
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Incremental Calculation of Graph
Centrality Metrics

Alice Rey

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Incremental Calculation of Graph
Centrality Metrics

Inkrementelle Berechnung von
Graphzentralitätsmetriken

Author: Alice Rey
Supervisor: Prof. Dr. Dr. h.c. Manfred Broy
Advisor: Dr. Elmar Jürgens, Roman Haas
Submission Date: 15.09.2018

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.09.2018 Alice Rey

Abstract

In the past, graph centrality metrics were already successfully used in static software
analysis. An example for this is the identification of the most central classes of a software
system and (together with additional information) the identification of unnecessary
code of a software system. The graph centrality metrics are applied to dependency
graphs consisting of the classes of the software systems and their dependencies between
each other. The computation of centrality metrics on large graphs typically is very time
consuming due to the fact that these metrics have to be recomputed after every change
made to the software. The main idea of the incremental software analysis is to speed
up the recomputations to be able to give immediate feedback to developers. This is
accomplished by taking the previous state as a basis and together with the changes
made to the system computing the new state. Previous work has shown that centrality
data provides useful information to developers. However, recomputation of centrality
measures for every change to a software system is too costly. For practical use of code
centrality information in software analysis, incremental calculation approaches are
more applicable as they are much cheaper.

In this bachelor’s thesis we discuss different incremental approaches for calculating
the PageRank centrality. In the literature, there can be found incremental approaches for
the PageRank computation, but these were made for the analysis of the Web structure.
We evaluate their applicability in incremental software analysis. The main idea is to
only recompute the metric values for changed classes and classes that depend on them,
instead of recomputing the metric for all classes of the system for every revision.

We evaluate the incremental PageRank approaches by measuring the runtime im-
provement, as well as the precision loss by utilizing the incremental instead of the
standard PageRank. Therefore, we make a history analysis of 6 different software sys-
tems, both open- and closed-source. We show that for our chosen project the runtime is
at least three times faster when applying an incremental approach, instead of using
the standard PageRank algorithm. However, the actual PageRank values do not differ
much, depending on the chosen approximation level. The higher the approximation,
the better the runtime and the worse the precision. We present the best compromise
between runtime improvement and precision and show that our approximation works
well so that it can be applied in incremental calculation of code centrality.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 3
1.4 Thesis Structure . 3

2 Terms and Definitons 4
2.1 Dependency Graph . 4
2.2 PageRank . 4
2.3 Spearman’s rank correlation metric . 5

3 Related Work 7

4 Approach 11
4.1 Iterative PageRank . 11
4.2 Incremental PageRank . 12

4.2.1 Which PageRank values have to be recalculated and why? 12
4.2.2 What are the steps to compute PageRank incrementally? 15

4.3 Approximated Incremental PageRank . 17
4.3.1 Which values have to be recomputed and why? 17

5 Evaluation 21
5.1 Research Questions . 21
5.2 Study Objects . 22
5.3 Study Design . 24

5.3.1 RQ1: How much faster is an incremental approach compared to
the standard PageRank algorithm? 24

5.3.2 RQ2: incrementally calculated ranks deviate from the standard
PageRank algorithm? . 25

5.3.3 RQ3: How much do the results of code centrality analysis based
on PageRank deviate when applying an incremental approach? . 25

iv

Contents

5.4 Results . 25
5.4.1 RQ1: How much faster is an incremental approach compared to

the standard PageRank algorithm? 25
5.4.2 RQ2: How much do the incrementally calculated ranks deviate

from the standard PageRank algorithm? 28
5.4.3 RQ3: How much do the results of code centrality analysis based

on PageRank deviate when applying an incremental approach? . 31
5.5 Discussion . 33

5.5.1 RQ1: How much faster is an incremental approach compared to
the standard PageRank algorithm? 33

5.5.2 RQ2: How much do the incrementally calculated ranks deviate
from the standard PageRank algorithm? 34

5.5.3 RQ3: How much do the results of code centrality analysis based
on PageRank deviate when applying an incremental approach? . 35

5.6 Threats to Validity . 36
5.6.1 Internal Validity . 36
5.6.2 External Validity . 36

6 Conclusion 37
6.1 Summary . 37
6.2 Future Work . 38

Bibliography 40

v

1 Introduction

1.1 Background and Motivation

In the field of software analysis there exist two types of analysis tools. The tools using
the standard analysis approach recompute all software analyses from scratch every time
the software repository changes. The number of changes is usually very high during
the software development. However, the amount of change a single developer adds to
the repository with one commit is very small compared to the total size of software
projects. The other type of software analysis is needed to provide quick feedback to
the developer after adding some changes without having to wait for hours until all
analyses are finished. Developers usually only want a short feedback to check if there
are any defects in the analysis results that need to be fixed. This type is the so called
incremental software analysis. The main idea of the incremental approach is to utilize
the previous state of the software analysis as a base and to combine this base with
the changes made to the system to compute the new state. This enhances the runtime
of especially large software projects and leads to a much quicker feedback for the
developer.

Analyses that can be performed incrementally are for example type change analysis,
instability analysis or the origin analysis of source code files [1]. The base of these
and many other analyses are the dependencies between files and types of a software
system. To keep those dependencies up to date, one needs to check all changed files for
changed outgoing dependencies. Based on these, the changed incoming dependencies
of other files can be found as well. In many software projects a significant amount
of duplicated, so called cloned code, can be found. In the non-incremental software
analysis the entire software system has to be read and all clones have to be detected
which implies high computational costs due to the number of comparison that have to
be performed. In the incremental case only the clones affected by the changed code are
reanalyzed and only based on these changed classes new clones are searched [2].

Very interesting problems of the software analysis are the central class recommenda-
tions and the unnecessary code identification. The central class recommendation should
help new developers to understand a software system more quickly by looking at the
most important code first [3]. The idea behind the unnecessary code identification is
that in every software project there is usually a certain amount of unused code which is

1

1 Introduction

not needed anymore. The approach should help developers to find this code which can
be very difficult to identify per hand especially for large software projects [4]. As a base,
both problems use centrality metrics to specify the importance of the classes. These
have to be computed from scratch every time the software system undergoes changes
which makes the computation not applicable in the incremental software analysis. Both
applications have successfully applied PageRank as centrality metric for their use cases.
The purpose of this bachelor’s thesis is to find a solution that improves the runtime of
the recomputation of PageRank by computing it incrementally. If we succeed, these
software analysis problems can be integrated into the incremental software analysis.

PageRank is a centrality metric originally used to identify the most important pages
of the Web for the search engine Google [5]. The Web graph is huge and has to deal
with a lot of changes. If this centrality metric gets recomputed from scratch after every
change, this will not be applicable at all, due to the high computational costs. There
exist research papers which try to improve the runtime needed to recompute PageRank.
Some of them are relying on the previous state and change made to the graph and just
recompute the PageRank incrementally [6] [7].

1.2 Problem Statement

Centrality metrics like PageRank are commonly used for comparing the importance
of pages in the Web graph. These centrality metrics can also be useful for centrality
related topics in the software analysis area, like the central class recommendations.
In this case the algorithm is applied to the dependency graph of the software project
instead of the Web graph. Both, the dependency graph of a software project and the
Web graph have to deal with a huge amount of changes. To keep the centrality metrics
always up to date, they have to be recomputed from scratch after every change. This
recomputation can be time-consuming depending on the size of the graph. Even if only
a few dependencies and nodes have undergone changes since the last computation, the
effort that has to be made never changes. This makes the computation of those metrics
inefficient, especially when many revisions have to be computed in a row. For large
projects the PageRank computation for one revision took up to 15 minutes in our test
setup, depending on the number of changes. During the development phase of large
projects, 50 commits per day is not an unusual number. This leads to a total runtime
of approximately 10 hours only for the recomputation of the PageRank values. Thus,
these metrics are not applicable for a continuous software analysis.

2

1 Introduction

1.3 Contribution

In this bachelor’s thesis, we present an approach for an incremental recomputation
of the centrality metric PageRank. There already exist papers which describe these
incremental approaches for the web graph, but they have not been used in the field of
software analysis yet. We will apply these incremental PageRank approaches which
are originally made for the Web graph to the dependency graph of different software
systems. We evaluate their runtime improvement and their loss of precision. Finally, we
apply the incremental approach to the already presented software analysis problems
that use PageRank to check how applicable they are in the software analysis field.

1.4 Thesis Structure

The thesis is structured as follows: Chapter 2 gives definitions of important terms used
in the bachelor’s thesis. Chapter 3 will start with an overview of related work in the
incremental PageRank area as well as in the area of software analysis where centrality
metrics like PageRank are applied. The next step is the explanation of our approach to
incrementally recompute the PageRank which is presented in Chapter 4. In Chapter 5,
we examine how much faster the incremental approach is, how much precision we lose
due to the approximations and how applicable the approach is in the software analysis
field. We conclude with the summary of our results and ideas for future work.

3

2 Terms and Definitons

2.1 Dependency Graph

A software system consisting of many classes which are depending on each other can
be represented as a dependency graph. This dependency graph is used as a base for
many software analysis and we will utilize it in this bachelor’s thesis to specify the
centrality of the classes. A dependency graph is a graph consisting of vertices and
edges. In our software dependency graph the vertices correspond to the classes of a
software system and the edges correspond to the dependencies between those classes.
A class A depends on another class or interface B if at least one of the following cases
are fulfilled:

• A implements or extends B

• A creates an instance of B

• A type-cast to B occurs in A

• There exists a field, a local variable, a method parameter or a method return type
of the type B in A

• A accesses a field or calls a method of B

• A throws an exception of the type B

2.2 PageRank

PageRank is a centrality metric which will be utilized throughout the thesis to specify
the centrality of the different classes of a software system. It was developed as a ranking
algorithm based on a graph with the original purpose to compute the importance of
Web pages. The method was invented by Page for the search engine Google [5]. A page
is highly ranked if the sum of the ranks of its backlinks is high. Therefore a page with
many low ranked backlinks and a page with only a few but highly ranked backlinks
can have similar PageRank values. The idea behind PageRank is a Web surfer who
keeps clicking on successive links randomly. Normally, this surfer will jump to some

4

2 Terms and Definitons

other page after a while and this possibility of randomly choosing a page without
following a link to it is also considered in the formula:

PR(p) = d · 1
n
+ (1� d) · Â

(q,p)2G

PR(q)
OutDegree(q)

G is the dependency graph, n is the number of nodes and the OutDegree is the
number of hyperlinks on the page q. The second term describes the case that the
surfer is arriving at a page by clicking a link. Therefore the term sums up all the rank
contributions made by all pages q pointing to the page p. The first term deals with the
special case that the surfer arrives from anywhere, which has therefore the uniform
probability 1

n
. The factor d gets assigned a value between 0 and 1 and determines the

probability distribution. The factor d gives the probability of a random jump and is also
called dampening factor and 1� d is the probability of arriving on a page by clicking
on a link [6].

In our case the dependency graph will not represent the Web pages and the links
between them, but the classes of a software project and their dependencies.

2.3 Spearman’s rank correlation metric

We use the spearman’s rank correlation metric to evaluate how precise the PageRank
values are when an incremental instead of the standard PageRank approach is applied.
The runtime-improving incremental approach can only be applied if the correctness of
the resulting values is guaranteed. The spearman’s rank correlation coefficient [8] is
used to determine the relation between two data sets.

Let (X1, X2, ..., Xn) and (Y1, Y2, ..., Yn) be two data sets of size n. RXi
denotes the rank

of Xi. If there exist no two values in a data set with the same rank, one can utilize the
normal spearman’s rank correlation coefficient formula:

p = 1�
6 Ân

i=1 d
2
i

n(n2 � 1))

with di = RXi
� RYi

In our case there exist classes which have the same rank. Therefore the spearman’s
metric has to be computed with the following formula:

p =
cov(RX, RY)
s(RX)s(RY)

where cov(RX, RY) is the covariance of the ranks of X and Y, s(RX) is the standard
deviation of the ranks of X and s(RY) is the standard deviation of the ranks of Y.

5

2 Terms and Definitons

The spearman’s rank correlation coefficient is used to determine if there exists a
relation between two random variables. Two data sets have a positive correlation if both,
the large and the small values tend to be associated with each other. The correlation of
the two data sets is negative if the large values of one data set tend to be associated
with the small values of the other data set and vice versa. In the third case the two data
sets are independent and not correlated.

A correlation measurement between two variables only takes values between -1 and 1.
A positive correlation exists if the value is positive. The data sets are identical if the
metric has a value of 1. For negative correlations, the metric value is negative. One
dataset is the opposite of the other, if the metric has a value of -1. If the correlation is
close to zero one can say that the two variables are not correlated [9].

6

3 Related Work

In their paper Desikan et al. [6] present an approach to deal with the key challenge of
PageRank: The computation of PageRank for a large and evolving graph. They denote
that the rate of changes is very low compared to the size of the graph. According to
them, their incremental approach is a significant improvement of computational cost
because it only recomputes the small portion of the Web graph that has undergone
changes since the last computation. They group the graph into two portions which is
depicted in 3.1.

Figure 3.1: The partition of the dependency graph. Reprinted from [6]

One portion contains all nodes which have undergone changes since the last compu-
tation (the right partition in Figure 3.1) and the other partition is the one that stayed
unchanged and has only outgoing edges to the other partition (the left partition in
Figure 3.1). The latter partition will not be affected by the nodes in the first partition.
This is true since the PageRank of a page only depends on the pages that point to it and
is therefore independent of its outdegree. The first step in their approach is to identify
such a partition that has no incoming nodes from the partition with the changed nodes.
In the next step the PageRank values of the changed partitions nodes get recomputed.
To compute these, the border nodes from the unchanged partition are also taken into
consideration, because these nodes influence the values of the changed partition. The

7

3 Related Work

unchanged partition only gets scaled by the factor:

Order o f the graph at the previous time

Order o f the graph at the present time

A vertex is called changed if an edge between itself and any other vertex has been
inserted or if the edge weight changed. After identifying all changed vertices, all pages
affected by their PageRank are iteratively determined. This includes all vertices that
have a parent which has been changed or is affected by a parent vertex as well. In the
end the changed partition consists of all changed vertices and all vertices affected by
them.

In their paper Chien et al. [7] present a very efficient algorithm to incrementally
compute a good approximation to Google’s PageRank as the links of the Web graph
evolve. According to them, their incremental approach is fast and yields excellent
approximations to PageRank. The restriction of their approach is that they only address
the addition or deletion of links and not the addition or deletion of a node. In their
approach they identify a small portion of the graph in the closest neighbourhood of the
given set of changed links. They model the rest of the Web graph as a single node in
the smaller graph. All nodes whose PageRanks are most affected by the addition or
deletion of an edge will be a part of the subgraph. They choose the most affected nodes
by assigning weights to the nodes and if weight of a node exceeds a chosen threshold, it
will be added to the subgraph. For a new edge from node A to node B this means, that
node A gets assigned the weight 1 and then all descendant node weights are assigned
by the following formula:

1� d

OutDegree(A)

with d as the pagerank dampening factor. The threshold that the weight of a node
has to exceed that the node is added to the subgraph has to be chosen in such a
way that the result approximates the PageRank values sufficiently good and the re-
sulting graph with the rest of the original graph modeled as a supernode is not too large.

These paper all deal with the problem of PageRank computations on evolving web
graphs. Tough, these computations can also be applied in software related topics as
one can see in the following works where the PageRank algorithm is used for different
software analysis problems.

Steidl et al. [3] present an approach that uses network analysis to recommend central
software classes. When developers start developing an existing and unknown software
system, they have to understand the system first. This training period can be time

8

3 Related Work

consuming and it is crucial in which order the software artefacts should be read. The
usual approach is to understand the key classes of a system at first. The problem is, that
for a new developer the key classes of a system are not obvious and other developers
are already biased by the part of the software they usually work with. Steidl et al.
assume that a class is important if many other classes depend on it. Therefore, they
determine the most important classes of the software by looking at the dependency
graph of the system. The first step is to compute the dependency graph and in the
second step they calculate a centrality index for each node. The used centrality indices
are: PageRank, Betweenness and Markov. In the end they recommend the top ranked
classes as central software classes.

Sora [10] also deals with the problem of understanding a software system as a new
developer. She claims that there is often missing some useful information for the new
user to start. In her opinion it would be useful for a start in program comprehension
to have a short list of classes which are the most relevant. In her paper she presents
an approach for identifying the most important classes based on a graph-ranking
algorithm which adapts PageRank. The difference to the dependency graph that we are
using is, that she assigns different weights to the different dependency relationships
between two classes: A dependency gets assigned the value 1, if it is a local variable
dependency. Weight 2 is for a distinct method that is called, weight 3 gets assigned to
the parameters, return values and member dependencies. The highest weight has the
value 4 and gets assigned to inheritance and realization dependencies. In the end the
weight of the edge between two classes is the summation of all dependencies from one
class to the other one.

In another paper of Sora [11], she is adding fuzzy rules which have attributes of
the classes in their premises. These attributes are the size of the class, the weighted
incoming and outgoing dependencies and the PageRank value of the class. She assumes
that a big class which has many interactions with other classes is more likely to be an
important class of the system.

Kamran et al. [12] present an approach that suggests the classes that are potentially
interesting for initially understanding a software system. The assumption they make is
that the maintenance phase of already built software projects is more time consuming
than the development of a new software project. The part that is the most challenging
and the most expensive in terms of time is to build and understand the existing system.
In many cases there is no documentation of the system or similar artefacts available or
it is not reflecting the current state of the system. They state that these central classes
have a supervisory role in the application. They give instructions to a large number of

9

3 Related Work

classes and dictate the work to perform.

Haas [4] deals in his master thesis with the problem of unnecessary code which
is a known waste of time and money in the maintenance phase of large software
projects. His approach applies a heuristic based on stability and decentrality to identify
the unnecessary code. The assumption he makes is that code which is changed very
rarely and only plays a minor role in the software system tends to be not needed. He
tries to find the most stable and decentral files, groups them together and recommends
the biggest chunks as candidates for deletion. The decentrality parameter is computed
using the graph centrality metrics PageRank, Hits and a Markov-chain approach. These
centrality metrics are just utilized in the opposite way. In his case not the highly ranked
results but the lowest ranked files are interesting. The presented approach calculates a
set of the most decentral classes and a set of the most stable classes and intersects them.
The suggestions are gained from this intersecting set by building chunks of unnecessary
code, where the package structure is taken into consideration as well.

10

4 Approach

The goal of this bachelor’s thesis is to find a way to compute the PageRank algorithm
in a more efficient way while the software project and therefore its dependency graph
evolves. The following sections describe the incremental PageRank algorithms which
are taken from the literature and are adapted to fit in our scenario.

4.1 Iterative PageRank

Our incremental approach still utilizes the original PageRank algorithm, but it narrows
down the number of values that have to be recalculated. After finding out which values
have to be recomputed and after scaling all values, the iterative PageRank algorithm
is executed, as depicted in the pseudo code below. Therefore the iterative PageRank
algorithm is explained shortly before presenting the incremental approach.

1: function iterativePageRank(Graph, recalculatedVertices)
2: iterations 0
3: repeat
4: iterations iterations + 1
5: maxDelta 0
6: for each vertex N in recalcualtedVertices do
7: tempPageRank N.getPageRank()
8: N.setPageRank(PageRank(Graph, N))
9: if absoluteValue(tempPageRank, N.getPageRank()) > maxDelta then

10: maxDelta absoluteValue(tempPageRank, N.getPageRank())
11: end if
12: end for
13: until maxDelta < tolerance || iterations > 100
14: end function

The algorithm is presented as a function with two input values: The dependency
graph and the set of vertices that have to be recalculated. The graph is needed to get
the total number of vertices in it as well as the parent vertices of the vertex that is

11

4 Approach

getting recomputed. To determine the PageRank value of a vertex all PageRank values
of vertices that can reach this vertex have to be computed before. That is the case,
because the PageRank value of a node influences all its successive nodes. Therefore
the PageRank formula is applied iteratively to the vertices until the difference between
the old and the new PageRank values is sufficiently small. In the formula that is
expressed by the tolerance. Another boundary is set to the number of iterations. Both
the tolerance and the maximum number of iterations, prevent the program to end in an
infinite loop (Line 13 in the iterativePageRank function). The maxDelta variable makes
sure that all values are sufficiently exact, before the iteration ends. It gets assigned the
maximum difference of an old and new PageRank value of a vertex (Lines 9-11 in the
iterativePageRank function).

To complete the iterative PageRank pseudo code, the PageRank formula already
presented in Chapter 2.2 is rewritten in the pseudo code below as a function with the
graph and the vertex for which the PageRank gets computed as input parameters.

1: function PageRank(Graph, vertex)
2: pageRank d ÷ Graph.getVertexCount()
3: for each vertex N in Graph.getParentVertices(vertex) do
4: pageRank pageRank + N.getPageRank() ÷ N.getChildVertices().size()
5: end for
6: return pageRank
7: end function

4.2 Incremental PageRank

4.2.1 Which PageRank values have to be recalculated and why?

To incrementally recompute the PageRank values, one has to specify first which
PageRank values are affected by the changes made to the graph. There are two possible
ways changes can be made to the graph: The addition or deletion of an edge and the
addition or deletion of a vertex. In our context this means the addition or deletion of a
dependency between two classes or the addition or deletion of a class. In the following
subsections both cases are getting explained in more detail.

Dependency addition or deletion

If a dependency between two classes is added, this is modeled in the dependency graph
as an addition or deletion of an edge.

12

4 Approach

A

B

D

(

)

C

*

ChaQged VeUWiceV AffecWed VeUWiceV AffecWed, DaQgliQg VeUWiceV UQaffecWed VeUWiceV

Figure 4.1: The addition of an edge to the dependency graph

As depicted in Figure 4.1 the addition of an edge between A and B leads to a
recomputation of the PageRank value of B. This is the case, because every PageRank
value depends on the PageRank values of their parent nodes:

PRi(B) = d · 1
n
+ (1� d) ·

✓
PRi(C)

OutDegreei(C)

◆

PRi+1(B) = d · 1
n
+ (1� d) ·

✓
PRi+1(C)

OutDegreei+1(C)
+

PRi+1(A)
OutDegreei+1(A)

◆

with i the state of the graph before the edge addition and i + 1 the state after the
edge addition.

A is also marked as changed, but only because its child nodes will be affected by the
change. These nodes, in our case D, E and F, are affected, because the impact of A’s
PageRank value on these nodes is getting smaller, since A has now one childnode more
than before:

PRi(D) = d · 1
n
+ (1� d) ·

✓
PRi(A)

OutDegreei(A)

◆

PRi+1(D) = d · 1
n
+ (1� d) ·

✓
PRi+1(A)

OutDegreei+1(A)

◆

with OutDegreei(A) = 3 6= 4 = OutDegreei+1(A)

13

4 Approach

But these vertices are not the only ones affected by the change. In fact, all subsequent
vertices of the changed vertices will be affected. They are either childnodes of A (this
scenario was already explained above) or one of their parentnodes PageRank value has
changed. This implies childnodes of changed vertices but also the childnodes of these
childnodes and this scenario continues until there are no subsequent vertices found
anymore. In our scenario in Figure 4.1 this happens for example to G:

PRi(G) = d · 1
n
+ (1� d) ·

✓
PRi(B)

Outdegreei(B)

◆

PRi+1(G) = d · 1
n
+ (1� d) ·

✓
PRi+1(B)

Outdegreei+1(B)

◆

with PRi(B) 6= PRi+1(B) as shown above
The only vertices not affected by the changes are those which are not a subsequent

vertex of a changed vertex, because their PageRank value is only affected by their
parents PageRank value and if no parent PageRank value has changed, there is no need
to recompute the childnodes PageRank values.

The deletion of an edge has similar effects as the addition of an edge. The edge B
also has to be recomputed, because it loses one parent node, the child nodes are also
needed to be recomputed because the outdegree of A is now smaller. And because of
these changed nodes all their subsequent nodes also have to be recomputed, like in the
addition case.

Class addition or deletion

The addition or deletion of a class from a software system leads to the addition or
deletion of a vertex in the dependency graph of the system.

A

B

C

X

<

ChaQged VeUWiceV

AffecWed VeUWiceV

AffecWed, DaQgOiQg VeUWiceV

UQaffecWed VeUWiceV

NeZ VeUWiceV

Figure 4.2: The addition of a vertex to the dependency graph

14

4 Approach

An exemplary situation is displayed in Figure 4.2. There are both a new vertex A and
two new edges inserted, one between A and B and the other one between C and A. The
behavior of an edge addition was already discussed above. The only new thing here
is, that a newly added vertex is added to the list of changed vertices. This is obvious,
because it is not only needed to get recalculated, but it needs to get an initial PageRank
value. In the case of a vertex addition all vertices have to be recomputed intuitively,
but there are vertices which are not directly affected by the new vertex. These are the
same ones as in the edge addition case: All vertices that are no subsequent vertex of a
changed vertex. These not directly affected nodes only have to be scaled by the factor

scalingFactor =
Order o f the graph be f ore the edge addition

Order o f the graph a f ter the edge addition
=

n

m

.

PRi+1(X) =
n

m
· PRi(X) =

n

m
· d · 1

n
+ (1� d) · Â

(q,p)2G

n

m
· PRi(q)

OutDegreei(q)

with PRi+1(Q) = n

m
(Q) similar to PRi+1 as formulated above. This continues until

the border nodes which have no incoming edges. This state is in our example scenario
already reached after one step for the vertex Y:

PRi+1(Y) =
n

m
· PRi(Y) =

n

m
· d · 1

n
= d · 1

m

with n the number of total vertices before the vertex addition and with m the number
of total vertices after the vertex addition. The deletion of a vertex has a similar effect
on the graph. In that case m is equal to n� 1 and in the addition case m is equal to
n + 1. Several vertex additions and deletions are possible as well due to the choice of a
neutral parameter m which is not fixed to n� 1 or n + 1.

4.2.2 What are the steps to compute PageRank incrementally?

At the initial commit the PageRank is computed iteratively with the formula stated in
Section 2.2 until there are no significant changes in the PageRank values between two
iteration steps anymore. Due to the computational accuracy of a computer program
one cannot choose 0 as maximum allowed change because this could lead to a infinite
loop. In every following commit the PageRank values of the graph are only recomputed
partially:

In the pseudo code below the incremental PageRank algorithm is displayed as a
function called incrPageRank. As input parameter the function takes the dependency
graph for which the PageRank has to be computed. To determine which vertices have

15

4 Approach

changed, the function also needs the sets of deleted and added edges as well as the
set of added vertices. The scalingFactor is computed with the formula mentioned in
Section 4.2.1. At first one has to specify which PageRank values will change due to
changes in the dependency graph. If there are no changed vertices found, nothing will
happen to the PageRank values and therefore the old PageRank values will be reused
for this commit. For every edge addition as well as edge deletion (I,J) the vertices
I and J are added to the changed list (Lines 2-5 in the incrPageRank function). For
every vertex addition the added vertex is also added to the changed list (Line 6 in
the incrPageRank function). After that all vertices affected by the changed vertices are
searched as described by Desikan et al. [6]. But different from this, the vertices are split
up into two sets in our case: vertices which have no successor (danglingVertices) and
vertices which have successsors (recalucalteVertices) (Lines 12-25 in the incrPageRank

function). The set of dangling vertices is treated differently, because these PageRank
values will not influence the PageRank value of other vertices. Therefore, the PageRank
value of dangling vertices does not have to be computed iteratively, but only once after
all other vertices get assigned their PageRank values. All nodes that already existed
in the previous commit are then getting assigned their old PageRank value times the
scalingFactor already mentioned above. All added vertices get assigned an initial value
(Lines 26-32 in the incrPageRank function):

initialValue =
1

total number o f vertices

After the iterative PageRank algorithm is applied to the set of vertices that have to be
recalculated (Line 33 in the incrPageRank function), the last step is to once recompute
the PageRank value for all dangling vertices (Lines 34-36 in the incrPageRank function),
because their PageRank values do not have any successive nodes of which they could
influence the PageRank value.

1: function IncrPageRank(Graph, newVertices, newEdges, delEdges, scalingFactor)
2: for each edge (I,J) in newEdges or delEdges do
3: changedVertices.add(I)
4: changedVertices.add(J)
5: end for
6: changedVertices.addAll(newVertices)
7: for each vertex N in Graph.getVertices() do
8: if not(changedVertices.contains(N)) then
9: unchangedVertices.add(N)

10: end if
11: end for

16

4 Approach

12: while not(changedVeritces.isEmpty()) do
13: N changedVertices.pop()
14: if N.getChildren().isEmpty() then
15: danglingVertices.add(N)
16: else
17: for each vertex C in N.getChildren() do
18: if unchangedVertices.contains(C) then
19: unchangedVertices.remove(C)
20: changedVertices.add(C)
21: end if
22: end for
23: recalculateVertices.add(N)
24: end if
25: end while
26: for each vertex N in recalculateVertices, danglingVertices, unchangedVertices do
27: if N.pageRankValue.exists() then
28: N.pageRankValue N.pageRankValue · scalingFactor
29: else
30: N.pageRankValue 1 ÷ Graph.getVertexCount()
31: end if
32: end for
33: IterativePageRank(Graph, recalculateVertices)
34: for each vertex N in danglingVertices do
35: PageRank(Graph,N)
36: end for
37: end function

4.3 Approximated Incremental PageRank

In addition to the already presented incremental PageRank algorithm, there is another
possibility to improve the efficiency of our approach. The idea for this improvement is
taken from Chien et al. [7] and combined with the already presented approach.

4.3.1 Which values have to be recomputed and why?

The values that have to be recomputed are very similar to those of the purely incre-
mental approach. The only set that changes is the set of affected vertices. In the
approximated incremental algorithm not all subsequent vertices of the changed vertices
are added to the set of affected vertices. All changed vertices get assigned the weight

17

4 Approach

1. All subsequent vertices also get weights assigned, but they are getting smaller and
smaller depending on both the number of other child nodes of their parent node and
the distance to the changed vertex. All vertices which have a weight that is bigger than
a certain threshold will be recalculated and the others will keep their old values only
being scaled if the total number of vertices changed. Therefore, these vertices will be
treated as unaffected even though they can be reached from a changed vertex. The
formula for calculating the vertex weights is taken from Chien et al. [7]:

Weight(Vertex) =
Weight(ParentVertex)� d

OutDegree(ParentVertex)

0.500

0.125
0.124

0.125

0.124

0.125

0.500

0.1250.249

0.249

1
0.124

0.124

0.248

CKaQJed VeUWLceV AffecWed VeUWLceV (ZeLJKW > 0.2) UQaffecWed VeUWLceV (ZeLJKW¬�¬0.2)

Figure 4.3: Example of a dependency graph with weights and a tolerance of 0.2

The dependency graph in Figure 4.3 displays how the weight assignment works. The
changed vertex gets assigned the weight 1.The two children of the changed vertex get
assigned the approximated weight of 0.5, because d has a value of 0.001 in our case.
Now there can be seen a big difference between what is happening next on the left
and on the right side of the changed vertex. On the left side the vertex with weight 0.5
only has two children, so they both have a higher value than the four children of the
vertex with weight 0.5 on the right side of the changed vertex. On the left side there can
be seen three affected vertices in a row that all have a weight higher than the chosen
tolerance of 0.2. On the right side the weight is already smaller than 0.2 after one step.
Therefore, Figure 4.3 shows very well that both the distance from the changed vertex
and the OutDegree of the parent node influence the weight of a vertex. The assumption
that was made by Chien et al. is, that the smaller the weight is, the less their PageRank
value is influenced by the changed vertex [7].

18

4 Approach

The pseudo code below shows the approximated incremental PageRank algorithm,
which is very similar to the incremental PageRank algorithm. The only section that
is different from the incremental PageRank is the one where the affected vertices are
computed (Lines 12-37 in the approxIncrPageRank function). In the lines 12-15 every
changed vertex gets assigned the weight 1. After that all subsequent children are added
to the changed vertex list, if their weight is greater than the tolerance (lines 23-27 in the
approxIncrPageRank function). Lines 28-32 deal with the special case that the child node
has already been removed from the unchanged vertices set. If the new weight is greater
than the old weight of the vertex, the vertex gets assigned the new value. If the vertex
is already removed from the changed vertices set it is added again, because all sub-
sequent vertices will also have a higher weight, which may be greater than the tolerance.

1: function approxIncrPageRank(Graph, newVertices, newEdges, delEdges, scaling-
Factor, tolerance)

2: for each edge (I,J) in newEdges or delEdges do
3: changedVertices.add(I)
4: changedVertices.add(J)
5: end for
6: changedVertices.addAll(newVertices)
7: for each vertex N in Graph.getVertices() do
8: if not(changedVertices.contains(N)) then
9: unchangedVertices.add(N)

10: end if
11: end for
12: for each vertex N in changedVertices do
13: N.setWeight(1)
14: end for
15: while not(changedVeritces.isEmpty()) do
16: N changedVertices.pop()
17: if N.getChildren().isEmpty() then
18: danglingVertices.add(N)
19: else
20: for each vertex C in N.getChildren() do
21: weight calculateVertexWeight(N);
22: if unchangedVertices.contains(C) then
23: if weight > tolerance then
24: C.setWeight(weight)

19

4 Approach

25: unchangedVertices.remove(C)
26: changedVertices.add(C)
27: end if
28: else if C.getWeight() < weight then
29: C.setWeight(weight)
30: if not(changedVertices.contains(C)) then
31: changedVertices.add(C)
32: end if
33: end if
34: end for
35: recalculateVertices.add(N)
36: end if
37: end while
38: for each vertex N in recalculateVertices, danglingVertices, unchangedVertices do
39: if N.pageRankValue.exists() then
40: N.pageRankValue N.pageRankValue · scalingFactor
41: else
42: N.pageRankValue 1 ÷ Graph.getVertexCount()
43: end if
44: end for
45: IterativePageRank(Graph, recalculateVertices)
46: for each vertex N in danglingVertices do
47: PageRank(Graph,N)
48: end for
49: end function

The function calculateVertexWeight(parentVertex) is called by the approxIncrPageRank

function above and contains the formula by Chien et al. [7] reformulated in pseudo
code. Because the formula does not need any information of the vertex itself it just gets
called with its parentVertex as parameter.

1: function calculateVertexWeight(parentVertex)
2: weight (parentVertex.getWeight() - 0.001) ÷ parentVertex.getOutDegree()
3: return weight
4: end function

20

5 Evaluation

In the evaluation we want to measure at first the runtime improvement of the incre-
mental approaches. We use different software projects that vary in size, programming
language and functionality. After checking the runtime, we evaluate how precise
the computation is by comparing the rankings of the standard with the incremental
PageRank by utilizing the Spearman’s rank correlation metric. Finally, we apply the
incremental approaches to problems of software analysis and compare the results with
the standard PageRank.

5.1 Research Questions

In this bachelor’s thesis the following research questions will be proposed and their
results are presented and discussed.

RQ1: How much faster is an incremental approach compared to the standard Page-
Rank algorithm? The first question deals with the runtime improvement of an incre-
mental approach. We developed two algorithms for this evaluation: One of them is
incremental and the other one approximates the incremental approach. We compare
the incremental algorithm and several different approximated incremental approaches
with different thresholds in terms of their runtime.

RQ2: How much do the incrementally calculated ranks deviate from the standard
PageRank algorithm? It is not enough to have a runtime improvement. More im-
portantly, the approximated incremental values need to be close to the exact ones.
This research question investigates deviations when calculating PageRank values in an
incremental software analysis using spearman’s rank correlation metric.

RQ3: How much do the results of code centrality analysis based on PageRank devi-
ate when applying an incremental approach? The first two questions deal with the
runtime improvement as well as with the accuracy of the values. Now, the only thing left
to discuss is, whether this is now truly applicable in the software analysis field or not.
To find out if that is the case we apply our approach in two different use cases, namely
the unnecessary code identification [4] and the central class recommendations [3].

21

5 Evaluation

5.2 Study Objects

We evaluate our approach with different source code projects which are mostly taken
from Github. The chosen projects are: Teamscale1, Jabref2, MySQL Server3, Mozilla4,
Apache Ant5 and an anonymous project. We selected the projects such that we get
different programming languages and different project sizes. To assure the quality
of the software projects we chose projects which are well-known and highly rated on
GitHub. Two projects are closed source and the development teams of these projects
provided both their source code and their history to us so that we can also evaluate
our work on these projects. We used projects of different sizes to be able to make
statements that apply both for smaller projects like Jabref or Apache Ant, as well as
for larger projects like MySQL Server the anonymous project or Mozilla. To have a
decentral type of software structure in our study, we included the Apache Ant library
project. Library projects have a decentral structure, because they consist of several
independent functionalities which are independent of each other. This leads to a
low-coupled dependency graph. To determine whether our approach is restricted to
one programming language or not, we chose projects written in different languages:
Java, C# and C++. We also display the time span for which we evaluated the projects.
The time spans vary due to the variation in the number of commits per time unit. For
example, it took an analysis time span of 8 years for the Apache Ant project to get
850 commits whereas the Mozilla project had more than 2000 commits in 2 months.
Especially the huge projects with many lines of code tend to have a much higher
amount of commits during a smaller time span than the small projects.

Project Lang. SLOC Commits Time span
Jabref Java 121,600 1,700 3 years
Apache Ant Java 140,300 900 8 years
Teamscale Java 513,300 1400 1.5 years
Anon. Project C# 914,800 4,000 1 year
MySQL Server C++ 2,315,600 3,400 2 years
Mozilla C++ 7,704,100 2,400 2 months

Table 5.1: Metrics of the study objects

1https://www.cqse.eu/en/products/teamscale/landing
2https://github.com/JabRef/jabref
3https://github.com/mysql/mysql-server
4https://github.com/mozilla/gecko-dev
5https://github.com/apache/ant

22

5 Evaluation

In this bachelor’s thesis, we deal with the change of the projects during a chosen
time span. To get an impression of how big this change is, we present in Table 5.2
the amount of classes and dependencies for the first commit analyzed (First Commit
column) and for the last commit (Final Commit column). The history analysis tool
we use, called Teamscale, splits up commits with a huge number of changes into
several smaller analysis steps to improve the runtime. Therefore especially the first
commit is split into several analysis steps. The analysis of the project starts with a
small portion of the software project and after every analysis step another portion is
added to the already existing one. This process continues until the whole project is
analyzed. Therefore, the analysis tool has to deal with a huge amount of change per
analysis step until the first commit is completely analyzed. For example the Mozilla
project needs about 100 analysis steps to get from 0 classes to 28,000 classes. After
that, there are only added 400 new classes during the whole analyzed time span. The
last column shows the average amount of classes that are changed in one analysis step
relatively to the total number of classes. As stated above, the analysis until the first
commit is finished, is just an implementation detail of Teamscale and thats why we
did not take those analysis steps into account when measuring the average amount of
change. We still mentioned this implementation detail of Teamscale, because it will
explain some behaviors of the PageRank values in our explanation. The reason why
the average changes are proportionally higher compared to the total amount of classes
for the first three projects is that in these cases there exist a smaller amount of total
classes. Nevertheless, one can see that the amount of changes is especially for large
projects relaitvely small compared to the total number of classes in the project.

First Commit Final Commit
Project Classes Deps. Classes Deps. Avg. Change [%]
Jabref 700 3,800 1,500 7,500 5.96%
Apache Ant 1,200 5,000 1,300 5,500 1.74%
Teamscale 7,700 46,700 6,500 43,000 1.14%
Anon. Project 10,000 56,500 11,000 63,400 0.48%
MySQL Server 5,400 21,000 8,000 43,100 1.00%
Mozilla 28,300 122,500 28,700 124,300 0.12%

Table 5.2: Metrics of the study objects showing the change during the time span dis-
played in Table 5.1

23

5 Evaluation

5.3 Study Design

The basis for all three research questions is the history analysis of the software projects.
This analysis contains the computation of the dependency graph of every commit.
Based on this information the different incremental PageRank algorithms presented
in Chapter 4 can be performed. In the first step the PageRank is computed normally.
In every following step there is not only computed the standard PageRank, but the
two different proposed incremental algorithms as well. In total there are 8 different
incremental approaches computed per step: The purely incremental one and 7 different
approximated incremental approaches with different thresholds. The chosen thresholds
are: 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0. These values are getting stored for each
approach and are reused in the following analysis step. Every approach reuses the
values of their own previous computation.

For the standard PageRank values we rely on a slightly adjusted version of the library
of Jung to have a reasonable basis to which the incremental values can be compared to.
The small adjustments were only made to guarantee the applicability of the approaches
from the papers of Desikan et al. [6] and Chien et al. [6] and do not falsify the results.
The parameter dealing with the disappearing potential is used in the Jung library but
is left out in both of the used papers. That is why we left this factor out as well.

In the following, we describe our study design to answer the research questions.

5.3.1 RQ1: How much faster is an incremental approach compared to the
standard PageRank algorithm?

To get the runtime improvement of the different incremental approaches, we measure
the time needed to incrementally compute the new PageRank values for each analysis
step and for each PageRank approach. The time needed for the standard PageRank
computation is also measured for each analysis step as a reference value. The measured
time contains the computation of the affected vertices, the assignment of the values
to the vertices and the partial recomputation of PageRank. In case of the standard
PageRank the measured time contains solely the computation needed for the PageRank
algorithm. The additional computations of the incremental approaches which are not
needed by the standard PageRank are also considered for comparing the standard
PageRank to the incremental approaches. This makes the results more comparable than
only taking the PageRank computation time and the partially recomputation time of
the incremental approaches into account.

24

5 Evaluation

5.3.2 RQ2: incrementally calculated ranks deviate from the standard
PageRank algorithm?

In the software analysis applications that use the PageRank, the actual PageRank values
themselves are not that important. The PageRank values will be transferred to rankings.
This means that the incremental approaches do not need to have the same values as
the standard PageRank. The only thing that matters are the ranks that the incremental
PageRank values produce. The ranks of the standard PageRank and the incremental
PageRanks should be as similar as possible. For each incremental PageRank approach
the spearman’s rank correlation metric is computed with the standard PageRank ranks
as target values to measure the equality of the rankings.

5.3.3 RQ3: How much do the results of code centrality analysis based on
PageRank deviate when applying an incremental approach?

To find out, how useful the incremental approach is in software analysis, the incremental
PageRank approaches are applied to the already mentioned problems central class
recommendation and unnecessary code identification. In the case of the central class
recommendations we compare the top 10 classes of each incremental approach with
the ones of the standard PageRank. To measure the applicability of the incremental
approaches for the unnecessary code identification we compare the results the approach
of Haas [4] returns for the standard PageRank algorithm and the different incremental
PageRank algorithms.

5.4 Results

For every research question we collected the runtimes and the rankings for all different
incremental PageRanks as well as for the standard PageRank in each analysis step and
in the following, we present the results.

5.4.1 RQ1: How much faster is an incremental approach compared to the
standard PageRank algorithm?

In Figure 5.1 the time needed for the whole PageRank computation of all analysis steps
is displayed for every PageRank approach. To make a comparison between the different
projects easier we did not show the absolute time needed in seconds. The runtimes
of the different projects differ a lot depending on the size of the projects as well as
on the number of commits that were analyzed during the selected time spans. To get
rid of all these differences, we present the runtimes proportional to the time needed

25

5 Evaluation

by the calculations of the standard PageRank. This means the standard PageRank
runtime is always set to 100% as reference value and the other runtimes are presented
proportionately to this one.

The figures show that the different incremental approaches lead to a runtime im-
provement. This improvement is different for the projects. The incremental PageRank
without any approximation takes the longest. For the MySQL Server project the in-
cremental PageRank needs 80% of the original PageRank time and in the Apache Ant
project and the Mozilla project, it is even worse than the standard PageRank runtime.
This shows how important it is to approximate the incremental computation. With
an approximation threshold of 0.001 the computation is already 3 times faster than
without any incremental approach. The runtime difference between the thresholds is
the smallest for Jabref and for the Apache project.

In the case of a much bigger project like the MySQL Server or Mozilla, the computa-
tion of the affected nodes is not too time consuming compared to the time needed by
the standard PageRank, at least when looking at the approximated PageRank values in
Figure 5.1. That the size of the project influences the runtime improvement of different
thresholds can be seen when comparing Jabref and MySQL Server. Whereas a threshold
of 0.05 is in the case of MySQL Server already big enough to make it 10 times faster
than the original PageRank, the threshold for Jabref needs a significantly less precise
threshold of 0.2 to make the computation 10 times faster which can also been seen in
Figure 5.1.

0%

20%

40%

60%

80%

100%

Jabref Apache Teamscale MySQL Server Anon. Proj. Mozilla

Ti
m

e
pr

op
or

tio
na

l t
o

th
e

st
an

da
rd

 P
ag

eR
an

k
[%

]

PageRank Incremental PageRank Approx. Incr. PR (t=0.001)

Approx. Incr. PR (t=0.01) Approx. Incr. PR (t=0.05) Approx. Incr. PR (t=0.1)

Approx. Incr. PR (t=0.2) Approx. Incr. PR (t=0.5) Approx. Incr. PR (t=1.0)

Figure 5.1: The summed up runtime of the different PageRank approaches

26

5 Evaluation

To get a better feeling for the runtimes of the single analysis steps, Figure 5.2 and
Figure 5.3 each display 500 commits for Jabref and MySQL Server, respectively. Here
again, we did not choose the absolute values, but the runtimes proportional to the
standard PageRank. That is why the standard PageRank has always a value of 100%.
The figures show how much the incremental approaches improve the runtime. The
higher the threshold of the approximated incremental PageRank, the better the runtime.
Nevertheless there are still some commits where the runtime of the PageRank gets
closer to the runtime of the standard PageRank, but mostly the improvement is very
high. In the case of the incremental PageRank in Figure 5.3 this is not the case, but it
is already noticeable in Figure 5.1 that the runtime of the incremental approach is not
significant better for the MySQL Server project.

0

20

40

60

80

100

120

0 100 200 300 400

Ru
nt

im
e

pr
op

or
tio

na
l

to
 P

ag
eR

an
k

ru
nt

im
e

[%
]

Commit Number
 PageRank Incremental PageRank Approx. Incr. PR (t=0.001) Approx. Incr. PR (t=0.1)

Figure 5.2: The Runtime of Jabref for every commit

0

20

40

60

80

100

120

140

0 100 200 300 400

Ru
nt

im
e

pr
op

or
tio

na
l

to
 P

ag
eR

an
k

ru
nt

im
e

[%
]

Commit Number
 PageRank Incremental PageRank Approx. Incr. PR (t=0.001) Approx. Incr. PR (t=0.1)

Figure 5.3: The Runtime of MySQL Server for every commit.

The two figures also show that the runtime improvement of the approximated

27

5 Evaluation

PageRank is higher for the MySQL Server project than for the Jabref project compared
to the standard PageRank times.

In Figure 5.4 the different amounts of classes that have to be recomputed on average
are displayed. Due to comparison reasons we again do not use the absolute values.
In this case we use the amount of classes proportional to the total number of classes
in each project. When comparing the different projects with each other it can be
seen that the relative amount of classes that have to be recomputed is higher for the
smaller projects than for the big projects. Therefore, especially the improvement of the
approximated incremental PageRank approaches is getting higher with an increasing
size of the projects which can be also seen in Figure 5.1. The improvement of the
incremental PageRank is not necessarily getting higher depending on the size of the
project. A threshold of 1.0 of the approximated incremental PageRank means that only
the changed values and no affected values at all are getting recomputed.

0%

10%

20%

30%

40%

50%

60%

Jabref Apache Teamscale MySQL Anon. Proj. Mozilla

Am
ou

nt
 o

f c
la

ss
es

 p
ro

po
rt

io
na

l
to

 to
ta

l n
um

be
r o

f c
la

ss
es

 [%
]

Incremental PageRank Approx. Incr. PR (t=0.001) Approx. Incr. PR (t=0.01) Approx. Incr. PR (t=0.05)

Approx. Incr. PR (t=0.1) Approx. Incr. PR (t=0.2) Approx. Incr. PR (t=0.5) Approx. Incr. PR (t=1.0)

Figure 5.4: The amount of classes that get recalculated

5.4.2 RQ2: How much do the incrementally calculated ranks deviate from
the standard PageRank algorithm?

In Figure 5.5, the spearman’s rank correlation metric is displayed to measure the
equality of the ranks of the incremental and the standard PageRank. This metric
was computed for all projects after analyzing the given number of commits for all
incremental approaches, captured in Table 5.1. The best result in terms of accuracy is

28

5 Evaluation

reached with the Jabref project. For the Apache Ant project the spearman’s metrics are
the worst.

Another interesting aspect is the approximated incremental PageRank with a thresh-
old of 1.0. The only values that get recomputed in that case are those which have been
changed since the last commit. This means that no affected values are recomputed.
For the Jabref project this is still a metric with comparatively good results. It is not
much worse than the approaches with smaller thresholds that also recompute affected
classes. When looking at the bigger projects like Mozilla one can see that there is a
significant loss of accuracy with a threshold of 1.0 as well as for a threshold of 0.5. This
shows that the selection of the threshold is not independent of the size of the project.
The bigger the project, the smaller the threshold has to be to still get sufficiently exact
values. This is the case, because the number of recalculated vertices is in both cases
very similar for the approximated incremental PageRank. This makes the proportional
amount of recalculated vertices smaller for the bigger projects and leads to a smaller
overall precision for the bigger projects if the threshold gets too high.

0.9

0.92

0.94

0.96

0.98

1

Jabref Apache Teamscale MySQL Anon. Proj. Mozilla

Th
e
Sp

ea
rm

an
͚s

m
et

ric

PageRank Incremental PageRank Approx. Incr. PR (t=0.001)
Approx. Incr. PR (t=0.01) Approx. Incr. PR (t=0.05) Approx. Incr. PR (t=0.1)
Approx. Incr. PR (t=0.2) Approx. Incr. PR (t=0.5) Approx. Incr. PR (t=1.0)

Figure 5.5: The spearman’s rank correlation metric for all projects.

To get a better feeling for the spearman’s metric, it is also interesting to look at a
particular ranking of one project. In Figure 5.6 the ranks of the different PageRank
approaches are displayed for one particular commit of Teamscale. This is the last
commit analysed in the history analysis, so before this ranking is reached there were
about 1400 commits already computed incrementally. For every PageRank approach
the classes were sorted and ranked according to their PageRank values. The x-axis
of the Figure 5.6 shows the number of different classes which are sorted according to
their standard PageRank ranks. The purely incremental PageRank ranks are almost
identical to the standard PageRank ranks. The only difference is, that at rank 4000 the

29

5 Evaluation

incremental PageRank ranks start to grow faster, but the sortation of the ranks is not
lost. The incremental PageRank and the approximated incremental PageRanks with
a threshold of 0.001 and 0.01 are very close to the purely incremental line, with only
a few ranks that are scattering. We did not display these here, because one can not
differentiate between these and the incremental PageRank. For every higher threshold
like 0.05 or even 0.2, the scattering of the values is getting more and more, but still
the number of scattering values is very small compared to the total number of classes
ranked.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000

Ra
nk

Class Numbers sorted by standard PageRank ranks

Approx. Incr. PR (t=0.2) Approx. Incr. PR (t=0.05) Incremental PageRank PageRank

Figure 5.6: The ranks of the classes of the Teamscale project.

Figure 5.7 presents how the spearman’s rank correlation evolves over two years. The
commits were selected from the MySQL Server project to analyze a project with an
average size compared to the other study objects. The first noticeable thing is the signif-
icant drop in the figure that gets bigger with an increasing size of the approximation.
After this initial drop all metrics grow again and start to converge to a specific value.
There is still a very small decline noticeable, but considering the overall time of 2 years
and a decline of less than 0.001 during this timespan this can be neglected. The metrics
of the incremental approaches with a threshold of 0, 0.001 and 0.01 can not be easily
identified, because they are all very close to 1.

30

5 Evaluation

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

aug sep okt nov dez jan feb mar apr mai jun jul aug sep okt nov dez jan feb mar apr mai jun

Sp
ea

rm
an

͚s
m
et
ric

Month

t=0 t=0.001 t=0.01 t=0.05 t=0.1 t=0.2

Figure 5.7: The spearman’s metric of the incremental approaches of the MySQL Server
project over time.

5.4.3 RQ3: How much do the results of code centrality analysis based on
PageRank deviate when applying an incremental approach?

Central Class Recommendations

The central class recommendations problem of Steidl et al. [3] show the importance of
an incremental PageRank approach, because otherwise the PageRank values would be
recomputed for every commit from scratch which leads to high computational costs. In
Figure 5.8 the 10 most important classes of the incremental approach with a threshold of
0.01 are compared to those of the standard PageRank. The green bars are representing
the amount of classes that have the same rank as in the standard PageRank case. The
yellow bars represent those classes which do not have the same rank, but are still part
of the ten classes identified as most important. The amount of classes that is not in the
top 10 anymore is visualized by the red bars. When leaving out the Apache Ant project
which already lead to bad results in RQ2 one can see that with an increasing size of the
project the result is getting worse. In the case of Jabref all classes are found and even
have the right rank. When looking at the Teamscale project, there are two classes which
have the same rank as in the standard PageRank case. Though, in total there is no class
that does not belong to the most central classes, which is still good. For the Mozilla
project, we have 2 classes that do not belong to the 10 most central classes and only
two classes are left that have the same rank.

31

5 Evaluation

0

1

2

3

4

5

6

7

8

9

10

Jabref Apache Teamscale MySQL Server Anony. Proj. Mozilla

N
um

be
ro

fC
la

ss
es

same rank in top 10 not in top 10

Figure 5.8: The 10 most central classes of the software projects.

Unnecessary Code Identification

The unnecessary code recommendation of Haas [4] is another problem where the
incremental PageRank approaches would benefit in terms of runtime. The runtime
improvement was already described in RQ1, but the precision of the result has to be
validated as well. In this case, there are not recommended single classes, but buckets of
classes. Each buckets contains classes of the same directory. In total, there are always
10 buckets recommended and in the Figure 5.9 one can see how many of those are
found utilizing an incremental approach instead of the standard PageRank.

0

1

2

3

4

5

6

7

8

9

10

Jabref Apache Ant Teamscale MySQL Server Anon. Proj. Mozilla

N
um

be
ro

fC
la

ss
es

included partially included not included

Figure 5.9: The unnecessary code buckets recommended utilizing the incremental
PageRank.

32

5 Evaluation

The green section displays the buckets that were found. The yellow section represents
those buckets which are only partially found and the red ones are the ones which
were not recommended at all. A very interesting observation is, that every incremental
approach returns the same results for every project. This is why we do not have to
specify which incremental approach we used in this case. The best results are scored
again with Jabref. With an increasing size of the project, the results are getting worse
but the amount of wrong buckets still stays small. For the Mozilla project there was no
bucket completely found, but still there only 3 buckets wrong. The only project that
does not fit in is Apache Ant. In that case the most wrong buckets are recommended.

5.5 Discussion

5.5.1 RQ1: How much faster is an incremental approach compared to the
standard PageRank algorithm?

The improvement of the PageRank computation varies depending on the chosen
threshold. The incremental PageRank without any approximation takes by far the
longest, because the most values have to be recomputed, which can be seen in Figure 5.4.
In this case, all successive nodes are marked as affected which leads in a highly coupled
project to a recomputation of almost all values. For example, for MySQL Server more
than the half of the classes are recomputed on average, which is a lot, considering
that only 1% of the total classes are changed on average. The runtime improvement
of the small projects is the smallest, because the original PageRank does not take too
much time in that case. This makes the incremental approaches less effective due to the
additional time they need for computing the affected vertices. For a sufficiently large
dependency graph the additional costs of the incremental approaches are negligible
compared to the amount of time the original PageRank needs. But this is only the case
for the approximated approaches. The incremental approach without approximation
needs to recompute too many vertices to make it effective and also the time needed to
traverse half of the graph to assign 50% of the graph as affected takes a long time. If
only less than 10% of the total classes in MySQL Server have to be recomputed instead
of 30% in Jabref, as it is the case for the approximated approach with a threshold of
0.001, this leads to different improvements of the runtime.

In Figure 5.2 and in Figure 5.3 there are still some commits where the runtime of the
PageRank is closer or even worse than the standard PageRank computation. Especially
for the MySQL Server, the incremental approach is often close to the standard PageRank
time. This is the case due to the amount of changes that have to be considered in that
specific commit.

The curves of the incremental and approximated incremental approaches are closer

33

5 Evaluation

to each other in the Figure 5.2 of Jabref, because the amount of classes that have to be
recalculated are also closer to each other (displayed in Figure 5.4). The approximated
incremental PageRank with a threshold of 0.001 recalculates half of the classes that the
incremental PageRank needs in that case, whereas the incremental PageRank needs 4
times the amount that the approximated approach needs for the MySQL Server project.

5.5.2 RQ2: How much do the incrementally calculated ranks deviate from
the standard PageRank algorithm?

The accuracy of the incremental approaches are not independent of the size of the
analyzed software project. The best results are scored for the Jabref, due to the com-
paratively small project size. The Apache Ant project is also small, but in that case the
structure of the software project is not ideal for an incremental PageRank computation.
In contrast to the other projects, the Apache Ant project is a library and the dependency
graph of a library consists typically of several independent subcomponents. This is
the case, because a library always provides several different and independent services
to the user. This decentral structured software project shows, that the incremental
approach is not applicable for all types of software projects.

In Figure 5.5 the different incremental PageRank ranks start to grow faster after the
4000th rank. That is the case due to very small computation errors that occur in the
incremental algorithm. If two values have the same value in the standard PageRank
approach, there can be already a very small rounding error, which leads to two ranks
instead of one when transferring the PageRank values to ranks. Over time the amount
of additional ranks gets bigger and that is why the incremental PageRank ranks start
to grow faster after a certain amount of time.

In Figure 5.7 the spearman’s rank correlation metric is displayed for several con-
secutive months. At first the metric gets clearly worse, especially for the higher
approximation levels. The reason for this is the way the history analysis is implemented
in Teamscale, the tool used to analyze the projects. Due to runtime reasons the first
commit gets split into several analysis steps and these analysis steps are already com-
puted incrementally after the initial analysis step. This leads to a huge amount of
change for every analysis step during the first commit. As already stated, the amount
of change drops significantly and the incremental approaches start to deal with smaller
portions of the graph and can improve the errors made during the time the changes
were as high as in the initial commit phase. The reason for this is that the incremental
approaches from the literature were originally designed for only a small amount of
changes per time step. Adding a relative high amount of changes for several commits
in a row leads to high computational errors. In the case of the Mozilla projects, where
the initial commit needs 130 analysis steps to analyze the whole system, there are on

34

5 Evaluation

average 10% of all classes modified per step. After the first commit is analyzed, the
average rate of changed classes compared to the total number of classes reduces to an
average of 0.1%.

After the initial commit the relative amount of changed classes gets significantly
smaller. Thus, only small parts of the graph are updated which can correct the
computational errors of this part of the graph made during the initial analysis phases
of the first commit due to the recomputation.

After the errors are corrected, the metric values converge to different values and
do not fluctuate significantly. This shows that the incremental approximations are
very stable and can even correct errors made. It can also be seen that the incremental
approaches are not applicable, if the amount of change is constantly that high. This
behavior is not common for a single commit and even the high amount of change is
only due to the implementation used and can be adapted such that we start with the
incremental approach not before the initial analysis is finished.

5.5.3 RQ3: How much do the results of code centrality analysis based on
PageRank deviate when applying an incremental approach?

Central Class Recommendations

Having not the exact same rank as in the standard PageRank case is a common issue for
most of the projects. Since the exact rank of the most central classes is not important,
it is still sufficient, if the classes are contained in the 10 most central ones, which is
mostly the case. Nevertheless, there exist some wrong classes which should not be
contained in the 10 most central classes. Though, considering the 8,000 classes that
for example the MySQL Server project contains in total, a success rate of 70% is still
very good. Besides, the ranks of the missing three classes are very close to their actual
value compared to the total amount: The incremental approach with a threshold of 0.01
assigns those the ranks 14, 19 and 23. This makes it precise enough, because there were
7 out of 10 classes found.

Unnecessary Code Identification

The different incremental approaches return all the same results. The most decentral
classes are those classes which are not highly coupled to other classes and the most
stable classes are those who are not changed very often. Both, the decentrality and
the stability lead to the fact that these classes are never or at least not often reached
by the incremental approaches. This is the case, because those approaches only
recompute changed vertices and vertices affected by those changes. Due to the stability

35

5 Evaluation

of unnecessary classes they are not changed often and due to their decentrality they
are rarely part of the affected vertices.

The recommendation of the partial buckets seems bad first, but it still leads to the
directory where the unnecessary code was found. This makes it more likely that the
programmer will find those classes not recommended by the incremental approach.

5.6 Threats to Validity

5.6.1 Internal Validity

The implementation of the incremental PageRank depends on the correct calculation of
the changes made to the dependency graph of the software system and the calculation
of the dependency graph itself on the one hand. On the other hand it relies on
the correct implementation of the used PageRank library. For the calculation of the
dependency graph we use a mature software analysis system, called Teamscale6 ,
which makes it very reliable. The used library is the JUNG library7, the Java Universal
Network/Graph framework. This library is often used in software projects, which
makes it also very reliable and the fact that it is open source made it easy to check if
the internal computations are correct.

5.6.2 External Validity

The generalization of a software analysis related project is often very difficult. This
is also true for this analysis. Even though different sizes and languages of software
projects were considered and both closed- and open-source project were taken into
consideration, it can still not be generalized for all possible software projects [13].
The evaluation has shown that the different incremental approaches indeed lead to
a runtime improvement whereas the values are still very precise, depending on the
chosen threshold. But there was already one software type, the library project, where
the precision got drastically worse with an increasing threshold, even though the project
itself was very small. Therefore, library projects are already a bad candidate for the
incremental approach. However, we think that a software project with a highly coupled
dependency graph leads to good results.

6https://www.cqse.eu/en/products/teamscale/landing
7http://jung.sourceforge.net

36

6 Conclusion

6.1 Summary

Centrality metrics are not only used for the computation of central pages of the Web
graph for search engines, but also for different centrality related topics in software anal-
ysis, for example, the recommendation of central software classes and the identification
of unnecessary code. Both fields use a graph-based approach for the computation of the
centrality metrics, which makes the computation very time-consuming for big graphs.
In the first commit the centrality metric has to be computed for the whole graph, but we
applied incremental approaches for every following commit due to the relatively small
number of changes that occur. The same holds for Web graphs. The amount of change
per time step is also very small. In Web graphs there were already many incremental
approaches presented and we applied these incremental approaches to the dependency
graph of software systems. We computed the nodes that are affected by the change
and also applied different levels of approximation. The idea was, that all successor
nodes of the changed nodes are those truly affected by the change. We defined a node
to be changed, if it has been added to the graph or a dependency between this and
another class has been deleted or added. This purely incremental approach results only
in a little runtime improvement, because in a highly connected graph this leads to a
recomputation of nearly the whole graph. To improve our approach, we combined two
approaches from the literature and took the incremental approach from one paper and
the approximation formula from the other to gain better results.

We measured the runtime improvement, as well as the precision loss we get for the
different incremental approaches with a variation of the approximation. We evaluated
both, the runtime metric and the spearman’s rank correlation metric, on six different
projects of different size, language and purpose.

We investigated three different research questions related to the applicability of the
incremental approach in the software analysis field. In the first research question we
discovered that there is indeed a runtime improvement if applying an approximated
incremental approach. For the incremental approach, there were projects where the
overall runtime was even worse than for the standard PageRank. Adding a small
approximation to the incremental approach improved the runtime for all sizes and
types of projects. The approximated incremental approach with a threshold of 0.01

37

6 Conclusion

made the overall runtime at least 3 times better for all analyzed software projects.
With the Mozilla project and the Teamscale project, we encountered the best runtime
improvements, because they only needed 12% and 13% of the time needed for the
standard PageRank calculations.

In the second research question, we dealt with the precision loss with the help of
the spearman’s rank correlation metric. The result was that there was definitely a loss
of information, but this loss was very small compared to the amount of classes that
each dependency graph contains. However, we also found out that the incremental
approach is not applicable for every type of software project. The library project
Apache Ant showed a significant loss of precision for approximation levels, whereas
the precision of much bigger projects was still fine. The reason for this is the decentral
structure of library projects in general, because the dependency graphs consist of several
completely independent subgraphs due to the different independent functionalities a
library provides.

The last research question examined how applicable the incremental approaches are
for the two discussed software analysis problems. For both problems, the application
of an incremental centrality calculation showed promising results. For the most central
classes, there were some classes that did not have the exact same rank than they had at
the standard PageRank. Still, they mostly were contained in the top 10 classes and even
if they were not under those, they were not far away from their correct rank: They were
always under the 25 top ranked classes. The unnecessary code identification problem
also showed good results. There were mostly only one or two buckets wrong and
the rest was at least partially contained. The only bad results came from the Apache
Ant project. Though, that the incremental approach is not applicable in that case was
already shown in RQ2. There is a restriction for the incremental approach resulting
from different dependency graph structures. The connectivity of the graph plays an
important role in the PageRank calculation: The higher the connectivity, the better the
results of the incremental approaches.

6.2 Future Work

In this bachelor’s thesis, we relied for the evaluation on 6 software projects. To guaran-
tee the coverage of all possible software project types and languages, one has to make a
much bigger evaluation with a higher amount of projects. Such an enlargement would
enhance the reliability of the results.

The first improvement, which is the approximation of the purely incremental PageRank
approach, was already presented in this thesis. Another interesting idea that might

38

6 Conclusion

improve the approach once more, is to choose a threshold for the approximation de-
pending on the size of the project. As the evaluation has shown: The precision of
the results decrease with an increasing project size. However, the runtime improve-
ment gets bigger for bigger projects. To get the best compromise between runtime
improvement and accuracy, the threshold has to get smaller the bigger the project gets.

39

Bibliography

[1] D. Steidl, B. Hummel, and E. Juergens, “Incremental origin analysis of source code
files,” in Proceedings of the 11th Working Conference on Mining Software Repositories

(MSR’14), 2014.

[2] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code
clone detection: Incremental, distributed, scalable,” in Proceedings of the 26th IEEE

International Conference on Software Maintenance (ICSM’10), 2010.

[3] D. Steidl, “Using network analysis for recommendation of central software
classes,” Technische Universität München, Tech. Rep., 2012.

[4] R. Haas, “Identification of unnecessary source code,” Master’s thesis, Technical
University of Munich, 2017.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” Stanford InfoLab, Tech. Rep., 1999.

[6] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar, “Incremental page rank
computation on evolving graphs,” in Special interest tracks and posters of the 14th

international conference on World Wide Web, ACM, 2005.

[7] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and D Sivakumar, “Link evolution:
Analysis and algorithms,” Internet mathematics, vol. 1, no. 3, 2004.

[8] C. Spearman, “The proof and measurement of association between two things,”
The American Journal of Psychology, vol. 15, no. 1, 1904.

[9] Y. Dodge, “Spearman rank correlation coefficient,” in The Concise Encyclopedia of

Statistics. New York, NY: Springer New York, 2008, pp. 502–505.

[10] I. Şora, “Finding the right needles in hay helping program comprehension of
large software systems,” in Evaluation of Novel Approaches to Software Engineering

(ENASE), 2015 International Conference on, IEEE, 2015.

[11] I. Şora and D. Todinca, “Using fuzzy rules for identifying key classes in software
systems,” in Applied Computational Intelligence and Informatics (SACI), 2016 IEEE

11th International Symposium on, IEEE, 2016.

40

Bibliography

[12] M. Kamran, M. Ali, and A. Ahmed, “Generating suggestions for initial program
investigation using dynamic analysis,” in Communication, Computing and Digital

Systems (C-CODE), International Conference on, IEEE, 2017.

[13] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external va-
lidity in empirical software engineering,” in Proceedings of the 37th International

Conference on Software Engineering-Volume 1, IEEE Press, 2015.

41

	Abstract
	Contents
	Introduction
	Background and Motivation
	Problem Statement
	Contribution
	Thesis Structure

	Terms and Definitons
	Dependency Graph
	PageRank
	Spearman's rank correlation metric

	Related Work
	Approach
	Iterative PageRank
	Incremental PageRank
	Which PageRank values have to be recalculated and why?
	What are the steps to compute PageRank incrementally?

	Approximated Incremental PageRank
	Which values have to be recomputed and why?

	Evaluation
	Research Questions
	Study Objects
	Study Design
	RQ1: How much faster is an incremental approach compared to the standard PageRank algorithm?
	RQ2: incrementally calculated ranks deviate from the standard PageRank algorithm?
	RQ3: How much do the results of code centrality analysis based on PageRank deviate when applying an incremental approach?

	Results
	RQ1: How much faster is an incremental approach compared to the standard PageRank algorithm?
	RQ2: How much do the incrementally calculated ranks deviate from the standard PageRank algorithm?
	RQ3: How much do the results of code centrality analysis based on PageRank deviate when applying an incremental approach?

	Discussion
	RQ1: How much faster is an incremental approach compared to the standard PageRank algorithm?
	RQ2: How much do the incrementally calculated ranks deviate from the standard PageRank algorithm?
	RQ3: How much do the results of code centrality analysis based on PageRank deviate when applying an incremental approach?

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Summary
	Future Work

	Bibliography

