal plan for 1,127 (97%) of the queries
extracted from the standard benchmarks. For 16 (1.3%) queries, the
costs of the plan constructed by linearizedDP is within 10% of the
optimal plan. Another 13 (1.1%) plans are suboptimal up to a factor
of two and only 3 plans generated by linearizedDP are worse.

Similarly, most of the plans obtained by linearizedDP are optimal
or near optimal for the generated queries with known optimal
solution. For the larger queries, where the exact algorithms suffer
timeouts and thus no optimal solution is known, linearizedDP is
mostly able to provide the best solution compared to the plans
constructed by the other algorithms. For only for 5% of the queries,
other algorithms lead to better solutions than linearizedDP.

Another interesting question is, whether IKKBZ indeed gives
a good search-space linearization. To investigate this, we have
generated 1,000 random orderings for all queries and ran linearized
DP on them. In the following, we compare the best resulting plans
with the plans obtained from linearized DP based on the IKKBZ
linearization: 82% of the plans using the IKKBZ linearization were

Table 4: Speedups achieved using different BitSet implemen-
tations compared to the sparse BitSet

Implementation min median max
64 bit 3.99 10.3 33.0
128 bit 2.09 6.94 28.3
variable 1.14 2.14 5.36

better than any other by a factor of up to 20,000. 17.8% of the plans
were more than twice as good, 5.2% more than a factor of 10 better
and 0.8% were more than 100 times better. For 10% of the queries,
a plan using a different linearization was better, but only up to a
factor of 2.3. Thus, IKKBZ is indeed an excellent choice, it is usually
much better, and even in the worst cases hardly worse than any of
the 1,000 other linearizations.

Performance. LinearizedDP optimizes queries with up to 40 re-
lations within 5ms — a size where DPHyp starts to experience
timeouts. Queries with up to 100 relations are optimized within
100ms. And, as can be seen from Figure 10, linearizedDP is able to
optimize queries with up to 400 relations within about 20 seconds.
It suffers timeouts for 58% of the queries with 500 relations and
times out for all queries with 600 or more relations. Note that our
adaptive framework already switches to GOO-linDP for queries
with more than 100 relations.

6.8 Effect of Implementation Details
Besides the join ordering algorithm itself, using efficient datastruc-
tures as described in Section 5 is crucial for the overall performance
of join order optimization. In this section we thus take a detailed
look into the impact of those implementations details on the per-
formance of various algorithms.

BitSet Implementations. Efficient join ordering requires efficient
handling of sets of relations. We have implemented four different
flavors of such sets as described in Section 5. Each of those flavors
is used for a different range of query sizes. The slowest of our im-
plementations (sparse) uses a sorted vector of relations and is more
than 3 times faster than using set from the C++ Standard Library
(libstdc++). As the set from libstdc++ is not a viable alternative, we
measure by which factor the adaptive join ordering framework gets
faster when using the various BitSet implementations compared to
using the sparse BitSet. Those speedups are reported in Table 4.

The fastest implementation is the fixed size BitSet for up to 64
relations. It is faster by a factor between 3.99 and 33.0 with a median
of 10.3, depending on the size of the query, the shape of the query
graph and the join ordering algorithm in use. Doubling the size by
utilizing two integers incurs a slight overhead. Still such sets give
enormous speedups of between 2.09 and 28.3 with median 6.94. For
larger queries, we use a vector of integers (presence of a relation
is still indicated by a single bit). This variable sized BitSet gives
speedups between 14% and a factor of 5.36 with a median of 2.14.
The memory requirements of such a set are linear with the query
size. We resort to the sparse BitSet for queries with thousands of
joins, where the majority of sets is sparsely populated and memory
consumption is reduced dramatically when using the sparse BitSet.

Join Lookup. As described in Section 5, we maintain a join lookup
structure to retrieve join edges in constant time. We measure the
speedups achieved utilizing this structure versus implementations
that iterate the list of join edges. With increasing query size, the
impact of the join lookup on overall performance becomes promi-
nent for both, IKKBZ and GOO (see Figure 13 in the appendix). For
IKKBZ, the speedup reaches a factor of 2 for queries with more than
300 relations. Note that using the join lookup IKKBZ can optimize
queries with up to 1,000 relations within 60 seconds. Without the
join lookup it times out for queries larger than 800 relations. The rel-
ative impact of using the join lookup becomes even greater for GOO.
Here, the speedup exceeds a factor of 15 for most of the queries
of size 3,000. Again, without the join lookup, larger queries suffer
timeouts. With the join lookup in place, GOO is able to optimize
queries with up to 5,000 relations within at most 17 seconds.

UnionFind. We implemented two versions of GOO, one that uti-
lizes a union-find data structure to maintain the sets of joined
relations and one maintaining a list of join edges. The latter modi-
fies the existing edges every time a join is picked by GOO (possibly
deleting redundant edges from the list). Union Find pays off espe-
cially for large queries, as additional expensive traversals of the
complete edge list are avoided. On average, GOO becomes 43%
faster when using an efficient union find implementation.

Careful implementation of datastructures and algorithms is thus
crucial once queries become reasonably large. Some algorithms
even become applicable to larger queries primarily due to the im-
plementation tricks from Section 5.

7 CONCLUSION
In this paper we introduced an adaptive join order optimization
framework handling a wide range of queries from small and easy
ones up to mega queries with thousands of relations. Through the
application of a novel search space linearization onto dynamic pro-
gramming, we are able to generate plans of good quality even when
exact optimization becomes prohibitively expensive. If queries be-
come too large to be handled directly by this linearized DP algo-
rithm, we adaptively introduce a greedy step and still benefit from
the freedom gained through search space linearization. This lets
quality degrade much more gracefully than switching to a com-
pletely different algorithm as some optimizers do. Furthermore, we
presented crucial implementation techniques necessary to achieve
maximum performance. Using all these techniques, our adaptive
framework on the one hand maintains optimality when optimizing
small queries. On the other hand, it is able to optimize queries on
up to 5,000 relations within less than 20 seconds.

A query optimizer must not only be able to handle this wide
range of query sizes, but also needs to support queries with non-
inner joins which result in a hypergraph. The search space lineariza-
tion as presented in this paper is unable to handle hypergraphs and
thus we have to fall back to normal Iterative DP using DPHyp in
this case. We therefore plan to investigate a generalization of this
technique to handle non-inner joins as well.

This project has received funding from the European Research
Council (ERC) under the Euroean Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

REFERENCES
[1] Renzo Angles, Peter A. Boncz, Josep-Lluis Larriba-Pey, Irini Fundulaki, Thomas

Neumann, Orri Erling, Peter Neubauer, Norbert Martínez-Bazan, Venelin Kotsev,
and Ioan Toma. 2014. The linked data benchmark council: a graph and RDF
industry benchmarking effort. SIGMOD Record 43, 1 (2014), 27–31. https://doi.
org/10.1145/2627692.2627697

[2] Nicolas Bruno, César A. Galindo-Legaria, and Milind Joshi. 2010. Polynomial
heuristics for query optimization. In Proceedings of the 26th International Con-
ference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California,
USA. 589–600. https://doi.org/10.1109/ICDE.2010.5447916

[3] Sourav Chatterji, Sai Surya Kiran Evani, Sumit Ganguly, and Mahesh Datt
Yemmanuru. 2002. On the Complexity of Approximate Query Optimization.
In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA. 282–292.
https://doi.org/10.1145/543613.543650

[4] Yijou Chen, Richard L. Cole, William J. McKenna, Sergei Perfilov, Aman Sinha,
and Eugene Szedenits Jr. 2009. Partial join order optimization in the paraccel
analytic database. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 -
July 2, 2009. 905–908. https://doi.org/10.1145/1559845.1559945

[5] Sophie Cluet and Guido Moerkotte. 1995. On the Complexity of Generating
Optimal Left-Deep Processing Trees with Cross Products. In Database Theory
- ICDT’95, 5th International Conference, Prague, Czech Republic, January 11-13,
1995, Proceedings. 54–67. https://doi.org/10.1007/3-540-58907-4_6

[6] David DeHaan and FrankWm. Tompa. 2007. Optimal top-down join enumeration.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Beijing, China, June 12-14, 2007. 785–796. https://doi.org/10.1145/1247480.
1247567

[7] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, François Llirbat, and Eric
Simon. 2009. 1, 000 Tables Inside the From. PVLDB 2, 2 (2009), 1450–1461.
http://www.vldb.org/pvldb/2/vldb09-1077.pdf

[8] Leonidas Fegaras. 1998. A New Heuristic for Optimizing Large Queries. In
Database and Expert Systems Applications, 9th International Conference, DEXA
’98, Vienna, Austria, August 24-28, 1998, Proceedings. 726–735. https://doi.org/10.
1007/BFb0054528

[9] Pit Fender and Guido Moerkotte. 2013. Counter Strike: Generic Top-Down Join
Enumeration for Hypergraphs. PVLDB 6, 14 (2013), 1822–1833. http://www.vldb.
org/pvldb/vol6/p1822-fender.pdf

[10] Gurobi Optimization, Inc. 2016. Gurobi Optimizer Reference Manual. (2016).
http://www.gurobi.com

[11] Laura M. Haas, Michael J. Carey, Miron Livny, and Amit Shukla. 1997. Seeking
the Truth About ad hoc Join Costs. VLDB J. 6, 3 (1997), 241–256. https://doi.org/
10.1007/s007780050043

[12] R. Hipp et al. 2015. SQLite (Version 3.8.10.2). SQLite Development Team. Available
from https://www.sqlite.org/download.html. (2015).

[13] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Trans. Database Syst. 9, 3 (1984), 482–502.
https://doi.org/10.1145/1270.1498

[14] Donald Kossmann and Konrad Stocker. 2000. Iterative dynamic programming:
a new class of query optimization algorithms. ACM Trans. Database Syst. 25, 1
(2000), 43–82. https://doi.org/10.1145/352958.352982

[15] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Optimization of
Nonrecursive Queries. In VLDB’86 Twelfth International Conference on Very Large
Data Bases, August 25-28, 1986, Kyoto, Japan, Proceedings. 128–137. http://www.
vldb.org/conf/1986/P128.PDF

[16] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical society 7,
1 (1956), 48–50.

[17] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204–215. http://www.vldb.org/pvldb/vol9/p204-leis.pdf

[18] GuyM Lohman. 2014. Is query optimization a “solved” problem. In Proc. Workshop
on Database Query Optimization. Oregon Graduate Center Comp. Sci. Tech. Rep,
13.

[19] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA - The
Evolution of an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads. InDatenbanksysteme für Business, Technologie undWeb (BTW 2017), 17.
Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS),
6.-10. März 2017, Stuttgart, Germany, Proceedings. 545–563.

[20] Guido Moerkotte, Pit Fender, and Marius Eich. 2013. On the correct and com-
plete enumeration of the core search space. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013. 493–504. https://doi.org/10.1145/2463676.2465314

[21] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and
One New Dynamic Programming Algorithm for the Generation of Optimal
Bushy Join Trees without Cross Products. In Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006. 930–941.

http://dl.acm.org/citation.cfm?id=1164207
[22] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes

back. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008. 539–552. https:
//doi.org/10.1145/1376616.1376672

[23] Thomas Neumann. 2009. Query simplification: graceful degradation for join-
order optimization. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 -
July 2, 2009. 403–414. https://doi.org/10.1145/1559845.1559889

[24] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, May 30 - June 1. 23–34.
https://doi.org/10.1145/582095.582099

[25] Anil Shanbhag and S. Sudarshan. 2014. Optimizing Join Enumeration in
Transformation-based Query Optimizers. PVLDB 7, 12 (2014), 1243–1254.
http://www.vldb.org/pvldb/vol7/p1243-shanbhag.pdf

[26] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and
Randomized Optimization for the Join Ordering Problem. VLDB J. 6, 3 (1997),
191–208. https://doi.org/10.1007/s007780050040

[27] Arun N. Swami. 1989. Optimization of Large Join Queries: Combining Heuristic
and Combinatorial Techniques. In Proceedings of the 1989 ACM SIGMOD Inter-
national Conference on Management of Data, Portland, Oregon, May 31 - June 2,
1989. 367–376. https://doi.org/10.1145/67544.66961

[28] Transaction Processing Performance Council 2017. TPC Benchmark DS. Transac-
tion Processing Performance Council. http://www.tpc.org/

[29] Transaction Processing Performance Council 2017. TPC Benchmark H. Transac-
tion Processing Performance Council. http://www.tpc.org/

[30] Immanuel Trummer and Christoph Koch. 2017. Solving the Join Ordering Problem
via Mixed Integer Linear Programming. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017. 1025–1040. https://doi.org/10.1145/3035918.3064039

[31] Florian Waas and Arjan Pellenkoft. 2000. Join Order Selection - Good Enough
Is Easy. In Advances in Databases, 17th British National Conferenc on Databases,
BNCOD 17, Exeter, UK, July 3-5, 2000, Proceedings. 51–67. https://doi.org/10.1007/
3-540-45033-5_5

A APPENDIX
A.1 Detailed Distribution of Optimization

Times
In Section 6 we showed the median optimization times for various
algorithms. On the following pages we now give a more detailed
view onto the distribution of those optimization times within the
different size classes. In Tables 5, 6, 7, 8 and 9 we report minimum,
5th and 25th percentile, median, 75th and 95th percentile, maximum
as well as the average and standard deviation of the optimization
times for the generated tree queries with sizes of 10, 40, 100, 1000
and 5000.

A.2 Effect of the Join Lookup Table
In Figure 13 we show the median speedups achieved by utilizing
the join lookup table for GOO and IKKBZ. Again the error bars
span from the minimum to maximum speedup.

A.3 Plan Quality using different Cost Models
In Tables 10 and 11, we give the distribution of the relative plan
costs for the two additional cost models we investigated.

https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1109/ICDE.2010.5447916
https://doi.org/10.1145/543613.543650
https://doi.org/10.1145/1559845.1559945
https://doi.org/10.1007/3-540-58907-4_6
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567
http://www.vldb.org/pvldb/2/vldb09-1077.pdf
https://doi.org/10.1007/BFb0054528
https://doi.org/10.1007/BFb0054528
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf
http://www.vldb.org/pvldb/vol6/p1822-fender.pdf
http://www.gurobi.com
https://doi.org/10.1007/s007780050043
https://doi.org/10.1007/s007780050043
https://www.sqlite.org/download.html
https://doi.org/10.1145/1270.1498
https://doi.org/10.1145/352958.352982
http://www.vldb.org/conf/1986/P128.PDF
http://www.vldb.org/conf/1986/P128.PDF
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/2463676.2465314
http://dl.acm.org/citation.cfm?id=1164207
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/582095.582099
http://www.vldb.org/pvldb/vol7/p1243-shanbhag.pdf
https://doi.org/10.1007/s007780050040
https://doi.org/10.1145/67544.66961
http://www.tpc.org/
http://www.tpc.org/
https://doi.org/10.1145/3035918.3064039
https://doi.org/10.1007/3-540-45033-5_5
https://doi.org/10.1007/3-540-45033-5_5

10 1,000 2,000 3,000 4,000 5,000
0

20

40

60

relations

op
tim

iza
tio

n
tim

e
[s]

minsel
GOO
DPSize
DPSizeLinear
DPHyp
IKKBZ
linearizedDP
GOO/DP
GOO/linDP
QuickPick
Genetic
Simplification
adaptive

Figure 12: Median Optimization Time for Random Tree
Queries of Sizes 10–5000 (100 queries per size)

10 1,000 2,000 3,000
0

5

10

15
GOO

IKKBZ

relations

sp
ee

du
p

Figure 13: Speedups of GOO and IKKBZ achieved by uti-
lizing the join lookup table

Table 5: Distribution of Optimization Times (ms) for Random Tree Queries of Size 10 (100 queries; 60 seconds timeout)

algorithm min 5% 25% median 75% 95% max avg. std. dev.
minsel 0 0 0 0 0 0 0 0 0
GOO 0 0 0 0 0 0 0 0 0
DPSize 0 0 0 0 0 0 0 0 0
DPSizeLinear 0 0 0 0 0 0 0 0 0
DPHyp 0 0 0 0 0 0 0 0 0
IKKBZ 0 0 0 0 0 0 0 0 0
linearizedDP 0 0 0 0 0 0 0 0 0
GOO/DP 0 0 0 0 0 0 0 0 0
GOO/linDP 0 0 0 0 0 0 0 0 0
QuickPick 0 1 1 1 1 1 2 1.03 0.223
Genetic 17 18 19 21 23 29.1 43 21.9 4.03
Simplification 0 0 0 0 0 0 0 0 0
adaptive 0 0 0 0 0 0 0 0 0

Table 6: Distribution of Optimization Times (ms) for Random Tree Queries of Size 40 (100 queries; 60 seconds timeout)

algorithm min 5% 25% median 75% 95% max avg. std. dev.
minsel 1 1 1 1 1 1 2 1.02 0.141
GOO 0 0 0 0 0 0 0 0 0
DPSize 7,620 29,167 60,000 60,000 60,000 60,000 60,000 56,902 10,139
DPSizeLinear 373 1,816 5,316 14,867 35,879 60,000 60,000 23,212 20,772
DPHyp 1,082 3,750 10,734 29,295 60,000 60,000 60,000 33,350 22,135
IKKBZ 1 1 1 1 1 1 1 1 0
linearizedDP 3 3 3 3 4 4.05 5 3.33 0.57
GOO/DP 0 0 0 0 0 0 0 0 0
GOO/linDP 3 3 3 3 4 5 5 3.39 0.695
QuickPick 6 6 7 7 9 10 11 7.85 1.27
Genetic 64 65 70 73 89 97 103 77.6 11
Simplification 12 13 16 18 20 24 30 18.3 3.3
adaptive 4 4 4 5 5.25 6 7 4.78 0.871

Table 7: Distribution of Optimization Times (ms) for Random Tree Queries of Size 100 (100 queries; 60 seconds timeout)

algorithm min 5% 25% median 75% 95% max avg. std. dev.
minsel 23 23 23 24 24 24 24 23.7 0.446
GOO 0 0 0 0 0 0 0 0 0
DPSize 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPSizeLinear 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPHyp 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
IKKBZ 11 11 11 12 12 12 12 11.7 0.465
linearizedDP 67 69 72 74 77 80 98 74.2 4.16
GOO/DP 1 1 1 1 1 1 1 1 0
GOO/linDP 65 68 69 71 73 76 80 71.2 2.91
QuickPick 26 27 27 28 28 29 30 27.8 0.842
Genetic 228 234 242 250 260 276 301 252 13.9
Simplification 40 45 52 57 61 72 84 57.4 8.45
adaptive 70 72 74 76 79 85.1 118 77.8 7.07

Table 8: Distribution of Optimization Times (ms) for Random Tree Queries of Size 1000 (100 queries; 60 seconds timeout)

algorithm min 5% 25% median 75% 95% max avg. std. dev.
minsel 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
GOO 65 66 68 70 89 106 115 77.5 13.9
DPSize 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPSizeLinear 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPHyp 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
IKKBZ 52,040 52,571 53,394 54,175 55,083 56,144 57,544 54,239 1,162
linearizedDP 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
GOO/DP 131 132 135 137 153 176 216 145 17.6
GOO/linDP 1,113 1,135 1,160 1,187 1,207 1,256 1,296 1,188 36.8
QuickPick 2,489 2,532 2,583 2,610 2,648 2,736 2,754 2,622 58.9
Genetic 32,239 33,089 34,404 35,197 36,262 37,173 38,754 35,282 1,323
Simplification 17,568 27,636 45,119 59,149 60,000 60,000 60,000 51,979 11,330
adaptive 1,115 1,138 1,162 1,187 1,216 1,259 1,303 1,192 39.7

Table 9: Distribution of Optimization Times (ms) for Random Tree Queries of Size 5000 (100 queries; 60 seconds timeout)

algorithm min 5% 25% median 75% 95% max avg. std. dev.
minsel 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
GOO 9,019 11,182 12,258 12,962 13,587 14,724 16,707 12,928 1,206
DPSize 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPSizeLinear 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
DPHyp 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
IKKBZ 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
linearizedDP 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
GOO/DP 10,220 11,519 12,392 13,115 13,827 14,956 16,757 13,167 1,172
GOO/linDP 11,813 13,425 14,359 15,404 16,202 17,534 19,954 15,376 1,444
QuickPick 42,347 42,793 43,368 43,809 44,298 45,054 46,842 43,860 756
Genetic 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
Simplification 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 0
adaptive 11,346 13,609 14,719 15,464 16,508 17,395 19,526 15,479 1,349

Table 10: Relative Costs with “seeking the truth” cost model for Random Tree Queries of Sizes 10-100 (100 queries per size)

normalized costs (avg / 95% / max)
number of relations 10 20 30 40 70 100
minsel 4.4 / 20.6 / 120.7 18.0 / 49.7 / 1.2e3 596.7 / 90.5 / 5.6e4 193.7 / 15.3 / 1.8e4 22.3 / 34.1 / 1.7e3 205.2 / 976.9 / 1.0e4
GOO 1.0 / 1.0 / 1.2 1.0 / 1.1 / 1.7 1.1 / 1.1 / 8.5 1.1 / 1.0 / 9.2 1.3 / 1.1 / 28.5 1.0 / 1.0 / 1.2
DPSize 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
DPSizeLinear 4.0 / 10.2 / 120.7 15.7 / 12.8 / 1.2e3 433.9 / 1.2 / 4.3e4 156.0 / 2.9 / 1.2e4
DPHyp 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
IKKBZ 4.0 / 10.2 / 120.7 15.7 / 12.8 / 1.2e3 433.9 / 1.2 / 4.3e4 120.4 / 1.8 / 1.2e4 6.5 / 1.0 / 542.9 1.0 / 1.0 / 1.0
linearizedDP 1.0 / 1.0 / 1.2 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.1 1.1 / 1.0 / 9.2 1.3 / 1.0 / 28.6 1.0 / 1.0 / 1.0
GOO/DP 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.1 1.1 / 1.0 / 9.2 1.3 / 1.0 / 28.6 1.0 / 1.0 / 1.0
GOO/linDP 1.0 / 1.0 / 1.2 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.1 1.1 / 1.0 / 9.2 1.3 / 1.0 / 28.6 1.0 / 1.0 / 1.0
QuickPick 1.0 / 1.0 / 1.1 1.0 / 1.1 / 1.5 1.2 / 1.9 / 4.3 1.2 / 1.9 / 3.2 3.6 / 4.6 / 180.2 2.9 / 8.4 / 22.6
Genetic 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.3 1.0 / 1.1 / 1.1 1.0 / 1.0 / 1.1 1.0 / 1.1 / 1.3 1.0 / 1.1 / 1.3
Simplification 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.1 1.0 / 1.1 / 2.8 91.0 / 2.6 / 8.7e3 2.5e4 / 367.7 / 2.4e6 1.4e4 / 3.8e3 / 1.4e8
adaptive 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.1 1.1 / 1.0 / 9.2 1.3 / 1.0 / 28.6 1.0 / 1.0 / 1.0

Table 11: Relative Costs with Cmm cost model for Random Tree Queries of Sizes 10-100 (100 queries per size; 25% indexes)

normalized costs (avg / 95% / max)
number of relations 10 20 30 40 70 100
minsel 2.4 / 5.0 / 78.4 14.1 / 11.2 / 914.5 193.7 / 91.1 / 1.4e4 14.0 / 35.8 / 926.1 20.4 / 133.1 / 697.5 1.2e3 / 6.5e3 / 5.7e4
GOO 1.0 / 1.4 / 1.9 1.2 / 1.9 / 2.5 1.2 / 1.7 / 2.3 1.1 / 1.5 / 1.7 1.1 / 1.3 / 1.5 1.2 / 1.4 / 2.2
DPSize 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
DPSizeLinear 1.4 / 3.0 / 6.7 1.5 / 4.1 / 13.4 1.2 / 1.5 / 9.3 1.1 / 1.6 / 3.1
DPHyp 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.0
IKKBZ 1.4 / 3.0 / 6.7 1.5 / 4.1 / 13.4 1.2 / 1.5 / 9.3 1.1 / 1.4 / 3.1 1.0 / 1.1 / 1.4 1.0 / 1.0 / 1.1
linearizedDP 1.0 / 1.0 / 1.3 1.0 / 1.2 / 1.6 1.0 / 1.1 / 1.7 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.0
GOO/DP 1.0 / 1.0 / 1.0 1.0 / 1.3 / 2.5 1.1 / 1.4 / 2.0 1.0 / 1.2 / 1.6 1.0 / 1.1 / 1.2 1.0 / 1.1 / 2.1
GOO/linDP 1.0 / 1.0 / 1.0 1.0 / 1.3 / 1.6 1.0 / 1.1 / 1.7 1.0 / 1.1 / 1.1 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.1
QuickPick 1.0 / 1.0 / 1.1 1.1 / 1.5 / 2.2 2.0 / 6.4 / 12.7 2.2 / 6.4 / 14.0 16.1 / 23.8 / 1.0e3 13.5 / 48.2 / 141.0
Genetic 1.0 / 1.0 / 1.0 1.0 / 1.2 / 2.1 1.0 / 1.3 / 1.7 1.0 / 1.2 / 1.8 1.2 / 1.7 / 2.7 1.3 / 2.1 / 2.9
Simplification 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.4 1.2 / 1.6 / 2.7 10.6 / 2.5 / 926.1 1.5e5 / 327.3 / 1.5e7 1.3e7 / 2.0e4 / 1.4e9
adaptive 1.0 / 1.0 / 1.0 1.0 / 1.0 / 1.2 1.0 / 1.1 / 1.7 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.1 1.0 / 1.0 / 1.0

	Abstract
	1 Introduction
	2 Setting
	3 Related Work
	4 Adaptive Optimization
	4.1 Small Queries
	4.2 Medium Queries
	4.3 Large Queries
	4.4 Putting Everything Together

	5 Implementations for Large Queries
	5.1 Representing Sets of Relations
	5.2 Representing Join Edges

	6 Evaluation
	6.1 Experimental Setup
	6.2 Standard Benchmarks
	6.3 Scalability Experiments
	6.4 Cost Models
	6.5 Cardinality Estimates
	6.6 Other Systems
	6.7 Linearized DP
	6.8 Effect of Implementation Details

	7 Conclusion
	References
	A Appendix
	A.1 Detailed Distribution of Optimization Times
	A.2 Effect of the Join Lookup Table
	A.3 Plan Quality using different Cost Models

