

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Transparent mapping of C++ data
frames to database queries

Alice Rey

Masterarbeit im Elitestudiengang Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Transparent mapping of C++ data
frames to database queries

Matrikelnummer: 1599247
Beginn der Arbeit: 20. April 2020
Abgabe der Arbeit: 20. Oktober 2020
Erstgutachter: Prof. Dr. Thomas Neumann
Zweitgutachter: Prof. Alfons Kemper, Ph.D.
Betreuer: Moritz Sichert, M. Sc.

ERKLÄRUNG

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Augsburg, den 20. Oktober 2020 Alice Rey

Abstract

Relational database management systems are state of the art for relational data pro-
cessing. Especially in-memory databases are well-known for their great performance
on datasets of different sizes. Nevertheless, SQL interfaces tend to be unattractive for
programmers, since they cannot be used directly in the code. DataFrame abstractions
are closely linked to the supporting programming languages and allow the user to run
complex queries line-by-line. In SQL, the user has to create one big nested SQL statement
and pass it to the database. This way, intermediate results can only be generated by
commenting out sections of the query and uncommenting them to return to the whole query.

To overcome the disadvantages of SQL and still be able to work with high-performance
relational databases, we present an approach that combines the advantages of data frames
with those of relational databases. The user interacts with a DataFrame API implemented
in C++. Instead of evaluating the C++ data frames like other data frame supporting
frameworks, we map these to SQL database queries. The generated queries are sent to a
database for the evaluation. Our work is based on the Spark DataFrame API. Therefore,
we evaluate transformations lazily and only trigger the generation of a database query
when an action is called.

We evaluate the performance of our data frame mapping with a benchmark that is based on
the TPC-H and TPC-DS benchmarks. To apply the benchmark queries to the DataFrame
API, we translate them into data frames by chaining Spark’s relational transformations.
We show that our C++ DataFrame API is at least six times faster when using an in-memory
database that works directly on files like Spark. Furthermore, we show that even disk-based
databases can achieve better runtimes than Spark when the data is already stored in the
database.

v

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 2
1.4 Thesis Structure . 3

2 Background 4
2.1 Spark . 4

2.1.1 DataFrame API . 5
2.2 Relational Databases . 13
2.3 In-Memory Databases . 14

3 Approach 15
3.1 Initializing a data frame in the C++ DataFrame API 15
3.2 Analyzing a data frame in the C++ DataFrame API 16
3.3 Evaluating a data frame in the C++ DataFrame API 20

4 Evaluation 30
4.1 Research Questions . 30
4.2 Study Objects . 31
4.3 How fast can a relational database answer data frame queries? 31

4.3.1 Study Design . 31
4.3.2 Results . 32
4.3.3 Discussion . 37

4.4 How fast can a relational database working with CSV tables answer data
frame queries? . 40
4.4.1 Study Design . 40
4.4.2 Results . 41
4.4.3 Discussion . 41

4.5 How time-consuming is the usage of the C++ DataFrame API instead of a
SQL interface? . 42
4.5.1 Study Design . 42
4.5.2 Results . 43
4.5.3 Discussion . 44

4.6 How well can a relational database optimize queries generated from data
frames? . 46
4.6.1 Study Design . 46
4.6.2 Results . 46
4.6.3 Discussion . 50

5 Related Work 52

vii

Contents

6 Conclusion 54
6.1 Summary . 54
6.2 Future Work . 55

Bibliography 59

A TPC-H query 4 (C++ DataFrame API) 61

B TPC-H query 4 (Gen. SQL query) 62

viii

1 Introduction

1.1 Background and Motivation

In the field of relational data processing there exist two types of tools to work with relational
data. The classical approach would be to work with a relational database and send requests
via a SQL interface to the database. This approach is independent of any programming
language which makes it easier to use for non-programmers. As Wu describes in her
work [14], the original purpose of SQL is to be used independently through a terminal.
Nevertheless, today many programmers need to work with the results generated by a
database in their programming environment. They construct the SQL queries as a string
in their program and pass them to a database. When working with raw strings instead
of programming language constructs, the programmer cannot be supported by the IDE
with syntax highlighting or type checking. That makes it difficult for the developer to for
example find out where there might be an issue in the query.

The other option for relational data processing is using data frames. A data frame is a
data structure and can be utilized more procedurally than the SQL query language. The
data structure is implemented in different programming languages and frameworks and is
therefore used directly in general-purpose programming languages. It is supported by the
programming language R [13] and it is the primary data type of the Pandas framework [9]
and the DataFrame API of the Spark framework [1] as well. The Pandas framework is
built on top of the Python programming language whereas Spark is available in multiple
languages, namely Scala, Python, Java, and R.
Since data frames are used inside of program code, they are first and foremost used by

programmers. The idea behind data frames is that programmers can use them directly in
a host language, where they can construct the relational queries by invoking a sequence
of functions. That is why using data frames instead of the SQL database query language
is more procedural. The user can call the operators on the data frame in a sequence one
after the other, which is called method chaining. In SQL, the user has to generate one
single complex query and cannot easily build up the query in small steps. Thus, he or she
is for example not able to check intermediate results. In contrast to SQL, data frames are
not represented as raw strings in a host language but are represented as a data structure
in the language. Therefore, the programmer can be supported with syntax highlighting
and type checking.

SQL APIs are inconvenient to use since constructing a complex SQL query can be very
time-consuming. Building a SQL query stepwise or debugging a query is hard since it
includes a lot of copying, pasting, and commenting out of some parts to be able to execute
only a section of the whole SQL query. Since data frames are built up step by step by
calling different operators, debugging is very easy. Each partial result can be stored in a
variable. A subsection of operators can be combined to one by creating a function in the
host programming language, which makes the operator sequence easier to reuse and less
error prone.

1

1 Introduction

Another option that supports the user to interact with a relational database is the
object relational mapping (ORM). With the ORM abstraction, programmers can map
database tables and their relations to objects in the programming language. The user
can use the objects and their class variables to reference columns of data tables in a SQL
query. Therefore, the queries are not raw strings anymore, which makes it easier to avoid
misspellings in the query. Nevertheless, users often face problems when interacting with
ORM abstractions. These problems can occur due to the underlying database schema
or the entity classes [7]. In addition, the ORM frameworks are usually used in online-
transaction-processing (OLTP) areas for database operations like insertions, deletions or
readings. For complex online analytical processing (OLAP) queries the ORM abstraction
is less helpful. When the user wants to construct a complex query with ORM, the query
is still structured like a standard SQL query. Thus, it still does not enable the user to
sequentially define a query like with data frames.

In SQL, the user is encouraged to focus on high-level functionalities. This makes it easy
for the relational database to optimize the query. SQL query optimizers decide in which
order the sequence of operators is executed [14]. Relational databases are well known for
their great performance on any size of relational data, whereas data frames suffer from
performance issues already for datasets of medium size [10].

1.2 Problem Statement

Programmers find it more and more inconvenient to use relational databases since SQL,
the standard for database management systems, does not support things like syntax-
highlighting but instead uses all capital letters due to historical reasons [14]. When SQL
was invented, syntax-highlighting did not yet exist. Without syntax-highlighting or any
other IDE support, it is hard to understand what a query is doing or to spot invalid parts
in an erroneous query. SQL reports error messages after executing a query, which only
contain the location of the error. Since a SQL query can combine multiple operators into
one query, it is difficult to find out which part of the query causes the error.
Data frames are more user friendly than SQL APIs since they are integrated into

programming languages by different frameworks. The code can be split into functions
that apply a subset of transformations or actions on a passed data frame and return the
resulting data frame. The ability to split the code into smaller pieces makes it easier to
produce intermediate results which helps debugging the query plan of the data frame [2].

1.3 Contribution

In this master’s thesis we present an approach that combines the benefits of the data
frames with those of a relational database. We implemented an API in C++ to work with
data frames. As a reference, we used the implementation of the Spark DataFrame API [2]
in Scala. We implemented a subset of the available transformations and actions of Spark
and made sure that they produce the same results that Spark would produce when called.
Apache Spark is a framework for cluster computing, but it can also be used on a single

2

1.4 Thesis Structure

machine. Databases also support cluster-computing but guaranteeing ACID (atomicity,
consistency, isolation, durability) compliance is more complex in a distributed database
system than on a single machine. In this master’s thesis we focus on the single machine
usage.
Differently from Scala, we do not compute the results of actions ourselves. We imple-

mented a flexible backend that can be connected to different databases. Our C++ version of
Spark transforms the query plan of the data frames into a database query that is passed to
the selected database as soon as an action is called. The main assumption of this master’s
thesis is that we can improve the runtime of Spark’s data frames with a relational database
as backend to evaluate the queries.
Since Spark is an in-memory analytics platform [16], we added in addition to the file-

based relational database management system a second in-memory database for a better
system comparability. As a disk-based database system, we use the open-source system
Postgres [11]. Umbra [8] is a high-performance in-memory database with flash-based
storage as a fallback in case the dataset is too large to fit into RAM. Besides the standard
features of Postgres, Umbra also supports working directly on a CSV file without loading
the data into a database table before executing queries. In addition to the in-memory
property, directly working on CSV files makes Umbra the most comparable to Spark since
the data is not explicitly preprocessed by the database. Since Umbra is a high-performance
database, we expect that the in-memory system answers queries faster than Spark. We
execute different queries with different data sizes on our implementation in C++ with the
two presented databases and compare it to the Spark’s shell in Scala. We expect that
Umbra achieves better results than Spark since it has better query optimization techniques
in addition to the most comparable engine structure.

1.4 Thesis Structure

The thesis is structured as follows: In the following Chapter 2 we explain important terms
that are used in the thesis. Chapter 3 explains how we realized the C++ API and which
steps have to be performed to map a data frame to a database query. In Chapter 4 our
implementation is evaluated with some benchmarks. We evaluate how much time it takes
to transform data frames into SQL queries, how well databases can optimize the generated
queries, and how much faster our implementation is compared to the Spark shell. Chapter 5
gives an overview of related work and we conclude the thesis with a summary and ideas
for future work in Chapter 6.

3

2 Background

In this chapter, we explain basic terms which we use throughout the work. We start with
explaining what Spark is since we use this framework as a base for our implementation. In
addition, we compare the performance of our C++ implementation with the one of Spark.
Afterwards, we go into more details about the Spark DataFrame API since that is the part
of Spark that we are working with. We define what data frames, the core abstraction of the
Spark DataFrame API and our C++ implementation, are. In addition, we show how the
DataFrame API works and how the user can interact with this API to create data frames.
Instead of implementing the same query evaluation functionality as Spark, we work with
two different database management systems. At first, we define what a relational database
is and secondly, we define what the criteria and characteristics of an in-memory database
are.

2.1 Spark

Apache Spark is a cluster computing engine which can be used for multiple purposes
like streaming, graph processing or machine learning. The API of Spark is implemented
in different languages like Scala, Java and Python [2]. The core abstraction of Spark
are Resilient Distributed Datasets, abbreviated RDDs. RDDs are read-only collections.
Therefore, when the user invokes transformations like map, filter or reduce, a new RDD
is generated. If a RDD is lost, Spark can rebuild it starting from data in reliable store.
This is possible since RDDs do not store the data but information about its lineage and all
transformations that have been performed to generate the current RDD. Since Spark is
mostly working on clusters, the data is partitioned across multiple nodes. If a partition
is lost, not all the data is reconstructed but only the data of the failed node. Using this
technique, Spark avoids having to replicate all partitions over the network multiple times
and the batch computation of the data leads to a higher throughput [12]. Since RDDs
do not store the actual data that they represent, they can be evaluated lazily. As soon
as an action is invoked, the computation of the dataset is launched. Actions are output
operations like for example count. Waiting for these operations makes it possible for Spark
to optimize the query plan with things like operation pipelining [2]. Even though in general
RDDs are computed lazily, the user has the ability to store intermediate results in memory.
In addition, the user can optimize the chosen data placement of Spark by controlling the
partitioning of the data. If the user for example wants to join RDDs, it makes sense to
hash-partition the corresponding data in the same way to guarantee that the corresponding
join partners are located on the same nodes [15]. Although RDDs can be optimized due to
their lazy evaluation, the optimizations are limited since Spark does not understand the
structure of the data of an RDD.

5

2 Background

2.1.1 DataFrame API

Spark SQL is an extension of Spark with the goal of supporting relational processing and
using DBMS techniques to provide high performance. It offers a programmer friendly API
that allows to mix relational analytics with complex analytics by constructing complex
pipelines. The entry point for working with the DataFrame API is the SparkSession.
The Scala Spark Shell already initializes a SparkSession object with which the user
can interact. To initialize a data frame from a file, the user needs a DataFrameReader
object. The user can get this by invoking the read() method on the SparkSession object.
With the returned DataFrameReader the user can specify properties of the file with the
different member functions of DataFrameReader. All these functions return a pointer to
the same DataFrameReader object which enables the user to pipeline multiple function
calls. To generate the data frame from the DataFrameReader object, the user has to invoke
the load(...) member function which takes the path to a file as input parameter. In
Listing 2.1, we show how a data frame can be initialized in the Scala Spark Shell.

var dataFrame = spark.read.format ("csv")
.schema(StructType(List(

StructField ("x", IntegerType , false),
StructField ("y", IntegerType , true),
StructField ("z", StringType , false)

)
)). option (" delimiter", "|"). load ("/ path/to/file.csv")

Listing 2.1: Initialize a data frame from a file in the Scala Spark shell

The schema()member function takes a StructType object as input parameter that contains
a list of StructField objects. For every StructField object, we specify the name, the
data type, and if the field is nullable.

Similar to RDDs, data frames are evaluated lazily. The evaluation of a data frame only
starts when certain output operations like count() or show() are invoked. These operations
are called “actions”. As long as only analyzing methods, so called “transformations”, are
called, the program returns a new data frame object. In Table 2.1 we listed important
transformations and shortly explain their purpose. With this technique the engine is able
to perform relational optimization techniques like operation pipelining.

Transformation Input Parameter Meaning
filter(...), where(...) condition Filters the rows with the given

condition.
select(...) columns Selects a set of columns (given as

strings or column objects).
withColumnRenamed(...) column Renames the given column.
withColumn(...) column Adds the given new column or

replaces an existing one if it has the
same name.

drop(...) columns Removes the given column names
from the data frame.

6

2.1 Spark

join(...) join partner,
optional: Join
expression, join
type

Joins the data frame with the given
join partner, which is also a data
frame. As optional parameters, the
user can pass a join expression and an
explicit join type. Supported join
types are “inner”, “outer”,
“left-outer”, “right-outer”,
“full-outer”, “left-semi” and
“left-anti”.

crossJoin(...) join partner Cross joins the data frame with the
given join partner, synonym to
join(...) without optional
parameters.

distinct() Returns only unique rows from the
data frame.

dropDuplicates() optional: columns If no parameter is passed, it is a
synonym for distinct(), otherwise
only the subset of passed columns is
considered for duplicates.

limit(...) number of rows The resulting data frame contains the
first rows of the given data frame,
with the number of rows passed as
parameter.

sort(...), orderBy(...) columns Returns a new data frame which is
sorted by the given columns (given as
strings or column objects).

as(...), alias(...) alias Gives the data frame an alias which
can be referenced later.

groupBy(...) columns Groups the data frame by the given
columns, returns a
RelationalGroupedDataset on which
aggregate functions can be invoked.
Possible functions are listed in
Table 2.2.

rollup(...) columns Creates a multi-dimensional rollup
using the given columns, returns a
RelationalGroupedDataset like
groupBy(...).

cube(...) columns Creates a multi-dimensional cube
using the given columns, returns a
RelationalGroupedDataset like
groupBy(...).

7

2 Background

agg(...) aggregate
expressions

Aggregates on the whole data frame
without groups.

unionAll(...) other data frame Unions the current data frame with
the other data frame.

union(...) other data frame Synonyme for unionAll(...). For a
SQL-style UNION that deduplicates
the result, the user has to invoke
distinct() afterwards.

exceptAll(...) other data frame Removes the rows from the current
data frame that exist in the other
data frame. It preserves duplicates.

except(...) other data frame Removes the rows from the current
data frame that exist in the other
data frame.

intersectAll(...) other data frame Removes the rows from the current
data frame that do not exist in the
other data frame. It preserves
duplicates.

intersect(...) other data frame Removes the rows from the current
data frame that do not exist in the
other data frame.

Table 2.1: Transformations of Spark’s DataFrame API in Scala

Aggregates are a special case in the DataFrame API. There exists one function for aggre-
gates that can be directly invoked on a data frame, namely the agg() function. In this case
the data frame performs the aggregation on the whole set without groups. If the user wants
to perform an aggregation on groups, he or she has to invoke the groupBy(...) function at
first. This function returns a data frame of type RelationalGroupedDataset. In Table 2.2
we listed some of the aggregate functions that are offered by the RelationalGroupedDataset
class. Instead of groups, the user can also invoke the aggregate functions on a multi-
dimensional rollup or cube with the corresponding functions which both also return a
RelationalGroupedDataset object.

In contrast to RDDs, data frames keep track of their schema. Therefore, data frames can be
treated like tables in a relational database. At the same time they can be manipulated like
RDDs. While RDD optimizations are limited since they do not understand the structure
of the data, data frames can support relational operations due to the known schema. This
allows executing more optimized evaluation plans. Spark SQL supports the major SQL
data types and more complex types such as structs, arrays or maps as well. To be able
to execute standard SQL queries, the DataFrame API supports all common relational
operators like join, filter, aggregate and project.

8

2.1 Spark

Aggregate function Input Parameter Meaning
avg(...) optional: columns Computes the mean value for all

given columns for each group. If no
columns are specified, the mean value
for all numeric columns for each
group is computed.

count() Counts the number of rows for each
group.

max(...) optional: columns Computes the maximum value for all
given columns for each group. If no
columns are specified, the maximum
value for all numeric columns for each
group is computed.

min(...) optional: columns Computes the minimum value for all
given columns for each group. If no
columns are specified, the minimum
value for all numeric columns for each
group is computed.

sum(...) optional: columns Computes the sum of all values for all
given columns for each group. If no
columns are specified, the sum of all
numeric columns for each group is
computed.

Table 2.2: Aggregate functions of Spark’s DataFrame API in Scala that can be invoked on
RelationalGroupedDatasets

In addition to the data frames, there exists another important class in the Spark DataFrame
API that is required to invoke some of the relational operators: The column class is used
to build complex expressions that are required for example to construct a join or filter con-
dition. Both transformations take a column object as input parameter. The select(...)
transformation accepts multiple column objects. The most simple column objects are
attribute references. In that case, the expression tree of the column object consists of
one node. With different column object class functions, there can be constructed more
complex expression types. In Table 2.3 we listed some of the column object methods we
used. In addition to the column object class functions that can be invoked on existing
column objects, there exist additional functions that produce new column objects. Some
of these also take column objects as input parameters. We listed these in Table 2.4.

9

2 Background

Column object
method

Input Parameter Meaning

asc(),
asc_nulls_first(),
asc_nulls_last()

Produces a sort expression based on
the ascending order of the column.
The second method produces a sort
expression that returns null values
before non-null values and the third
method vice versa.

desc(),
desc_nulls_first(),
desc_nulls_last()

Produces a sort expression based on
the descending order of the column.
The second method produces a sort
expression that returns null values
before non-null values and the third
method vice versa.

+, plus(...) other value Computes the sum of the current
column and the given value which can
either be a column expression as well
or any other value.

-, minus(...) other value Subtracts the other value from the
current column. As for plus() the
other value can have any type.

*, multiply(...) other value Multiplies the current column by the
other value which can have similar to
plus() any type.

/, divide(...) other value Divides the current column by the
other value which can have any type
like for plus().

%, mod(...) other value Returns the current column modulo
the other value which again can have
any type like for the other arithmetic
expressions above.

===, equalTo(...) other value Checks the equality of the current
column and the other value.

=!=, notEqual(...) other value Checks the inequality of the current
column and the other value.

<=, leq(...) other value Checks if the current column is
smaller than or equal to the other
value.

>=, geq(...) other value Checks if the current column is
greater than or equal to the other
value.

10

2.1 Spark

<, lt(...) other value Checks if the current column is
smaller than the other value.

>, gt(...) other value Checks if the current column is
greater than the other value.

&&, and(...) other value Boolean AND operator to combine
the current column with the other
value.

||, or(...) other value Boolean OR operator to combine the
current column with the other value.

between(...) lowerBound,
upperBound

Returns true if the current column is
between the lower and upper bound.

as(...), alias(...),
name(...)

alias Gives the column an alias name.

substr(...) start position,
length

Returns a substring of the current
column. The start position and length
are specified by the input parameters.

contains(...) other value Returns true if the current column
contains the other value, based on a
string match.

endsWith(...) other value Returns true based on a string match
if the current column ends with the
passed other value.

startsWith(...) other value Returns true based on a string match
if the current column starts with the
passed other value.

like(...) literal Returns true if the current column
matches the string literal that
represents a LIKE expression in SQL

rlike(...) literal Returns true if the current column
matches the string literal that
represents a regular expression.

cast(...) target type Casts the current column expression
to the given target type.

when(...) condition, value With this method, one can construct
a list of conditions and if a condition
is fulfilled, the corresponding value is
returned. If no condition is fulfilled
and the otherwise() function is not
used, null is returned.

11

2 Background

otherwise(...) value The user can call this method after
calling the when() method one or
multiple times. If no condition of the
when() function is fulfilled, the
column object returns the value
passed to the otherwise() function.

over(...) optional: window This method is used to create a
windowing function from an analytic
function. If no window is passed to
the method, the analytic function is
evaluated for all rows in the result set.
We explain below how windows are
created with the DataFrame API.

isin(...) list of values The resulting boolean expression
evaluates to true if the current
column object is contained in the
passed list of values.

Table 2.3: Column object class functions of Spark’s DataFrame API in Scala

Function Input Parameter Meaning
col(...), column(...),
$“...”

column name Converts the given column name into
a column object.

lit(...) literal Creates a column object of type literal
that contains the given literal value.

round(...) column, optional:
scale

Rounds the given column object to
the decimal places given by the scale
parameter. If the scale parameter is
not set, the column object is rounded
to zero decimal places.

asc(...),
asc_nulls_last(...),
asc_nulls_first(...),
desc(...),
desc_nulls_last(...),
desc_nulls_last(...)

column name Generates a column object from the
passed column name and invokes the
corresponding column object method.

avg(...), mean(...) column Computes the average of the values of
the given column.

sum(...) column Sums up the values of the given
column.

sumDistinct(...) Sums up the distinct values of the
given column.

12

2.1 Spark

max(...) column Computes the maximum value of the
values of the given column.

min(...) column Computes the minimum value of the
values of the given column.

count(...) column Counts the values of the given
column.

countDistinct(...) column Counts the distinct values of the
given column.

when(...) condition, value Together with the column object
methods when(...) and
otherwise(...), the user can create
list of conditions and corresponding
values.

isnull(...) column Returns true if the column value is
null.

concat(...) columns Concatenates all passed column
objects.

rank() This window function is used to
return the rank of rows within a
window partition.

grouping(...) column Indicates if the given column is
aggregated or not. This is indicated
with 1 if aggregated and 0 otherwise.

abs(...) column Computes the absolute value of the
given column object.

floor(...) column Computes the floor value of the given
column object.

Table 2.4: Additional functions that return column objects in Spark’s DataFrame API in Scala

We can see that the DataFrame API covers lot of expression types such as arithmetic
or logical operators with the different functions. If the user wants to create an aggregate
expression for the agg(...) transformation, he or she can utilize the different aggregation
methods like for example avg() or sum(). As already mentioned, each column object
contains an expression tree that consists of multiple expression nodes. These trees are
constructed by the user calling different column object functions. An example column
object that can be constructed is the following:

col(“a”).substr(2,4) == "abcd" && 3 >= (col("b") + 4) * col("c")

In Figure 2.1 we depict the expression tree that represents this column object. The blue
boxes contain unresolved attributes that have to be resolved to attribute references. The
attribute references are placeholders for columns of the child query plan on which the
current transformation is invoked.

13

2 Background

UnresolvedAttribute: a

Substring: startPos: 2, len: 4

EqualTo

Literal: "abcd"

And

UnresolvedAttribute: b

Add

Literal: 4

Multiply

UnresolvedAttribute: c

GreaterThanOrEqual

Literal: 3

Figure 2.1: Expression tree for a complex column object

The over(...) function is used to create a window expression. The user passes the
window itself to the function as an input parameter. The Window class is a helper class
to start constructing an object of type WindowSpec. Both the Window and WindowSpec
classes offer the methods listed in Table 2.5. In case of the Window class, a new WindowSpec
is created with either the ordering, the partitioning or the frame boundaries already
defined, depending on the called method. If the method is invoked on a WindowSpec, a
new WindowSpec is created. The new WindowSpec updates the respective window property
of the invoked function with the passed parameter. The other values are set to the values
of the current WindowSpec object.

2.2 Relational Databases

Relational databases are used for storing and operating on data stored in tabular format.
The relational database management system that belongs to the relational database is
used to access the data, to guarantee consistency and to modify the stored information. A
database management system brings a lot of advantages: It provides solutions for many
problems that users have to deal with when handling big amounts of data like uncontrolled
redundancy or inconsistency if data is stored multiple times and only one instance is
updated. Usually, there exist multiple users that want to access the data stored in a
database. In a multiuser system, a database supports organizing access rights and handles
anomalies like two users editing the same data in parallel. Database management systems

14

2.3 In-Memory Databases

Window method Parameter Meaning
orderBy(...) columns The passed column objects specify the

ordering of the new window expression.
partitionBy(...) columns The passed column objects specify the

partitioning of the new window expression.
rangeBetween(...),
rowsBetween(...)

start, end The passed start and end values specify the
frame boundaries of the new window
expression. There exist three predefined
constants: Window.unboundedPreceding,
Window.unboundedFollowing and
Window.currentRow which are all mapped to
special frame boundaries for the resulting
window expression.

Table 2.5: Functions required to construct a Window that can be passed to the over(...) function

also provide a fail-proof recovery component that enables the system to restore lost data
which was written after the last backup copy. In a relational database, the user can specify
certain integrity rules that always have to be fulfilled by the stored data. This way, the
system rejects operations that do not comply with the integrity rules. Transformations are
only executed by the database management system if it does not lead to an inconsistent
database state [3].

2.3 In-Memory Databases

In-memory databases keep all data in the main memory. Standard databases swap pages
between the buffer memory and the hard disk. Moving the data from hard disk to the main
memory is very expensive in terms of runtime. Accessing data from the background memory
takes five times longer than accessing data from the main memory [3]. In this master’s thesis,
we work with Umbra as in-memory database. The Umbra system is not a pure in-memory
database, but has evolved from the pure in-memory system HyPer. The HyPer system is a
high-performance database system that supports OLTP (online transaction processing)
as well as OLAP (online analytical processing). For OLTP transactions it guarantees
the ACID properties atomicity, consistency, isolation, and durability [4]. Challenges that
in-memory databases face are for example massive parallelism due to multi-core systems.
Cache-locality is another point that turns into a bottleneck for in-memory systems since
the costs of I/O operations to the background memory, which normally dominate all other
costs, do not exist in in-memory systems [3].
Umbra achieves a performance which is comparable to in-memory database systems

when working with cached datasets. In addition, it offers scalability like a disk-based
system by combining the in-memory buffer with SDDs as storage devices [8].

15

3 Approach

The goal of this master’s thesis is to combine the data frame abstraction with a relational
database. This way, we can use the user-friendly API of data frames as our frontend in
combination with the query optimization techniques of relational databases. The following
chapter explains how we realize data frames in C++ and how we map the C++ data frames
to database queries.
The main idea of our approach is to implement the Spark DataFrame API in C++ as

similar as possible to the version implemented in Scala. The main difference between the
implementations is that Spark evaluates the data frames when an action is called. In C++
we do not evaluate the data frames ourselves. Instead, we map the data frame to a SQL
query and send it to a relational database for its evaluation.
We structure this chapter into three sections. In the first section, we explain how data

frames can be initialized in our C++ API and how our implementation realizes these. The
second section deals with transformations. We explain how query plan graphs are built
and what steps are performed by our implementation when a transformation is invoked.
The last section deals with the evaluation of the query plan graphs, which is triggered
when an action is called. In this step, the query plan graph is transformed into a SQL
query that is sent to the database.

3.1 Initializing a data frame in the C++ DataFrame API

In our C++ implementation, the user has two options to generate a new data frame. He or
she can either start from a CSV file or a database relation. Since we are working with a
database system as backend, we figure that it makes sense to offer an extra option to work
with database relations that already exist in the database system.

If the user decides to work with a CSV file, the steps that our implementation performs are
similar to the ones performed in Spark. Like in Spark, we work with the DataFrameReader
class. The user receives a DataFrameReader object when calling the read() member
function of the current SparkSession object. We also utilize the different member functions
of the DataFrameReader class to specify the properties of the CSV file. After the user
invokes the read() function, a new data frame is created. Each data frame contains a
query plan. In this case, the query plan has the type DataSourceRelation which is not
related to database relations. That is the name Spark uses for this kind of base query plans.
The DataSourceRelation stores the schema, the source, and the path to the CSV file.

For the second option, we created the new query plan type DatabaseRelation. The
user can create this type of query plan by invoking the readFromDatabase() member
function of our SparkSession class. Since databases store meta-information about existing
tables, the user does not have to specify the schema. Instead, the program uses the meta
information of the database to construct the schema itself. In the following we show how a
data frame can be created from a database relation:

dbFrame = sparkSession->readFromDatabase(<tableSchema>, <tableName>);

17

3 Approach

When the user invokes the readFromDatabase() function, the program requests information
about the table from the specified database. In Postgres, we utilize the COLUMNS view of
the “information_schema” schema. In the following we show how the corresponding SQL
query looks like:

SELECT
column_name,
data_type,
is_nullable,
numeric_precision,
numeric_scale

FROM information_schema.COLUMNS
WHERE TABLE_NAME = <tableName> AND TABLE_SCHEMA = <tableSchema>
ORDER BY ordinal_position;

With the information resulting from this query, our program can create the required
StructType object itself. The information_schema.COLUMNS view of Postgres stores
information about all columns of all tables currently stored in the database. Since we only
need the columns of one table, we filter the rows by their table name and table schema. The
StructField objects, that represent the different columns, take the name of the column
and its data type as input parameters and a check if the column is nullable. In addition to
these three properties, we also select two additional columns, that are required to create a
DecimalType object. The constructor of the DecimalType class takes the precision and
scale of the contained values as input parameter. In Postgres, these properties are stored
in the columns numeric_precision and numeric_scale.

Since Umbra is a research project, it currently does not contain meta-data tables. For this
thesis we implemented the information_schema.COLUMNS view to be able to evaluate the
performance of DatabaseRelation data frames with Umbra. This is covered in Chapter 4.
Whenever a user requests the COLUMNS meta-data view, Umbra scans all tables in the
database, retrieves the required information from all columns, and adds a row to the view
for each column.

3.2 Analyzing a data frame in the C++ DataFrame API

The member functions of a data frame, which are used to analyze it, are so-called transfor-
mations. Like in Spark, these functions create a new data frame instead of modifying the
data frame on which the transformation is invoked. Each data frame contains a query plan.
In Table 3.1 we listed the different query plan types that are created by the transformations
of Table 2.1. A possible chain of transformation calls is:

newDf = df.filter(col(“x”) == col(“y”)).select(col(“x”))

In this case the initial data frame “df” contains a DataSourceRelation query plan. The
invocation of the filter() transformation creates a new query plan node that references
the DataSourceRelation query plan of the data frame “df”. The query plan node created
by the select() transformation references the Filter query plan.

18

3.2 Analyzing a data frame in the C++ DataFrame API

Query Plan Type Transformations
Project select(...), withColumnRenamed(...), withColumn(...), drop(...)
Filter filter(...), where(...)
Join join(...), crossJoin(...)
Aggregate {groupBy(...), cube(...), rollup(...)} + {sum(...), count(...),

min(...), max(...), avg(...)}, agg(...)
Distinct distinct(), dropDuplicates()
Deduplicate dropDuplicates(...)
Limit limit(...)
Sort sort(...), orderBy(...)
Union union(...), unionAll(...)
Intersect intersect(...), intersectAll(...)
Except except(...), exceptAll(...)
SubqueryAlias as(...), alias(...)

Table 3.1: Query plan types and their corresponding transformations.

DataSourceRelation: [x,y,z]df

Filter: [x,y,z]

Project: [x]newDf

Unresolved
Attribute: x

Unresolved
Attribute: y

EqualTo

Unresolved
Attribute: x

Data frames

Query plans

Column objects

Figure 3.1: Small query plan graph.

In Figure 3.1 we depict the query plans in blue boxes with their corresponding data
frames drawn in orange boxes. Each new data frame does not reference the previous data
frame, but the new query plan contained in the new data frame references the query plan
of the previous data frame. Next to the types of the query plan nodes in the blue boxes,
we list the columns of the nodes. Our DataSourceRelation reads a CSV file with values
for the three columns x, y, and z. The filter() transformation might remove some rows
of the data frame with its filter expression, but the columns do not change. The select()
transformation only selects column x, so the columns change for the corresponding Project
query plan node.

Besides data frames and query plans, we also work with column objects and expression
trees. In our graph in Figure 3.1, some of the transformations take column objects as
input parameters. Each column object contains an expression tree. For the select()
transformation call, visualized by the Project query plan node in Figure 3.1, we pass

19

3 Approach

a column object to express the project expressions. In our case, the project expression
consists of one column object that contains a single expression node. The node is an
unresolved attribute that is resolved to an attribute referencing the column x of the
DataSourceRelation. The column object we pass to the filter transformation, which is
referenced in Figure 3.1 by the Filter query plan node, is more complex. The Filter
query plan stores it as a filter condition. It contains an expression node of type EqualTo
which has two child expression nodes. The child expression nodes (in white) are two
unresolved attributes referencing the columns x and y of the parent query plan node
Project in Figure 3.1.

In the following, we explain which steps are performed for each invocation of the different
transformation types. Transformation that take column objects as input parameters resolve
these unresolved attributes at first. In the example tree in Figure 2.1, all unresolved
attributes are drawn in blue boxes. To resolve the unresolved attributes, the current
transformation needs to know the columns of the child query plan on which the transfor-
mation is invoked. The columns of the child query plans are stored as attribute references.
Each attribute reference stores the name of the attribute, the data type, and a check if
the column is nullable. Since the user can set an alias for a data frame by invoking the
as() or alias() transformations, the attribute reference also stores a table name and the
corresponding table id. This table name and id are updated whenever a SubqueryAlias
query plan is created.
For most of the query plans, the columns are equal to the corresponding columns of

their child queries. For example, if we invoke the filter() method on a data frame, we
filter out some rows, but we do not change the columns themselves. If someone requests
the columns of a query plan of type Filter, the query plan requests the columns of its
child query plan and returns them as an answer to the request. To avoid unnecessary
recomputations, the Filter query plan then stores these columns for the following requests.
Not only the Filter query plan behaves this way, but all other query plans except the
Project and Aggregate query plans reuse the columns of their child query plans. The
set operations (Union, Intersect, and Except) combine two child query plans. Since the
columns of both child queries are the same, the query plan only requests the columns of
one of the child query plans and returns these to the user. In case of a Join query plan,
the columns of the left and right join partners are concatenated. If the join query plan has
type “semi-join” or “anti-join”, only the columns of the left join partner are requested and
returned. The SubqueryAlias query plan contains the same columns as the child query
plan. To allow the user to later reference attributes originating from this query plan with
the given alias, we update the table name and id of all columns. The table name is set to
the given alias and the id is updated to the current query plan id.

Only for the query plan types Project and Aggregate the columns change. The Project
constructor takes multiple column objects as input parameter. These can either be attribute
references to columns of the child query plan or more complex expression trees like the one
represented in Figure 2.1.

If the column object is just an attribute reference, it is added unmodified to the columns
of the Project query plan. For more complex expression trees, new attribute references
have to be created. We need to retrieve the name, the data type, and the nullability of the

20

3.2 Analyzing a data frame in the C++ DataFrame API

attribute reference from the column object. As table id, we use the id of the Project query
plan. The table name will be empty until a SubqueryAlias transformation is invoked, as
already described above. The attribute name is constructed from the expression tree. For
our tree in Figure 2.1, the correct name would be:

"((substring(a, 2, 4) = abcd) AND (3 >= ((b + 4) * c)))"

With this string the user can reference the constructed column in the future. Due to the
complexity of the string, he or she can add an alias to the expression, for example by calling
the alias(...) expression function. In that case, the attribute name is not constructed
from all expression tree nodes. Instead, the defined alias name is used.
The data type of the new attribute reference is also retrieved from the expression tree.

Starting with the leaf nodes, we check for every following node if the child data types
match the operator of the current expression node. Afterwards, we construct the data type
of the resulting column object. In case of the expression tree in Figure 2.1, we end up with
a Boolean type. For some operators, like the arithmetic operators Multiply and Add, the
resulting numeric type depends on the numeric types of the child query plans.
The nullability of the new attribute reference depends on the nullability of the child

query plans. For example, in case of the And operator, the resulting expression is nullable
if one of the child query plans is nullable. Literals are not nullable, therefore the nullability
of the Add expression node depends on the nullability of the referenced attribute b.

Apart from select(...), there exist other transformations that also generate Project
query plans. In case of the withColumnRenamed() transformation, the program loads all
columns of the child query plan. We add a call to the alias(...) function to the attribute
reference that should be renamed. All other columns of the child query plans are just
added to the output of the current query plan. In case of withColumn(), we also load
all columns from the child query plan. If the name of the new column equals one of the
existing columns, this column is replaced with the new column object. Otherwise, the
new column object is added as an additional column object. In contrast to adding a new
column, the drop() transformation removes one of the columns of the child query plan.

The Aggregate query plan works with two different lists of expressions: The expressions
that define the groups and the aggregate expressions. Both lists are added to the columns
of the Aggregate query plan. Like for the Project query plan, the unresolved attributes
of the grouping expression are mapped to the attribute references of the child query plan.
The more complex aggregate expressions are treated like the project expressions. The
expression tree in Figure 2.1 is no valid aggregate expression since no aggregate operation
is invoked. Apart from that, the structure is the same. If the user does not call the
agg(...) function with column objects that already contain aggregate expressions, the
program constructs the aggregate expressions itself. For example, if the sum(...) function
is called, the program invokes the expression function sum(...) on the passed column
object, creates a new Aggregate query plan node, and passes the constructed expression
as aggregate expression. The group definition is taken from the groupBy(...) call before
the aggregate function call. If the user directly invokes the agg(...) transformation, the
group’s definition stays empty.

21

3 Approach

After resolving all unresolved attributes and constructing the columns for the new query
plan, if necessary, we create a new data frame with the new query plan and return it to
the user. Like in Spark, we do not overwrite the data frame on which the transformation
is invoked but create a new one.

3.3 Evaluating a data frame in the C++ DataFrame API

Like in the Spark implementation, the evaluation of a data frame is triggered in our
implementation by the invocation of an action. In this section, we focus on the actions
show() and count(). As already explained at the beginning of this chapter, in our
implementation the SparkSession has a pointer to a database object that implements our
database interface. For every action this database interface defines a corresponding member
function in the database class. Since Umbra and Postgres use the same SQL syntax, we
explain the steps for Postgres and only highlight the things that differ in Umbra.
When an action is invoked on a data frame, the data frame calls the corresponding

function on the database object that the SparkSession points to. At first, Postgres
initializes a new SQLQueryBuilder object and passes the query plan to its constructor.
The SQLQueryBuilder retrieves all query plan nodes that are required for the evaluation.
Starting from the passed query plan node, the query builder traverses the query plan graph
by recursively requesting the child nodes of each query plan. The traversal stops once the
leaf nodes are reached. These query plan nodes are either of type DataSourceRelation
or DatabaseRelation. Every query plan node that is reachable from the one query plan
node that is referenced by the data frame is stored in a reversely topological sorted list.
When an action is invoked on the data frame “newDf” in Figure 3.1, the list would start
with the DataSourceRelation node, continued with the Filter node and finish with the
Project node. If transformations like union() are invoked, the query plan graph contains
a node with two child query plan nodes. Another special case would be to reuse one query
plan node twice, which can be caused by a self join.

After we retrieve all required query plan nodes, we transform the directed acyclic query
plan graph into a SQL query. We visit every query plan node separately and create a short
common table expression (CTE) for each node.
In the following, we explain what steps are executed by our program for every query

plan node. The first nodes that we resolve to SQL queries, are the base nodes which are
either of type DataSourceRelation or DatabaseRelation.

DataSourceRelation. In order to work on a CSV file in Postgres, at first we have
to create a new database table and load the data from the CSV file into the database. The
information we need to generate a SQL statement can be retrieved from the StructType
object of the query plan node. In Listing 2.1 we initialize a data frame from a CSV file. The
StructType object contains three StructFields with different data types. In Listing 3.1
we list the required initialization SQL queries for the DataSourceRelation query plan
node. Since the column names of the CSV file can contain spaces, we enclose these with
quotes.

22

3.3 Evaluating a data frame in the C++ DataFrame API

-- DataSourceRelation in Postgres
CREATE TABLE table1 (

"x" int NOT NULL ,
"y" int ,
"z" text NOT NULL

);
COPY table1 FROM ’/path/to/file.csv ’ DELIMITER ’|’;
...

-- DataSourceRelation in Umbra
WITH table1 AS (

SELECT *
FROM umbra.csvview(

’/path/to/file.csv ’,
’DELIMITER ’’|’’’,
’"x" int NOT NULL , "y" int , "z" text NOT NULL ’

)
)
...

-- DatabaseRelation
WITH table1 AS (

SELECT *
FROM <tableName >

)
...

Listing 3.1: Example SQL statements for DataSourceRelation and DatabaseRelation query plans

Umbra allows us to work directly on a CSV file. Thus, we would create a CTE for the
DataSourceRelation query plan of Listing 2.1. The second query in Listing 3.1 shows
how we deal with CSV files in Umbra. We do not need any initialization queries for reading
the file. Therefore, we just add a CTE query that can be referenced by the following queries.

DatabaseRelation. A DatabaseRelation query plan does not require any mappings.
The generated CTE in this case is identical for Umbra and Postgres. We select all columns
from the requested table name such that following query plans can reference them utilizing
the CTE’s alias. The third query in Listing 3.1 shows how the DatabaseRelation query
plan is expressed with SQL.

Filter. After we visit all base nodes, we start visiting nodes that reference one or two
child query plans. In our example (see Figure 3.1), the next query plan node has the type
filter. In SQL, a filter query plan is mapped to a query that selects all columns from the
child query plan. The CTE contains a WHERE-clause in which the column object is mapped
to a database expression. In Listing 3.2 we show the corresponding SQL CTE.

Project. The last query plan we visit is the Project query plan. Since we reach the
query plan that is referenced by the data frame on which the action is invoked, we do not
construct another CTE, but our main query which we can also see in Listing 3.2. In this

23

3 Approach

-- Filter
WITH filter2 AS (

SELECT *
FROM table1
WHERE x = y

)

-- PROJECT
SELECT x
FROM filter2;

Listing 3.2: Example SQL statement for the Filter and Project query plans

WITH table1 AS (
SELECT *
FROM umbra.csvview(
’/path/to/file.csv ’,
’DELIMITER ’’|’’’,
’"x" int NOT NULL , "y" int , "z" text NOT NULL ’
)
),
filter2 AS (
SELECT *
FROM table1
WHERE x = y
),
project3 AS (
SELECT x
FROM filter2
)
SELECT COUNT (*) FROM project3;

Listing 3.3: Example SQL statement for the count() action

example query, the project expression list only contains a simple attribute reference. In
Spark, newly constructed columns are still accessible in the following transformation calls.
To guarantee this property in our implementation as well, we add to the more complex
column objects their attribute names as an alias. In the previous section, we already
showed how the attribute name for the column object of Figure 2.1 would look like.

When combining one of the queries of Listing 3.1 with the query of Listing 3.2 we get the
complete query our program would generate for the data frame newDf when the action
show() is invoked.
In case of a count() invocation, the corresponding function in the database class adds

another query plan node to the query plan graph of type Aggregate that counts all rows
of the query plan. Afterwards, the function passes the modified query plan graph to
the SQLQueryBuilder for the evaluation. In our resulting SQL query which we show in
Listing 3.3, the PROJECT query is a CTE as well and our main query counts all rows. The
corresponding data frame query looks as follows:

24

3.3 Evaluating a data frame in the C++ DataFrame API

df.filter(col(“x”) == col(“y”)).select(col(“x”)).count()

In Table 3.2 we list the resulting database queries for all query plan types of Table 3.1.
The second column contains the required parameters, whereas the third column shows
the common table expression with placeholders for the respective parameters. Query plan
types with one child node have the additional parameter <childNode>. Query plans with
two child nodes, like the Join or Union query plans, have the two additional parameters
<leftChildNode> and <rightChildNode>.

Query Plan Type Parameter SQL Query

Project projectExpressions
SELECT <projectExpression>
FROM <childNode>

Filter filterExpression
SELECT *
FROM <childNode>
WHERE <filterExpression>

Cross Join
SELECT *
FROM <leftChildNode>

CROSS JOIN <rightChildNode>

Inner Join (similar
for outer join) joinExpression

SELECT *
FROM <leftChildNode>

INNER JOIN <rightChildNode>
ON <joinExpression>

Semi Join joinExpression

SELECT *
FROM <leftChildNode>
WHERE EXSITS (

SELECT *
FROM <rightChildNode>
WHERE <joinExpression>

)

Anti Join joinExpression

SELECT *
FROM <leftChildNode>
WHERE NOT EXSITS (

SELECT *
FROM <rightChildNode>
WHERE <joinExpression>

)

Aggregate
groupExpressions,
aggregate-
Expressions

SELECT <groupExpressions>,
<aggregateExpressions>

FROM <childNode>
GROUP BY <groupExpressions>

25

3 Approach

Distinct SELECT DISTINCT *
FROM <childNode>

Deduplicate attributes SELECT DISTINCT ON(<attributes>) *
FROM <childNode>

Limit number
SELECT *
FROM <childNode>
LIMIT <number>

Sort sortExpressions
SELECT *
FROM <childNode>
ORDER BY <sortExpressions>

Union (same for
union all)

SELECT *
FROM <leftChildNode>
UNION ALL
SELECT *
FROM <rightChildNode>

Intersect (similar for
except)

SELECT *
FROM <leftChildNode>
INTERSECT
SELECT *
FROM <rightChildNode>

Intersect All (similar
for except all)

SELECT *
FROM <leftChildNode>
INTERSECT ALL
SELECT *
FROM <rightChildNode>

SubqueryAlias name

WITH <name> AS (
SELECT *
FROM <childNode>

)

Table 3.2: CTEs for the different query plan types listed in Table 3.1

For most of the query plan types the mapping is straightforward. We split the Join query
plan into four rows since the different join types that Spark supports result in different
kind of queries. The cross join is the only one where no expression is passed. For the inner
join and the different outer joins the resulting queries are similar. All join types contain a
join condition and the only thing that differs is the respective JOIN keyword. The semi
join produces a correlated subquery where we make use of an EXISTS clause to check if the
right join partner contains any row that fulfills the join condition. For the anti join, we
utilize a NOT EXISTS clause at the same place.
The Aggregate query plan contains two expression lists: One list is passed to the

program with the groupBy() transformation and the other one is generated from the used

26

3.3 Evaluating a data frame in the C++ DataFrame API

-- Incorrect: Separate Sort and Limit query plans
WITH sort1 AS (

SELECT *
FROM a
ORDER BY a, b

),
limit2 AS (

SELECT *
FROM sort1
LIMIT 2

)
...

-- Correct: One combined query plan for Sort and Limit
WITH sort1 AS (

SELECT *
FROM a
ORDER BY a, b
LIMIT 2

)
...

Listing 3.4: Example SQL statements for the sort and following limit query plan

aggregate transformation. Both lists are added to the SELECT clause, starting with the
group expressions and followed by the aggregate expressions. In the GROUP BY clause only
the group expressions are inserted.
The result set of a Limit or Deduplicate query plan depends on the used sorting

criteria in SQL. Especially Umbra does not track any previous sorting criteria and even
skips all unnecessary sort expressions. In addition, the sorting criteria is only taken
into consideration if it is part of the CTE for the Limit and Deduplicate query plans.
Therefore, we have to combine the Sort query plan node with query plans like Limit
or Deduplicate. In Listing 3.4 the first version shows how the SQL query would look
with separate subqueries. This version is incorrect. The second version shows how the
combined correct query looks like for the data frame a.sort(“x”,“y”).limit(2). In our
implementation, we only check for the directly referenced child node if it has the type
Sort. In Spark, the user is also able to define the sort criteria for other previous query
plan nodes. For our purposes checking only the directly referenced child is sufficient. For
an overall semantic correctness, every query plan node has to track the current sorting
criteria. That way, the current sorting criteria can be applied whenever required.

Another special case is the Union query plan. In Spark, the union() transformation is a
synonym for the unionAll() function. In SQL, a UNION operator produces a result set that
does not contain any duplicates. Whereas in Spark, the user has to invoke the distinct()
transformation explicitly after calling the union() or the unionAll() transformation.
Since we use Spark as our template and try to mimic the behavior of Spark with our
version, we map both transformations to the UNION ALL operator in SQL.

The SubqueryAlias query plan, which is the last entry in the Table 3.2, is the only
one where we display the entire WITH query statement. The query definition selects all

27

3 Approach

columns from the child node. The name of the CTE is defined by the input parameter.
The most important thing that happens when a SubqueryAlias query plan is invoked is
that the table names of the attribute references are updated. We already mentioned that
in the previous section since these steps are already performed when the transformation is
invoked. We use the name of the query as the name of the CTE, but since in this case
the alias could only be accessed by the directly following query plan, we need to store the
alias as the table name in the attribute reference objects as well. If the user later tries to
use one of the columns with the defined table alias, the program searches for the attribute
reference by name and alias table name. As an example, that gets handy for a self join
where the user assigns two different aliases to the child node to be able to tell the left and
right join partner apart. The only thing that makes it possible for the program to tell the
columns of the resulting join plan apart is the table names.

The SQLQueryBuilder visits the query plan nodes in reverse topological order. For
each node, at first we load the reference to the child queries. In addition to the name of
the child CTEs, we also load the names of the columns that are used internally by our
SQL statement. There are some cases where the internal names of the columns differ from
the ones that are used in the DataFrame API.

The reason for this internal renaming is the Join query plan. As shown in Table 3.2, we
use the star operator to select all columns of the left and right child partners. In practice
at first we have to make sure that the left and right join partners do not contain columns
with the same name. Otherwise, our SQL query would not be able to tell them apart in
following CTEs. The data frame query a.join(b, a(“x”) == b(“x”)).select(b(“x”))
is able to select the column x of the right join partner b after the join() transformation.
If we construct the query like presented in Table 3.2, we would end up with the first SQL
query in Listing 3.5. This query fails since the column x is ambiguous. The second query
shows what we do in our implementation to deal with duplicate column names. When
we notice duplicate column names, we rename the columns of the right join partner. We
concatenate the table name with the column name. In the following PROJECT query plan
node, the column object b(“x”) references a column of the previously right join partner b.
To be able to retrieve the renaming, we store which columns we renamed for every pair of
query plan node and child query plan node. Since the user later references a column of the
query plan node b in Listing 3.5, we check if the Join query plan renamed the column x of
the child node b and end up with the current internal name b_x.
After resolving all attributes to the internal column names, we generate the CTE for

the current query plan node. Afterwards, we store the new internal column names of the
generated query for the following query plan node.

Until this point, we treated all query plan nodes the same and always generated a CTE. If
a query plan node is only referenced by one other query plan as a child node, we do not
have to generate a CTE. Instead, we can directly paste the query as subquery into the
FROM clause of the parent query.

The data frame query df.filter(“x”_c < “y”_c).select(“x”_c).show() is a candi-
date for using subqueries instead of CTEs since the Filter node is only utilized by the

28

3.3 Evaluating a data frame in the C++ DataFrame API

-- Join Query without renaming
WITH join1 AS (

SELECT *
FROM a,b
WHERE a.x = b.x

)
SELECT x FROM join1;

-- Join Query with renaming
WITH join1 AS (

SELECT a.*, b.x as b_x , b.y as b_y , b.z as b_z
FROM a,b
WHERE a.x = b.x

)
SELECT b_x FROM join1;

Listing 3.5: Example SQL statements for the join query plan

-- Query with CTEs
WITH filter1 AS (

SELECT *
FROM df
WHERE x < y

)
SELECT x FROM join1;

-- Query with subqueries
SELECT x
FROM (SELECT *

FROM df
WHERE x < y) filter1;

Listing 3.6: Example SQL queries with CTE or using a subquery

Project node. In Listing 3.6, we display both the CTE and the subquery version.
In our implementation, we always use the subquery version if possible. If a query plan

node is visited, we check how many other nodes use the current node as a child query plan
before we generate the query . If there is only one referencing node, we create a subquery
and add an alias to it. If more than one node is referencing the query plan, we still generate
a CTE. All referencing queries will have to utilize the CTE name in their FROM clause.
In case of one referencing query plan node, we do not copy the string of the subquery

into our new query since this would lead to many unnecessary copy operations. Instead, we
build up our query with a doubly linked list of string chunks. In Figure 3.2, we demonstrate
how this list looks like for a Join query plan with two child query plan nodes. The Join
query chunks, drawn in blue boxes, are added in front of the first child, between the child
nodes, and behind the second child node. The child nodes are drawn in orange boxes. A
following query plan that references the Join query plan, would add its chunks to the front
and back of the string chunk list. In this way we add new chunks until we either reach a
node that is referenced multiple times or the main query node. If a node is reached that is

29

3 Approach

SELECT *
FROM

(SELECT x
FROM A)

 AS B

INNER
JOIN

(SELECT y
FROM A)

AS C

ON
B.x = C.y

Child subqueries Parent query chunks

Figure 3.2: Doubly linked list of SQL query with child queries

referenced multiple times, we generate a CTE for it and add the concatenated subquery
chunks to its FROM clause. The following referencing query nodes start generating a new
chunk list with the reference name of the CTE instead of the whole subquery string. If the
main query node is reached, the chunks are concatenated, and the main query is generated.
The main query is concatenated with the initialization queries and the CTEs and is sent
to the database.

In Table 3.2, some of the query plan types have column object parameters which we
do not resolve in the SQL query. In Table 3.3, we list the different column object functions
and show to which SQL expression these functions are mapped. Functions which are
treated similar in SQL, are combined into one row. For most of the functions the mapping
is straightforward since expressing them in SQL is sometimes even identical to the format
in Spark.

A special case are the string functions contains(), endsWith() and startsWith(). We
use a LIKE operator in SQL to mimic this behavior. In case of contains(), we concatenate
the expression, that should be contained, with a percent sign before and after the given
value, respectively, which allows for arbitrary additional characters surrounding the column
object b. In case of the endsWith() function, we only add a percent sign at the front and
for the startsWith() function only at the back.
The substring() function needs some additional SQL functions to work as expected.

In SQL, the SUBSTRING function can only be invoked on string columns. Since Spark also
supports the function for other data types, we cast the passed column object to a varchar.
The position argument is wrapped in our mapping into a CASE WHEN operator. The reason
for that is, that in Spark, the position “0” is a valid argument and is identical to the
position “1”. In SQL position “0” is not supported and therefore we map the value to
position “1” explicitly if it equals “0”.

Window expressions are the most complex since in Spark the user passes a Window object
to the over() function that contains information about the partitioning, the ordering, and
the frame boundaries. Mapping the partitioning and ordering is straightforward. The only
difference between Spark and SQL is the definition of the boundaries. In Spark, the user
passes two values to the rowsBetween() function which can be negative or positive. A
negative value means that the user references a preceding row and a positive value means
that he or she references a following row. In SQL, only positive values are supported. To

30

3.3 Evaluating a data frame in the C++ DataFrame API

reference a preceding row in SQL, the PRECEDING keyword is used. If the value is negative,
we compute its absolute value and use the PRECEDING keyword. Otherwise, we use the
FOLLOWING keyword.

]

Column object expression Expression in SQL
abs(a), floor(b), grouping(c),
not(d)

ABS(a), FLOOR(b), GROUPING(c),
NOT(d)

a + b, c / d, e * f, g % h, i - k a + b, c / d, e * f, g % h, i - k
avg(a), min(b), max(c), count(d),
sum(e)

AVG(a), MIN(b), MAX(c), COUNT(d),
SUM(e)

a.as(“name”) a AS “name”
a && b, c || d a AND b, c OR d
a == b, c != d, e <= f, g < h,
i >= k , m > n

a = b, c != d, e <= f, g < h,
i >= k, m > n

when(a,b).otherwise(e) CASE WHEN a THEN b ELSE c END
cast(a,IntegerType()) CAST(a AS int)
concat(a,b,c) a || b || c
a.contains(b) a LIKE ‘%’ || b || ‘%’
a.endsWith(b) a LIKE ‘%’ || b
a.startsWith(b) a LIKE b || ‘%’
a.in(b,c) a IN (b,c)
a.isnull() a IS NULL
a.like(b) a LIKE b
rank() RANK()
a.rlike(b) CAST(a AS VARCHAR) SIMILAR TO b
a.round(x) ROUND(a,x)

a.subString(pos,len)
SUBSTRING(

CAST(a AS VARCHAR),
(CASE WHEN pos = 0 THEN 1

ELSE pos END),
len

)

avg(a).over(
Window

.partitionBy(b)

.orderBy(c)

.rowsBetween(-x,y)
)

AVG(a) OVER (
PARTITION BY b
ORDER BY c
ROWS BETWEEN x PRECEDING

AND y FOLLOWING
)

Table 3.3: Mapping of column object functions of Table 2.3 and Table 2.4 to SQL

31

4 Evaluation

In this chapter, we want to measure the performance of our C++ implementation of the
Spark API which uses a database relation to solve the data frame queries. Therefore, we
compare the Scala Spark implementation with our C++ implementation. As relational
database management systems which are solving the queries, we use Postgres and Umbra.
Additionally, we evaluate the overhead of the C++ DataFrame API compared to directly
using a SQL interface. We measure the time our implementation needs to map the data
frames to database queries, and we check how well the used databases can optimize the
constructed database queries.

4.1 Research Questions

In this master’s thesis, the following research questions are proposed, and their results are
presented and discussed.

RQ1: How fast can a relational database answer data frame queries? With
the first research question, we want to evaluate how fast Postgres and Umbra can evaluate
a data frame query compared to Spark. We compare how the databases perform when the
data is already stored in the database and how the databases perform when the tables first
have to be created before executing the different queries.

RQ2: How fast can a relational database working with CSV table scans answer
data frame queries? In contrast to Spark, databases preprocess the data when a new
table is created. If we want to get the first few rows of a data frame, Spark only reads the
first lines from the specified data source. On the contrary, a database loads the entire data
set into the database before returning the first few lines. In Umbra, there is the possibility
to work directly on CSV files, which is more similar to how Spark works with data. We
compare the runtime of different queries in Umbra when utilizing this csvview function
with Spark.

RQ3: How time-consuming is the usage of the C++ DataFrame API instead of
a SQL interface? Working with a DataFrame API instead of a SQL interface can have
usability benefits, but how much time does the mapping need? With some microbench-
marks we evaluate some corner cases of the mapping and check how much time it takes to
map the data frames to database queries.

RQ4: How well can a relational database optimize queries generated from
data frames? For query optimizations we rely on the optimizations that are done by
the utilized databases. Our constructed SQL queries differ from those a user would write
when directly interacting with a SQL interface. With this research question we evaluate
how well databases can optimize our constructed SQL queries compared to queries directly

33

4 Evaluation

formulated in SQL.

4.2 Study Objects

As the first study object, we use the dataset and queries of the TPC-H benchmark. TPC-H
is a decision support benchmark with an industry-wide relevance. To be able to utilize the
queries with our Spark API, we converted the SQL queries to chained method calls to the
DataFrame API. In Appendix A we show for query TPC-H 4 how the SQL query looks
like when it is transformed to the DataFrame API.

Since no TPC-H benchmark query contains a window function, we use as a second study
object the dataset and some queries of TPC-DS as well. TPC-DS is also a decision support
benchmark and provides a representative evaluation of general-purpose decision support
systems.
The relations of TPC-H and TPC-DS all contain primary keys. For our evaluation, we

remove the primary keys option from the CREATE TABLE statements. Spark does not take
the primary key as an optional parameter, so if we would use this extra information in the
databases, Spark would be disadvantaged.
For the third research question, we work with additional microbenchmark queries to

be able to test the performance of our C++ DataFrame API for some edge cases. We
created five data frame queries. Four queries repeatedly execute the same operator on a
theoretical data source relation which does not have to exist since we only measure the
time it takes to construct the SQL query. We do not measure the time it would take
to evaluate the query on a relational database. The operators we evaluate are FILTER,
AGGREGATE, UNION and JOIN. The fifth microbenchmark evaluates the column object type
of the Spark DataFrame API which is used to build expressions. In this scenario, we only
call the filter operator once, but we vary the size of the filter expression. The meaning
of the resulting SQL queries is not relevant in this benchmark, since we do not pass the
generated SQL queries to a database system to evaluate them. It is just important that
the queries are syntactically correct.
For the last research question, we reuse the TPC-H queries from the first two research

questions to compare the generated SQL queries with the standard SQL queries. We
retrieve the generated SQL queries from our C++ DataFrame API implementation where
we normally generate the SQL queries to send them to a given database. We capture these
requests and then manually send these SQL queries to the Postgres and Umbra databases.
In Appendix B we show how the generated SQL query looks like for TPC-H query 4.

4.3 How fast can a relational database answer data frame
queries?

4.3.1 Study Design

For the first research question, we compare the runtimes of Spark with the runtimes of our
C++ DataFrame API with different databases. As standard open-source database we use

34

4.3 How fast can a relational database answer data frame queries?

Postgres and as in-memory database we use Umbra. For both databases, we work with two
different setups. For the first setup, we measure the execution time of our C++ DataFrame
API when working with DataSourceRelations. In that case, Postgres and Umbra have
to load the required tables into the database first before the actual query can be executed.
The time it takes to create the tables and to copy all the required data into the tables, is a
part of the query execution time. In the second setup, we load the TPC-H relations into
the database before executing the queries. Therefore, we can work in our DataFrame API
with DatabaseRelations as base relations. The time it takes to preload the data is not
added to the execution time of the query in this case.

In addition to the different base relations, we also use different data sizes of the TPC-H
and TPC-DS datasets. For Postgres we use the scale factors 1, 5, and 10. These correspond
to the dataset sizes 1GB, 5GB, and 10GB. For Umbra we use scale factor 20 in addition to
the scale factors already used for Postgres. We repeat each query five times for each setup
and report for every combination the fastest execution time. To compare the execution
times with Spark, we execute the same queries in the Spark Shell of Scala as well. We restart
the Spark Session after every repetition to avoid that Spark keeps any precomputations
that would accelerate subsequent computations.
All scenarios of all four research questions are performed on an Intel Xeon E5-2667v4

CPU with 8 physical and 16 logical cores running at 3.2GHz. The system contains 128GB
of main memory (8x 16GB DDR4-2400 ECC memory modules) and we run Ubuntu 20.04.1
LTS on it. For our data, we use the RAM file system ’ramfs’ of Linux to get rid of the
reading and writing overhead from an SSD. We work with Spark 3.1 and PostgreSQL 12.4.
Before any benchmark is executed, we store the TPC-H data of the required scale factor in
a subdirectory there. For Postgres, Umbra, and Spark we create additional subdirectories
and link the engines to these. The engines will use the directories as storage locations.

In addition to TPC-H, we also evaluate the performance of two TPC-DS queries in this
research question. The queries we selected from TPC-DS both contain a window function
since no query of TPC-H covers these. We choose the queries 12 and 64 and run them
on different dataset sizes from 1GB to 20GB. We are only able to execute the TPC-DS
queries in Postgres because Umbra does not yet support window functions.

In Spark the action show() outputs a string representation of the first 20 result rows. In
C++ we implemented the show() function as well and therefore compute the same string
representation as Spark. For our evaluation we compare the runtimes of the Spark Scala
implementation and our C++ version. Generating the string representation and outputting
it to the not-existing user is not relevant for the benchmark, so we added an additional
function that skips the string generation.The additional function, named benchmark(),
performs the same steps like the show() function without the string computation. Instead,
the function returns an array of resulting rows. In addition, we do not limit the resulting
rows but compute all rows by setting the rowCount variable to the maximum array length.

4.3.2 Results

In Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4, we display the relative speedup of the
different database setups and the different scale factors compared to Spark. In the graphs

35

4 Evaluation

1 2 5 10
TPC-H scale factors

0.10

1.00

Re
la

tiv
e

sp
ee

du
p

0.3

0.7

0.21

0.75
0.5

0.4

0.8

0.19

0.83
0.5

0.2

0.4

0.1

0.58

0.3
0.2

0.5

0.04

0.87

0.3

Figure 4.1: Relative speedup of C++ DataFrame API with Postgres (data loaded from CSV files)
over Spark DataFrame API

we draw a horizontal line at the relative speedup of 1 to highlight the border between
a actual speedup and a slowdown of the relational databases. That means, if a value is
underneath the border, the Spark version is faster than our C++ version. On the left side
of the boxplots, we documented the value of the first and third quartile and on the right
side in the middle, we wrote the median value. Below and above the median value on the
right side, the values of the lower and upper whiskers are written. Data points which are
plotted above and underneath these whiskers are considered outliers.

We start with the relational database Postgres and later take a look at the figures that
present the results for the in-memory database Umbra. Figure 4.1 contains the execution
time of Postgres when we work with DataSourceRelations. In that case, Postgres at first
has to create all required tables in the database and then has to copy all the data into the
tables. Afterwards, the engine can start to compute the actual SQL query. We observe
that in this scenario Postgres needs mostly more time to execute the TPC-H queries than
Spark. The median speedup for all scale factors is smaller than or equal to 0.5, which
means that Spark is at least two times faster than Postgres for the median value. There
are only a few outliers for each scale factor where the calculation of Postgres is faster.
For all four scale factors, the queries 2 and 11 are evaluated faster in Postgres than in
Spark. In addition to these two, the queries 13 and 16 are evaluated faster in Postgres
than in Spark for the scale factors 1 and 2. When comparing the boxplots in this figure,
we can see that for the scale factors 1 and 2 the speedups of Postgres are similar. The

36

4.3 How fast can a relational database answer data frame queries?

1 2 5 10
TPC-H scale factors

1

10

100

Re
la

tiv
e

sp
ee

du
p

8.0

20.1

2.87

31.51

16.9

8.6

15.1

1.94

23.05

12.0

3.1

9.3

1.35

17.07

5.1

2.0

6.1

1.08

10.81

3.4

Figure 4.2: Relative speedup of C++ DataFrame API with Postgres (data stored in the database)
over Spark DataFrame API

medians for these scale factors are the same. The only difference is that for scale factor 2
Postgres has a slightly higher dispersion of the speedups. For scale factors 5 and 10 the
medians are identical as well, but this time the dispersion is significantly higher for scale
factor 10 than for scale factor 5. In the right most boxplot we observe that one query is
significantly slower when evaluated in Postgres compared to the others. This query has
the query number 7 and is executed more than 25 times faster in Spark than in Postgres.

In Figure 4.2 we see the results of Postgres when we work with DatabaseRelations. This
time, the data is already available in the database. We observe that Postgres executes in
that case all queries faster than Spark. Nevertheless, Spark gets closer to the execution
times of Postgres with a growing data size. For a smaller data size of 1GB, Postgres has a
median relative speedup of 16.9. The median shrinks with a growing scale factor and for
scale factor 10, Postgres is only 3.4 times faster than Spark for the median value. This
is still high, but compared to scale factor 1 we observe a speedup loss. For all four scale
factors, the queries for which Postgres achieves the highest relative speedup are the queries
11 and 15. On the other side, especially for scale factor 10 there exist some queries that
are not even twice as fast in Postgres than in Spark, even though Postgres already loaded
the data into the database. For example, query 20 is more than four times faster for scale
factor 1 but has the smallest speedup for scale factor 20 with a speedup factor of 1.08.

Umbra is able to produce higher speedups for both the DataSourceRelations and the

37

4 Evaluation

1 2 5 10 20
TPC-H scale factors

1.0

10.0

Re
la

tiv
e

sp
ee

du
p

1.3

3.2

0.58

3.222.7

1.4

2.4

0.87

3.19
1.9

1.0

1.7

0.37

1.77
1.2

0.9

1.6

0.3

2.21

1.1
0.8

1.3

0.29

1.97

0.9

Figure 4.3: Relative speedup of C++ DataFrame API with Umbra (data loaded from CSV files)
over Spark DataFrame API

DatabaseRelations compared to Postgres. For the Umbra scenarios we also compute the
runtimes for scale factor 20 in addition to the scale factors from 1 to 10 . In Figure 4.3
we see that there exist some queries which are faster in Spark than in Umbra. However,
in contrast to Postgres, the median relative speedup is bigger than one for all four scale
factors. Like in the Postgres scenarios, the median speedup shrinks with a growing data
size. Queries 2, 11, and 16 are outliers of the first four scale factors. In case of scale
factor 20, only queries 2 and 11 are outliers of the boxplot. The other outlier queries vary
depending on the scale factors. Some of the queries are slower when executed with Umbra.
Especially with a higher scale factor, the number of slower queries and the slowdown get
higher. In case of scale factor 10, eight queries are slower when using Umbra and the C++
API instead of the Spark DataFrame API of Scala. For scale factor 20, more than half of
the queries (14) are slower in Umbra. For the queries 18 to 21, Spark is more than two
times faster than Umbra for scale factor 20. For scale factor 10, Spark executes query 21
two times faster than Umbra and query 14 takes more than three times longer in Umbra
than in Spark. For scale factor 5, only six queries are slower and in the case of scale
factors 1 and 2, only three queries need more time with Umbra than Spark. With a relative
speedup of 0.37 query 14 is also the slowest compared to Spark for scale factor 5.

The best results for Umbra can be observed in Figure 4.4 where the tables are already
available in the database and being accessed with DatabaseRelation data frames. In this
scenario, all queries are significantly faster with Umbra than with Spark. For scale factor
1 all queries are at least 85 times faster and for scale factor 20, they are still at least 27
times faster. We observe a decline of the lower whisker of the box plots like for all other
database setups. In contrast to the previous scenario of Umbra, the median value only
gets smaller for the first four scale factors. For scale factor 20, the median value gets again

38

4.3 How fast can a relational database answer data frame queries?

1 2 5 10 20
TPC-H scale factors

1

200

400

600

800

1000

1200

1400

Re
la

tiv
e

sp
ee

du
p

282.9

518.6

86.45

703.91

405.1
267.9

464.2

57.17

682.61

393.2

217.9

517.9

37.11

794.42

376.7

192.9

520.5

30.65

776.89

345.2

149.9

486.5

27.8

849.93

348.5

Figure 4.4: Relative speedup of the C++ DataFrame API with Umbra (data stored in the database)
over the Spark DataFrame API

bigger than for the previous scale factor 10.
Like for the other scenarios, there exist some outliers for all four scale factors. Query

15 is an outlier for all five used scale factors and in contrast to the other queries, the
speedup is growing with a growing data size. For scale factor 1, query 15 is about 1000
times faster when executed with Umbra and for scale factor 20, Umbra executes the query
in 100 milliseconds which is 1500 times faster than in Spark. For query 15 with scale factor
20, Spark needs 150 seconds for the evaluation. For scale factor 2 another outlier is query
6 and for scale factor 1 we have an additional one for query 11. For the other scale factors,
queries 6 and 11 also produce one of the highest relative speedups compared to Spark. The
queries with the smallest relative speedups are 9, 13, and 16. Those three queries are the
only queries which are less than 100 times faster than Spark for the scale factors 5 and 10.
In case of scale factor 1 and 2, only for query 9 Umbra achieves a relative speedup which is
smaller than 100.

In Figure 4.5 we see the relative speedup for two TPC-DS queries. We choose two queries
that both contain window functions since these are not covered by the TPC-H queries. In the
left Subfigure 4.5a, we see the results of our C++ DataFrame API when used with Postgres
and DataSourceRelation data frames as starting point. In the right Subfigure 4.5b we
use DatabaseRelation data frames as starting point which means that the tables already
existed in the database previous to the query execution. When the relations are not already
stored in the database, the speedup is significantly slower: For all scale factors, executing
query 63 takes more time with Postgres than with Spark. In case of query 12, Postgres is
able to execute the query faster for scale factors 1 and 2. For the scale factors above 5,
the relative speedup or in this case the relative slowdown stays constant. With a growing
data size, it seems that Spark is not able to extend its lead. In Subfigure 4.5b we observe

39

4 Evaluation

12 63
TPC-DS query index

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

sp
ee

du
p

1
2
5
10
20

(a) Postgres (data loaded from CSV files)

12 63
TPC-DS query index

0

5

10

15

20

25

30

Re
la

tiv
e

sp
ee

du
p

1
2
5
10
20

(b) Postgres (data stored in the database)

Figure 4.5: Relative speedup of selected TPC-DS queries in C++ DataFrame API

that Postgres is faster than Spark for both queries when the data is already stored in the
database. For query 12, Postgres is 30 times faster than Spark for scale factor 1 and still
more than 5 times faster for scale factor 20. For query 63 the speedup is smaller. Postgres
is 10 times faster than Spark for scale factor 1 and still 3 times faster than Spark for scale
factor 20. In contrast to Subfigure 4.5a, the speedup (or slowdown) does not stay constant
with a growing data size but gets smaller.

4.3.3 Discussion

Postgres needs a lot of time to load the data into the database before it can start working
on the data. Spark skips this step and directly works on the provided CSV files. For most
of the queries Postgres is not able to compensate the overhead of loading the data, but for
some cases Postgres is still faster. In Table 4.1 we summed up the number of lines of all
relations needed per query. In addition, we display the ratio of input rows compared to the
overall rows produced during the query evaluation for both Postgres (P) and Umbra (U).
We can see that the queries 2, 11, 13, and 16 are those queries where the fewest data has to
be read. For scale factor 10, queries 2 and 11 are the only queries where Postgres is faster
than Spark. The queries 13 and 16 needed more time in Postgres than in Spark. However,
compared to the others they still produce the smallest slowdown. For these queries the
number of lines that are read is comparably small when compared to the overall tuples
produced during the evaluation. With a ratio of about 20 percent for the queries 13 and
16, it has a smaller effect on the runtime compared to other queries.

We observe that for query 7 Postgres produces the highest slowdown compared to Spark.
In Table 4.1 we can see that query 7 is one of the queries where the most data has to be
copied into the database before starting the execution. Query 5, 8, and 9 are the only
queries where Postgres needs to copy even more data. Nevertheless, Postgres is able to
execute these three queries with a smaller slowdown compared to query 7. This shows that
the query optimizer is able to compensate the preloading of the data a little. For queries

40

4.3 How fast can a relational database answer data frame queries?

Query Relations Input Rows Input rows ratio (P) Input rows ratio (U)
1 1 6,000,000 43.20% 50.56%
2 5 1,010,030 32.26% 32.78%
3 3 7,650,000 63.47% 61.51%
4 2 7,500,000 49.30% 70.85%
5 6 7,660,030 42.13% 52.43%
6 1 6,000,000 98.13% 97.43%
7 5 7,660,025 66.68% 65.29%
8 7 7,860,030 53.07% 54.01%
9 6 8,510,025 40.16% 50.5%
10 4 7,650,025 67.89% 80.04%
11 3 810,025 46.35% 41.42%
12 2 7,500,000 82.39% 74.96%
13 2 1,650,000 23.57% 33.08%
14 2 6,200,000 93.54% 94.56%
15 2 6,010,000 94.04% 96.33%
16 3 1,010,000 22.24% 41.54%
17 2 6,200,000 31.61% 33.35%
18 3 7,650,000 33.33% 25.63%
19 2 6,200,000 96.01% 87.28%
20 5 7,010,025 64.54% 74.45%
21 4 7,510,025 23.15% 36.41%
22 2 1,650,000 34.58% 51.94%

Table 4.1: Input relation statistics of all TPC-H queries for scale factor 1

41

4 Evaluation

8 and 9, Postgres chooses a different join order than Spark. Spark directly starts with
the lineitem relation which contains the most rows and immediately joins this table with
another relatively large relation. Postgres starts with smaller join partners in both cases.
Additionally in the last column of Table 4.1, we can see that for query 7 the ratio of input
rows is the highest compared to the queries 5, 8, and 9.

In the second Postgres scenario, the data is already available in the database. The
queries 11 and 15 are the ones with the highest relative speedup. When comparing the
execution plans of Spark with those of Postgres we see some differences that might cause the
speedup: Spark and Postgres sort the result as the last step for query 11, but Spark contains
four additional sort operations in its execution plan. Another thing that is noticeable
when comparing the execution plans is that Spark splits every aggregate operation into
two steps: One for working with partial results and the second to finalize the aggregation.
The Spark execution plan therefore contains four aggregate operations, whereas Postgres
only contains two.

In case of query 15, Spark scans the biggest file of the whole dataset twice, namely the
lineitem CSV file, which contains 6 million rows for scale factor 1. In addition, Spark
contains six aggregate statements, whereas Postgres only contains three due to the partial
and finalized aggregates in Spark.

Our C++ DataFrame API performed much better with the in-memory database Um-
bra than with Postgres. When we use Umbra together with the DataSourceRelations we
see a similar behavior in the speedups as for Postgres. As we have already observed for
Postgres, we can see a strong correlation between the queries with the highest speedup and
the number of rows. The queries 2, 11, and 16 contain the fewest rows, which we can see
in Table 4.1. These queries are all outliers of the boxplots in Figure 4.3, which represent
the speedup of Umbra over Spark when using DataSourceRelations.
As we already observed above, there are some queries which need more time in Umbra

than in Spark, especially for a large TPC-H scale factor. The queries 14 and 21 are the
slowest in comparison to Spark for scale factor 10. The amount of data that Umbra has
to read for query 21 is high compared to the other queries. For query 14, Umbra has to
read less data but in Table 4.1 we can see that the ratio of the input rows is almost three
times higher than for query 21. The execution plan of query 14 is very short and both
Spark and Umbra execute the operations in the same order. This means that in this case
only the preprocessing of the data leads to the overhead for Umbra. For query 21 Spark
chooses a different join order than Umbra, which might be a better fit for the query.

The best speedups are achieved by Umbra using DatabaseRelations. In this case Umbra
does not need to preprocess the data anymore, but, in contrast to Spark, Umbra already
knows the given data. Spark still has to check the data to be able to generate an optimized
execution plan. The lead of Umbra gets smaller with a growing data size but for scale
factor 20 the median of Umbras speedup is getting higher again.
Query 15 is the only query where the speedup gets bigger for the growing scale factor.

For the scenario which uses Postgres with DatabaseRelations, query 15 is also one of

42

4.4 How fast can a relational database working with CSV tables answer data frame
queries?

the outliers. However, in contrast to Umbra, Postgres is not able to increase the speedup
lead. When comparing the execution plans, we see that Umbra only accesses the lineitem
table once whereas Spark scans the file twice. The lineitem relation is used twice in the
execution plan, but both times the same aggregate and filter operation is called on the
table. Umbra, therefore, works with a temp view to only execute the identical parts once.
In the execution plan of Spark, we can see that the filter and aggregate operations are
executed separately on each lineitem table scan.

The smallest speedup is achieved for query 9, but since Umbra is still 28 times faster for
scale factor 20, we still assume that Umbra has a better execution plan than Spark. In
Table 4.1 we can see that for query 9 the most data has to be read, either from the CSV
files or from the database relations. This leads to the comparatively similar runtimes of
Spark and Umbra. In this query, many relations are joined together. When comparing
the execution plans, we observe that Spark and Umbra choose different join orders for
the query. The join order of Umbra might be the reason why Umbra is still faster than Spark.

For the TPC-DS queries with window functions, we see a significant difference in the
speedups for query 12 and query 63. The reason for that is the amount of data that has to
be scanned. In case of query 12, Postgres has to preload 800,000 rows of data for scale
factor 1. For query 63 about 3 million rows have to be preloaded. That is why Postgres is
only able to outperform Spark for query 12 in the scenario of Subfigure 4.5b. For scale
factor 5 and query 12, Postgres has to read more data than for query 63 with scale factor
1. In this case, the speedup of query 12 is smaller than the one of query 63. The execution
plans of Postgres and Spark are very similar. Only in case of query 12, Postgres chooses
another join order than Spark. In case of query 63, it is only the amount of read data that
makes the difference. In the first scenario Spark has an advantage since it directly works
on the data. In the second scenario Postgres has an advantage since it already preloaded
the data and therefore has better knowledge about it than Spark has.

4.4 How fast can a relational database working with CSV
tables answer data frame queries?

4.4.1 Study Design

For the second research question, we run the TPC-H queries in our C++ DataFrame API.
This time we use Umbra as database backend since only Umbra supports to directly
work on CSV files. Instead of preloading the data or creating tables as part of the query
execution, we use the umbra.csvview() function. As explained in Chapter 3, we work with
a DataSourceRelation. When generating the SQL query, we insert calls to the csvview()
function whenever a query plan of type DataSourceRelation occurs. We use the same
five scale factors 1, 2, 5, 10, and 20 as for the first research question. To compare the
results of the csvview() function setup, we reuse the results of Spark we computed for
the first research question. The used system in this research question is the same as for
the first one.

43

4 Evaluation

1 2 5 10 20
TPC-H scale factors

1

10

100

Re
la

tiv
e

sp
ee

du
p

20.6

40.3

14.16

50.62

22.2
15.0

31.0

9.97

43.22

18.3
11.1

20.9

8.1

32.46

14.8
9.1

14.6

6.79

22.83

12.5
8.6

12.2

6.33

16.39
10.7

Figure 4.6: Relative speedup of the C++ DataFrame API with Umbra and umbra.csvview()
function over the Spark DataFrame API

4.4.2 Results

In Figure 4.6 the relative performance of Umbra compared to Spark is shown for the
different TPC-H scale factors. We can see that our C++ API with the CSV table scans
of Umbra is faster than Spark in all presented scenarios. For scale factor 1 Umbra is
at least 14 times faster. For scale factor 20 which means 20GB of data, Umbra is still
able to outperform Spark by at least a factor of 6.3. For scale factors 1 and 2, Umbras
speedup is positively skewed and gets smaller for higher factors. Overall, the shapes of the
boxplots are similar, but the median speedup gets smaller with a growing data size. When
comparing the differences between the median values we see that the speedup loss does
not shrink linearly but still gets less with a growing data size.

In all of the five scenarios there exist some outliers where the speedups are higher than
the boxplot upper whisker. For all scale factors these include the queries 11 and 16. For
scale factor 1, the queries 13 and 22 are also marked as outliers. This does not hold for all
of the other scale factors but the speedup is still one of the highest compared to the other
queries for all five scale factors. For scale factor 20 query 15 is also an outlier. Similar to
the outliers of scale factor 1, query 15 is also one of the queries with the highest speedup
for the other scale factors.

4.4.3 Discussion

Umbra used with the csvview() function is the most comparable scenario of all scenarios
of the first two research questions. In this case, both, the Spark DataFrame API and
Umbra, read the data from the CSV table. In Postgres, we have to start with preprocessing
the data into database tables, when using the classic DataSourceRelations. Therefore,
we at first generate database tables and load the data into the tables before starting to

44

4.5 How time-consuming is the usage of the C++ DataFrame API instead of a SQL
interface?

execute the actual query. In Figure 4.3 we can see that the overhead of creating the
database relations instead of directly working on the CSV files leads to Umbra being slower
than Spark in some cases. In Figure 4.6, as we already observed, all queries are executed
faster in Umbra than in Spark; Some of the queries with a significantly higher speedup
than others. We explicitly mentioned queries 11 and 16 since these are outliers for all
investigated scale factors.

The execution plan of Umbra for query 11 shows that Umbra works with a temp view to
avoid scanning the same file twice. In Spark, the partsupp relation is scanned twice, which
is the biggest relation used for query 11. Since the partsupp relation contains 800,000
rows, which is almost have of the total number of rows that have to be read in this query,
Spark reads almost twice the amount of data compared to Umbra.
For query 16, Spark and Umbra choose different join orders for the three join partners.

In addition, Umbra chooses a hash join for both joins, whereas Spark sorts the data first to
perform a sort-merge join. These reasons seem to cause the speedup of Umbra over Spark.

4.5 How time-consuming is the usage of the C++
DataFrame API instead of a SQL interface?

4.5.1 Study Design

The microbenchmark queries for the third research question are executed in our C++
DataFrame API. We only measure the time it takes to call the transformations and to
generate the SQL queries. We do not send the generated queries to a relational backend
to actually evaluate them. We only want to measure the overhead of a Spark API with a
relational database as backend compared to directly accessing the relational database with
SQL queries. We vary the size of the queries by repeatedly calling the same function on
the same data frame for the operator evaluation of FILTER, AGGREGATE, UNION, and JOIN.
Our fifth micro-benchmark evaluates the performance of the expression parsing. We

want to measure how fast our program can convert complex expressions into a SQL
expression. Repeatedly calling a FILTER transformation with the same expression does
not make the expressions more complex. To achieve a variable complexity we build one
expression and repeatedly combine it with the same expression using the logical AND
operator. Our program does not check if the two expressions that are combined to one
expression with the AND operator are the same. Therefore, we use the same expression for
all base expressions. In our case the base expression checks if one column contains a certain
literal: “b”_c.contains(lit(’abc’)). The resulting expression for our microbenchmark
looks as follows:

((("b"_c.contains(lit(’abc’)) && "b"_c.contains(lit(’abc’)))
&& "b"_c.contains(lit(’abc’))) && (...))

As repetition counts we use the logarithmic sequence of base ten from 1 to one million.
In addition to our C++ API, we run the queries in the Spark shell implemented in Scala

and compare the execution times. In Spark, no SQL query is generated before it can be

45

4 Evaluation

FILTER JOIN AGGREGATE UNION EXPRESSION
100

102

104

106

108

1010

1012
Ru

nt
im

e
[n

s]
Repetition count

1
10

100
1,000

10,000
100,000

1,000,000

Figure 4.7: Execution time of generating SQL queries with the C++ DataFrame API

evaluated. Thus, we add the time our implementation needs to generate the query from
the transformations to the overall time it takes to execute the transformations. For this
research question we again use the system we already used for the first two questions.

4.5.2 Results

In the third research question, we want to evaluate how much time it takes to generate
SQL queries from the DataFrame API transformations. In Figure 4.7 we show the
resulting runtimes with a grouped bar chart. Every group represents one of the five
microbenchmark scenarios. The first four scenarios deal with the repeated execution of a
certain transformation. The different colors represent different repetition counts. We start
with one repetition (darkest color) to a repetition count of one million (brightest color).
The last scenario represents the evaluation of an expression with an increasing complexity.
The different colors in this case represent the number of base expressions of type CONTAINS
that are connected with the logical AND operator.
The y-axis is logarithmically scaled and shows how much time (in nanoseconds) the

execution of the different scenarios take. Since we use a base 10 logarithmic scale for
the y-axis as well as for the step size of the repetition counts, we can see that the bars
are close to linear growth especially between the repetition counts one hundred and one
million. This means we have an almost linear runtime. All five scenarios produce very
similar runtimes, with the UNION and the FILTER scenario being the fastest. The execution
times of repeatedly executing the filter() transformation and the execution time of

46

4.5 How time-consuming is the usage of the C++ DataFrame API instead of a SQL
interface?

an increased expression complexity are also very similar. For some repetition counts,
repeatedly calling the filter() transformation is faster and for some cases calling the
filter() transformation only once with a complex expression is faster. The AGGREGATE
scenario, in which we repeatedly call the groupBy() transformation followed by an agg()
call, is one of the slower benchmarks. The same applies for the JOIN benchmark. The
JOIN scenario gets a better performance compared to the AGGREGATE scenario once the
repetition count is growing.
After getting a good overview of the runtime relations in Figure 4.7 we can take a closer
look at the actual times in Table 4.2. Every column represents a different repetition count
and each row is representing the runtimes of a specific microbenchmark. The runtimes
for the different scenarios start to differ with a higher repetition count. The JOIN and
AGGREGATE scenarios need more than twice as much time for 100,000 repetitions and 1
million repetitions compared to the other three scenarios FILTER, UNION, and EXPRESSION.
The EXPRESSION scenario executes faster than the FILTER and UNION scenarios from repeti-
tion count 10 to 1,000. However, it starts to get slower than the other two scenarios above
10,000 repetitions. In the last column, we can see that evaluating the complex expression
takes about 15 seconds longer than repeatedly calling the FILTER or UNION transformation.

In Table 4.3 we list the runtimes of the microbenchmarks in Scala. The scenarios FILTER,
JOIN and EXPRESSION all throw a stack overflow error when we are trying to call the
transformations 10,000 times and more. The AGGREGATE scenario is still able to finish the
request for 10,000 repetitions, but it also throws a stack overflow error when we try it
with 100,000 repetitions and more. The UNION scenario is not able to finish the 10,000
repetitions scenario in under 10 hours, so we stopped it.
In contrast to the C++ version, the Scala runtimes are not growing linearly. There

even exist scenarios where more repetitions are faster than fewer repetitions like the filter
microbenchmark, where 1 repetitions takes 1 second and 10 repetitions only take 0.5
seconds. Comparing the runtimes of Scala with C++ we see a lot of differences. The UNION
benchmark is the slowest for Scala while being the fastest for C++. When we compare
the runtimes of 1,000 repetitions, C++ is at least 60 times faster than Scala. Computing
the FILTER and JOIN transformations is more than 100 times faster for both. Executing
the UNION transformation 1,000 times is more than 6,000 times faster. The AGGREGATE
microbenchmark is the only one that is still executable for 100,000 repetitions in Scala.
Our C++ implementation executes the AGGREGATE benchmark with 100,000 repetitions
more than 300 times faster.

4.5.3 Discussion

In Figure 4.7 we see that the runtimes of the different microbenchmarks are very similar.
That is because the SQL queries for the first four transformations are created in a very
similar way. The variations between the different types are due to the different complexities
of translating a certain transformation type to a SQL query.
The UNION operator can be easily translated to a SQL query. We just create a basic

query for both child query plans by selecting all columns and then we combine those with

47

4 Evaluation

1 10 100 1,000 10,000 100,000 1,000,000
FILTER 0.06ms 0.36ms 3.72ms 25.18ms 205.56ms 2.2s 25.65s
JOIN 0.12ms 1.35ms 8.64ms 68.34ms 659.97ms 7.08s 86.71s
AGGREGATE 0.09ms 0.53ms 5.28ms 39.56ms 975.75ms 10.07s 104.05s
UNION 0.1ms 1.01ms 3.61ms 26.78ms 230.47ms 2.29s 24.38s
EXPRESSION 0.1ms 0.32ms 2.86ms 16.11ms 326.13ms 3.41s 39.75s

Table 4.2: Generation time of SQL queries with the C++ DataFrame API

1 10 100 1,000 10,000 100,000 1,000,000
FILTER 1.07s 524.2ms 1.77s 3.19s - - -
JOIN 430.28ms 1.16s 1.32s 18.35s - - -
AGGREGATE 1.06s 1.17s 961.4ms 6.84s 343.84s - -
UNION 412.34ms 1.18s 2.88s 57.42s - - -
EXPRESSION 473.96ms 507.61ms 1.53s - - - -

Table 4.3: Generation time of SQL queries with the Scala DataFrame API

UNION ALL.
The AGGREGATE transformation is more complex. We have to create a GROUP BY clause

for the columns passed to the groupBy() function call and the aggregate expression has
to be created. In the SELECT clause, both the aggregate and groupBy expressions have to
be listed. This is more time-consuming than just adding a star operator representing all
columns from the child query plan like for the FILTER operator or the UNION operator.

The JOIN benchmark is also more complex. After every call to the join() transformation,
we call the select() transformation and only select the columns of the left join partner.
We do that to ensure a constant column size even after a large amount of joins.

The FILTER transformation microbenchmark and the EXPRESSION microbenchmark
have very similar runtimes. In both cases, the same amount of base expressions of
type contains() are transformed to SQL expressions. In the case of multiple FILTER
transformations, the SQL expressions are combined by stacking multiple subqueries of type
FILTER. In the case of the EXPRESSION scenario, we combine the base expression of type
CONTAINS with the logical AND operator. In both cases, we have some overhead. In case of
the FILTER scenario we have to generate for each FILTER query plan node in the graph a
CTE.
In case of the EXPRESSION scenario we only generate one CTE that combines multi-

ple base expressions with AND operators. The difference between the two options gets
remarkable at 10,000 repetitions, which is not a real-world scenario. Therefore, it does not
matter for our implementation if we use conjunction or multiple FILTER transformations
to generate a complex expression.

In their work about Spark [2] Armbrust et al. present the DataFrame API. They state that
it evaluates operations lazily. This means that an action has to be called to trigger the

48

4.6 How well can a relational database optimize queries generated from data frames?

evaluation of the whole data frame query plan. Calling the same transformation for more
than 10 times might not be a real-world scenario. However, it is still interesting to see that
even when only calling lazy transformations this leads to enough internal computations to
result in a stack overflow error when called too often.
For our C++ implementation, we used at first a recursive approach to evaluate the

expressions and columns of the different query plans. This led to stack overflow errors in
case of too many repetitions. Therefore, we changed our implementation to use iterative
approaches in critical places. The transformation of the column objects to SQL expressions
during the SQL query generation was for example transformed into an iterative approach.
Resolving the unresolved attributes when a transformation is called was initially also done
recursively, which we changed as well.

4.6 How well can a relational database optimize queries
generated from data frames?

4.6.1 Study Design

For the fourth research question, we compare our generated queries with the original
TPC-H queries. We send both the generated and the original queries to the SQL interface
of the Postgres and Umbra databases. We compare the execution plans of the generated
and original queries and evaluate the impact of the differences by comparing their runtimes.
Since both the generated and the original queries produce the same result, they can be
optimized in the same way in theory. We check how well the databases can handle the
strongly nested generated SQL queries compared to the original SQL queries, which tend
to be less nested and more human-readable. Since the creation of the tables is the same for
both the generated and the original SQL queries, we preload the tables into the database
and only measure the time it takes the databases to run the queries on the existing tables.
We used the scale factor 2 for the data, which corresponds to a dataset size of 2GB. The
used system is the same as for the other research question.

4.6.2 Results

In Table 4.4 we present the results of comparing the execution plans of the generated and
the original queries for both Postgres and Umbra. Green cells indicate that the query plan
optimizer of the database generated the same execution plan. A red-colored field indicates
that the execution plans of the original and the generated query differ.

Postgres is able to retrieve the same execution plans from the generated and the original
queries for twelve queries. For the other ten queries, Postgres produces different execution
plans. Umbra is able to generate the same execution plans for more queries than Postgres.
Only five times the execution plan optimizations of Umbra does not result in the same
execution plan. Therefore, there exist five queries where Umbra is able to generate the
same execution plans, whereas the query optimizer of Postgres produces different results
for the generated and the original queries. To see how the execution plans look like, we
visualize the execution plans of Umbra for the original and generated TPC-H query 11 in

49

4 Evaluation

NATION SUPPLIER

JOIN
(HASH) PARTSUPP

JOIN
(HASH)

GROUPBY

MAP

NATION SUPPLIER

JOIN
(HASH) PARTSUPP

JOIN
(HASH)

GROUPBY

JOIN
(BNL)

SORT

NATION SUPPLIER

JOIN
(HASH) PARTSUPP

JOIN
(HASH)

MAP

TEMP

TEMPSCAN TEMPSCAN

GROUPBY GROUPBY

RIGHTSEMI
JOIN (BNL)

SORT

Figure 4.8: Execution plans for the original TPC-H query 11 (on the left) and the generated
TPC-H query 11 (on the right) in Umbra

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Postgres
Umbra

Identical execution plans
Different execution plans

Table 4.4: Comparison of execution plans of original and generated SQL queries

50

4.6 How well can a relational database optimize queries generated from data frames?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H query index

0

2

4

6

8

10
Ru

nt
im

e
[s

]
Original TPC-H queries
Gen. TPC-H queries

Figure 4.9: Execution time of original and generated TPC-H SQL queries in Postgres for scale
factor 2

Figure 4.8. On the left we show the original execution plan and on the right the generated
execution plan. Orange fields represent database relations and blue boxes contain temp
views and their usage in tempscan operations. The difference between the two execution
plans is that for the original query, the Umbra engine scans, joins and groups the three
relations nation, supplier and partsupp twice. For the generated query these steps
are only done once and then reused twice by the tempscan operators. This makes the
generated query in this case faster than the original query. In addition, the generated
query contains in contrast to the original query a right semi join instead of an inner join.

In Figure 4.9 the execution times needed to run the TPC-H SQL queries in Postgres are
shown for the original and the generated queries. The Postgres database is not able to
finish the original queries 2, 17, 20, and 21 in less than 10 minutes, so we stopped their
execution and left a space in the graph at the corresponding positions. The only generated
query which Postgres is not able to finish is query number 21. In contrast to query 21,
Postgres is able to finish the queries 2, 17, and 20 when using the generated queries instead
of the original ones. Apart from those four special cases, most of the other queries have
a very similar runtime when comparing the generated with the corresponding original
query execution time. The only remaining query with a percentage deviation of more than
2 percent is query 11. The original query number 11 took 334 milliseconds to execute
whereas the generated query needed only 308 milliseconds. This corresponds to a percent

51

4 Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H query index

0

100

200

300

400

500
Ru

nt
im

e
[m

s]
Original TPC-H queries
Gen. TPC-H queries

Figure 4.10: Execution time of original and generated TPC-H SQL queries in Umbra for scale
factor 2

deviation of 8 percent. When we compare these results with the execution plan evaluation
in Table 4.4, we can see that the execution plans of the non-terminating original queries
differ from the corresponding generated ones which were able to be finished by Postgres.
The execution plans of query number 21, where both the original and generated query
could not be completed, are the same. Some of the queries have a very similar runtime
even though their execution plans differ. That is the case for the queries 9, 10, 15, 16, 18,
and 22.

In Figure 4.10 the runtimes for Umbra are shown. Like in Figure 4.9, we show the time it
takes to compute the generated and the original SQL queries in the Umbra database for all
TPC-H queries. Umbra is able to finish most of the generated queries in the same amount
of time as the original queries. 19 of the generated TPC-H queries have a percentage
deviation of less than 5 percent. The queries 3, 11, and 17 deviate more significantly from
the original queries. Query 3 has a percentage deviation of 15 percent, query number 11
has a percentage deviation of 36 percent, and query 17 takes more than 3 times longer than
the original query. The original query 17 only needs 38 milliseconds whereas the generated
query takes more than 135 milliseconds which is a difference of nearly 100 milliseconds.

If we compare the runtimes with the execution plans, we can see that different execution
plans do not always have an impact on the runtime. This behavior is similar to Postgres.
For example, the runtimes of the generated and original queries for query number 5 and

52

4.6 How well can a relational database optimize queries generated from data frames?

18 are very similar, even though their execution plans differ. The execution time of the
generated query has a percentage deviation of less than 1 percent in both cases. Only
for query 17 the execution takes significantly longer for the generated query than for the
original query.

4.6.3 Discussion

Postgres is not able to compute the result for three of the original queries in a reasonable
amount of time. In contrast to the original queries, Postgres is able to finish three of the
generated versions in less than 10 minutes. Only query 21 does not terminate for neither
the original query nor for the generated query. The other queries, namely 2, 17, and 20, do
terminate in the generated case.
When we take a look at the differences in the execution plans, we notice that the

original query 2 contains a correlated subquery which we are not able to express in the
DataFrame API. To formulate the query in the DataFrame API, we manually decorrelated
the query. The query optimizer of Postgres is not able to decorrelate the original query
itself. Therefore, the decorrelated generated SQL query terminates in contrast to the
original correlated query.
The original query 17 also contains a correlated subquery. In our DataFrame API, we

implemented the correlated subquery with a semi-join which results in an EXISTS operator
in the generated SQL query. Postgres is not able to resolve the original query like we did
it manually for the DataFrame API.
Similar to query 17, we also had to manually decorrelate query 20. In the Spark

DataFrame API there is no synonym for the SQL IN operator. Since query 17 contains this
operator twice, we had to rewrite the query. We express the operators in the DataFrame
API with semi joins. Like for query 2, the Postgres query optimizer is not able to perform
the decorrelation for the original query itself.
The only query which Postgres is not able to execute for neither the original nor the

generated form is query 21. The original query contains an EXISTS and a NOT EXISTS
operator, which we transformed into a semi-join and an anti-join. As we described in
Chapter 3, we transform semi joins and anti joins into EXISTS and NOT EXISTS statements.
This makes the generated query very similar to the original one. Indeed, in Table 4.4 we
can see that the two queries are similar enough to be transformed to the same execution
plan by Postgres.
Query 11 was finished for both the generated and the original query. The execution

plans differ which is also visible in the execution times in Table 4.9. In the execution plans
we notice that the Postgres query optimizer chooses a different join type for the generated
query than for the original query. The query 11 contains a HAVING clause which is not
supported in the Spark DataFrame API. We resolved this clause with a right-semi-join
in our implementation which the query optimizer of Postgres turned into a nested loop
join. The original query is transformed into a execution plan that only contains hash joins.
Using a right-semi-join instead of the HAVING clause improves the runtime.

In Table 4.4 there are a few more queries marked as different even though the differences
do not have an impact on the execution times. Some of the changes like for the queries 9

53

4 Evaluation

or 18 are so small that they are not visible in the execution time. The only difference for
query 9 is that Postgres adds an additional sort step to the execution plan of the generated
query. In case of the query 18, the execution plan of the generated query contains an
additional MAP step.

In some cases, the differences in the execution plans are more significant, like a different
join type in the execution plans of queries 16 and 22. Nevertheless, the execution times
stayed the same. For query 16, that originally contains a NOT IN operator, we constructed
an anti-join with the DataFrame API. This is still visible in the optimized execution plan of
the generated query. The execution plan of the original query contains a FILTER expression
to deal with the NOT IN operator.

Query 22 contains two correlated subqueries. One of the two subqueries is a NOT EXISTS
operator which we realize with an anti-join in the C++ DataFrame API. Both execution
plans contain a “Parallel Hash Anti Join” to realize this correlated subquery. The second
subquery is more complex: We had to transform it into a semi-join. The Postgres query
optimizer resolves the semi-join into a nested loop with a join filter as one of the last steps.
In the original case, the query optimizer is already able to add the correlated subquery as a
filter during the parallel sequence scan of one affected table. Nevertheless, both execution
plans lead in the end to similar runtimes.

Umbra overall has a better performance in resolving the execution plans than Postgres.
However, there are still some differences in the execution plans which are also visible in
the runtimes for two queries. Like Postgres, Umbra produces different execution plans for
the queries 11 and 17.
The generated query of query number 11 contains a WITH clause. As already explained

above, we are not able to express a HAVING clause with the DataFrame API. Therefore,
our version slightly differs from the original one. We create a data frame that joins all
tables together so that we can later reuse this data frame twice in two different positions
for the main query. The reference count of this data frame is therefore 2. As we explained
in Chapter 3, we map these nodes to CTEs, which can be referenced multiple times. The
resulting query plan therefore scans the tables only once, whereas in the original case,
where they did not use a CTE, the tables are scanned twice. Another difference is the
usage of a right semi join in the generated case instead of a join in the original case. This
is caused due to expressing the HAVING clause in the DataFrame API with a semi join.

In the execution plans of the generated query 17 we can also see that a semi join, in this
case a left semi join, is used. As already explained for Postgres, we need to use a semi join
to express the query in the DataFrame API. The only difference is that our adaption in
the case of Postgres leads to a major runtime improvement. Postgres is not able to finish
the original query 17 in less than 10 minutes by Postgres, whereas the generated one only
takes about 5 seconds until it is finished. In contrast to Postgres, Umbras achieves a better
execution time for the original query than for the generated query. In the original case,
Umbra combines a join with an aggregate to a group join in the execution plan. This leads
to one instead of two hash tables, hence the aggregate can reuse the hash table of the join
operator.

54

5 Related Work

In her work, Wu [14] compares data frames with database tables. In her opinion data
frames have more useful functionalities whereas database tables have a better performance
and clarity than data frames. The main difference that she identifies is the difference
between multisets used in databases and lists used in data frames. In data frames the user
can access a specific row of the data frame by using the relative position as a reference.
For database tables, we have to create a subquery in SQL which counts the number of
rows with a smaller value for a specific sorting criterion. Since the order of data frames is
taken into consideration, some operations are only commutative for database tables. Two
database tables with different sorting criteria, are still considered to be equal, whereas a
data frame is not equal to the same data frame with a different sorting criterion.
Wu mentions as a drawback for implicit ordering the maintenance costs of preserving the
order in a large dataset. For database tables, the user has to add a ORDER BY clause to the
SQL statement to get a specific order.
Another difference between tables and data frames is the relational algebra which is the
base for databases. The user of a database does not have to care about how the data is
organized and performs queries on a high-level. Since the user does not influence how the
data is organized, endless optimization techniques can be applied in the opinion of the
author.

Peterson et al. [10] deal in their work with the performance issues of data frames. They
propose different optimization opportunities for the data management of data frames. Their
initial intent was to develop a scalable data frame system, called MODIN, by adapting
techniques from relational databases. Since data frames are ordered, they state that there
is often a strict coupling between the logical and the physical layout required. They present
different options for a more lightweight ordering like a separate “order column” if there
does not already exist columns which imply the ordering. Instead of keeping the data
always sorted internally, the data is only sorted when the program returns a result to the
user. In that case, the ordering is applied to the dataset as an ORDER BY operator on the
“order column”. In contrast to a SQL query optimizer, the data frame query optimizer
always has to maintain the order in the query plan.
One of the main performance goals mentioned in their work is the support of exploratory
data analysis (EDA). In relational databases, EDA is hard to perform since SQL queries
cannot be easily executed step-by-step. Users of data frame APIs often debug subexpres-
sions of queries with a trial-and-error strategy, that is why intermediate results are revisited
frequently. A data frame query optimizer should consider this to avoid that the same
queries are repeatedly executed.
Another consequence of exploratory data analysis they mention is the amount of idle time
of the system while the user thinks about what to do next. They present an opportunistic
query evaluation technique where the user gets a pointer to a data frame that might be
computed in the future. The computation is performed during the thinking time of the

55

5 Related Work

user asynchronously in the background. If the user requests a result, the computation of
this result is prioritized by the opportunistic evaluation.
Spark and other data frame implementations like panda mostly return only a prefix or
suffix of the result. Therefore, the author suggest to spend the idle time of the system to
materialize the prefix and suffix of the data frames.

The following work presents an approach that is similar to ours. The authors present a
system that uses a relational database for executing the queries like we do, and they also let
the user interact with a more user-friendly API than SQL. The .NET Language-Integrated
Query (LINQ) framework presented by Meijer et al. [5] defines general query operators for
traversing, filtering, and projecting which can be used as a base for any .NET language to
define a special syntax for queries in this language. They present two domain-specific APIs,
one for XML and the other one for relational data (DLinq). With DLinq the programmer can
manage relational data as objects in the host programming language .NET. The framework
translates language-integrated queries into SQL queries and sends them to the database for
the execution. The resulting tables are translated back to objects by the framework. The
C++ Spark API which we implemented basically does the same thing only the resulting
format differs. We work with data frames instead of objects, but like DLinq we transform
the data frame queries into SQL queries and send them to the database. Afterwards, we
parse the resulting table into the correct format depending on the action the user has called.

Ramnarayan et al. [12] describe in their work how they combine Spark SQL with an
in-memory transactional store with scale-out SQL semantics, called GemFire, to one inte-
grated solution which they named SnappyData. Their goal is to provide a unified engine
that supports stream analytics as well as OLTP and OLAP. The big data computational
engine Apache Spark has in their opinion an appealing programming model to both, appli-
cation developers and data scientists. The problem is, that Spark has no own storage engine
which leads to the need for an external one. In their open-source platform ’SnappyData’
they deeply integrated GemFire into the Spark application which improves the performance
since the serialization costs and the network traffic can be minimized. By integrating
GemFire they were also able to support mutability which is not natively supported by
Spark due to the immutable RDD data structures. The in-memory transactional store
extends the Spark API with OLTP operations like inserts or updates. Another benefit
of the integration is a higher availability due to the replication and fine-grained updates
GemFire supports. Mozafari et al. [6] state in their second work about SnappyData that
the main idea of their platform is to federate SQL queries between Spark’s Catalyst and
GemFire’s OLTP engine. With an initial query plan, they determine if a query is a low
latency query or not. High-throughput analytics are handled by Sparks lineage-based
system which is designed for that kind of queries. GemFire deals with the low-latency
operations with its consensus-driven replication-based system design.

56

6 Conclusion

6.1 Summary

Relational databases are still well-known for their great performance on variable size
datasets. Nevertheless, the database query language SQL is not very user-friendly. Espe-
cially programmers are having a hard time using SQL since they normally use it inside
another programming language. Therefore, they build the SQL queries as raw strings with-
out any syntax-highlighting support or type checking support from the IDE. Data frames
are an abstraction of tabular data that is closely integrated into different general-purpose
programming languages. Developers like that it is possible to generate relational queries
step-by-step. Transformations can be invoked on existing data frames and the calls will
return new data frames. Thus, the user can check intermediate results and can easily
build up complex statements with method-chaining. In SQL, queries can also be built
step-by-step but it is not intuitive and very error prone. The user would have to rewrite
the query multiple times to finally get the desired query. To check intermediate results,
the user has to extract the section of the SQL query that should be calculated, which can
be hard due to the nested structure of SQL statements.

To get the best of both worlds, we suggest a mapping strategy to transform data frames
to database queries. We implemented a DataFrame API in C++ similar to Spark and
whenever an action is invoked on a data frame, we transform it into a SQL query and send it
to a database for the evaluation. Our implementation is not restricted to a certain database
but can be connected to any database. We support many of the relational transformations
of the Spark DataFrame API and are able to express all the TPC-H queries with these.
We suggest converting the query plan tree of the data frame into a SQL query by mapping
each node of the query plan tree to short SQL queries separately. A parent node can either
place the computed subquery itself in its FROM clause or the name of the CTE if the child
node is referenced by more than one parent node. For ten different query plan types we
showed how they can be mapped to a small SQL subquery and how they can be combined
to construct even complex queries like the TPC-H queries.

We evaluated our approach with the already mentioned TPC-H queries that we map to
a chain of data frame transformation calls. We used two different databases, a disk-based
and an in-memory system. In addition, we used different setups to check how the database
performs when the data is already stored in the database or when it has to be loaded as
part of the query evaluation. We investigated the performance of our approach with four
different research questions. These questions address the difference between the execution
times of Postgres and Spark as well as the difference between Umbra and Spark. Postgres is
not able to beat Spark when the tables are not already loaded into the database. Especially
for large datasets, there are only a few queries which need less time for the execution
in Postgres than in Spark. If the tables are already available in the database especially
Umbra is able to achieve a huge speedup. For all scale factors from 1 up to 20, Umbra
outperforms Spark. Even though the relative speedup gets smaller with a growing data

57

6 Conclusion

size, Spark is still not able to outperform Umbra with a data size of 20GB. For some of
the queries Umbra is more than 1000 times faster. Utilizing the csvview function instead
of storing the data in Umbra is the most comparable scenario since Spark does not have
an advantage (when the database systems have to load the data into the tables first) or a
disadvantage (when the tables are already stored in the database systems) due to fewer
precomputations. With the help of the csvview function, Umbra is still at least 6 times
faster than Spark.
Apart from the higher usability, we also showed that generating a SQL query from a

data frame does not take longer than a second even after 10,000 transformations. Some
data frame generations can take longer than 100 seconds if certain transformations are
invoked one million times, but since the runtime grows linearly it is still acceptable.
In summary, we presented an approach to transparently map data frames to database

queries that is able to compete with Spark’s DataFrame API on a single machine when it
comes to relational data processing.

6.2 Future Work

In the future, we want to further enhance the C++ DataFrame API to make it competitive
with the current Spark DataFrame API. We suggest the following areas for improvements:

Distributed database systems. In this master’s thesis, we focus on the single node
machine for Spark since we only use database management systems that run on a single ma-
chine. Spark can also be used for cluster computing. In that case, Spark distributes the data
over a cluster and processes queries in parallel. A distributed database system also enables
the user to store the data across multiple physical locations. In the future we can inves-
tigate how Spark executed on a cluster performs compared to a distributed database system.

User defined functions (UDF). In Spark, the user can work with user-defined functions.
He or she defines the function in the same language in which Spark is used as well. In
our case, we would specify a Scala function since we work with Spark’s DataFrame API
in Scala. To use the function as UDF, we call the udf() method of Spark and pass our
function definition as a parameter. Afterwards, the result of the method call can be applied
as a function call to column objects of the DataFrame API. SQL also supports user-defined
functions. The user can write these in different languages depending on the used database
management system. Postgres for example supports c-language functions, so the user might
be able to define a function in C++ and apply it to a DataFrame column object in our
C++ DataFrame API. When generating the SQL query, the C++ function would have to be
converted into a c-language SQL function for Postgres.

Implicit ordering. The main difference between database tables and data frames is
that database tables are treated like multisets whereas in Spark lists are used to store the
data. Lists implicitly keep the order of the initial data source. In Postgres for example we
could add a column with the SERIAL pseudo type which auto increments its value every

58

6.2 Future Work

time a new row is inserted. All query plan nodes would have to track the current order
criteria so that in the final SQL statement the current order criteria can be used in the
ORDER BY clause. If a query plan node has the type Sort, the order expression has to be
added at the front of the query plans order criteria. If a column of the order criteria is
removed, it has to be removed from the order criteria as well. For the resulting SQL query,
we do not have to add a separate CTE for the Sort query plan since all other query plans
implicitly track the order criteria. Only query plans where the sorting criteria is required,
like for a Limit or a Deduplicate query plan, can insert it into their CTEs.

59

List of Figures

2.1 Expression tree for a complex column object 13

3.1 Small query plan graph. 17
3.2 Doubly linked list of SQL query with child queries 28

4.1 Relative speedup of C++ DataFrame API with Postgres (data loaded from
CSV files) over Spark DataFrame API . 33

4.2 Relative speedup of C++ DataFrame API with Postgres (data stored in the
database) over Spark DataFrame API . 34

4.3 Relative speedup of C++ DataFrame API with Umbra (data loaded from
CSV files) over Spark DataFrame API . 35

4.4 Relative speedup of the C++ DataFrame API with Umbra (data stored in
the database) over the Spark DataFrame API 36

4.5 Relative speedup of selected TPC-DS queries in C++ DataFrame API 37
4.6 Relative speedup of the C++DataFrame API with Umbra and umbra.csvview()

function over the Spark DataFrame API . 41
4.7 Execution time of generating SQL queries with the C++ DataFrame API . . 43
4.8 Execution plans for the original TPC-H query 11 (on the left) and the

generated TPC-H query 11 (on the right) in Umbra 47
4.9 Execution time of original and generated TPC-H SQL queries in Postgres

for scale factor 2 . 48
4.10 Execution time of original and generated TPC-H SQL queries in Umbra for

scale factor 2 . 49

List of Listings

2.1 Initialize a data frame from a file in the Scala Spark shell 5

3.1 Example SQL statements for DataSourceRelation and DatabaseRelation
query plans . 21

3.2 Example SQL statement for the Filter and Project query plans 22
3.3 Example SQL statement for the count() action 22
3.4 Example SQL statements for the sort and following limit query plan 25
3.5 Example SQL statements for the join query plan 27
3.6 Example SQL queries with CTE or using a subquery 27

61

List of Tables

List of Tables

2.1 Transformations of Spark’s DataFrame API in Scala 7
2.2 Aggregate functions of Spark’s DataFrame API in Scala that can be invoked

on RelationalGroupedDatasets . 8
2.3 Column object class functions of Spark’s DataFrame API in Scala 11
2.4 Additional functions that return column objects in Spark’s DataFrame API

in Scala . 12
2.5 Functions required to construct a Window that can be passed to the over(...)

function . 14

3.1 Query plan types and their corresponding transformations. 17
3.2 CTEs for the different query plan types listed in Table 3.1 24
3.3 Mapping of column object functions of Table 2.3 and Table 2.4 to SQL . . . 29

4.1 Input relation statistics of all TPC-H queries for scale factor 1 38
4.2 Generation time of SQL queries with the C++ DataFrame API 45
4.3 Generation time of SQL queries with the Scala DataFrame API 45
4.4 Comparison of execution plans of original and generated SQL queries 47

62

Bibliography

[1] Apache spark project, http://spark.apacke.org.
[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data processing in spark”, in
Proceedings of the 2015 ACM SIGMOD international conference on management of
data, 2015, pp. 1383–1394.

[3] A. Kemper and A. Eickler, Datenbanksysteme: Eine Einführung. De Gruyter Olden-
bourg, 2015.

[4] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots”, in IEEE 27th International Conference
on Data Engineering, 2011.

[5] E. Meijer, B. Beckman, and G. Bierman, “Linq: Reconciling object, relations and
xml in the. net framework”, in Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, 2006, pp. 706–706.

[6] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty, H. Bhanawat,
and K. Bachhav, “Snappydata: A unified cluster for streaming, transactions and
interactive analytics”, in CIDR, 2017.

[7] M. F. C. Nazário, E. Guerra, R. Bonifácio, and G. Pinto, “Detecting and reporting
object-relational mapping problems: An industrial report”, in ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM,
Porto de Galinhas, Recife, Brazil, 2019.

[8] T. Neumann and M. J. Freitag, “Umbra: A disk-based system with in-memory
performance.”, in CIDR, 2020.

[9] Pandas, https://pandas.pydata.org.
[10] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonzalez, J. M.

Hellerstein, A. D. Joseph, and A. Parameswaran, “Towards scalable dataframe
systems”, Proceedings of the VLDB Endowment, vol. 13, no. 11, pp. 2033–2046, 2020.

[11] Postgresql, https://www.postgresql.org/.
[12] J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar, H. Bhanawat, S.

Chakraborty, Y. Mahajan, R. Mishra, and K. Bachhav, “Snappydata: A hybrid
transactional analytical store built on spark”, in Proceedings of the 2016 Interna-
tional Conference on Management of Data, 2016, pp. 2153–2156.

[13] The r project for statistical computing, https://www.r-project.org.
[14] Y. Wu, “Is a dataframe just a table?”, in 10th Workshop on Evaluation and Usability

of Programming Languages and Tools (PLATEAU 2019), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

63

Bibliography

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S.
Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”, in Presented as part of the 9th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 12), 2012, pp. 15–28.

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, et al., “Spark:
Cluster computing with working sets.”, HotCloud, vol. 10, no. 10-10, 2010.

64

A TPC-H query 4 (C++ DataFrame API)

auto tpch4 = order
.filter("o_orderdate"_c >= "1993-07-01" && "o_orderdate"_c < "1993-10-01")
.join(

lineitem,
"l_orderkey"_c == "o_orderkey"_c

&& "l_commitdate"_c < "l_receiptdate"_c,
"semi"

)
.groupBy("o_orderpriority")
.agg(count("*").as("order_count"))
.orderBy("o_orderpriority");

65

B TPC-H query 4 (Gen. SQL query)

SELECT *
FROM (

SELECT "o_orderpriority", COUNT(*) AS "order_count"
FROM (

SELECT *
FROM (

SELECT *
FROM orders
WHERE (

(orders."o_orderdate" >= ’1993-07-01’)
AND (orders."o_orderdate" < ’1993-10-01’)

)
) filter3
WHERE EXISTS (

SELECT *
FROM lineitem
WHERE (

(lineitem."l_orderkey" = filter3."o_orderkey") AND
(lineitem."l_commitdate" < lineitem."l_receiptdate")

)
)

) join4
GROUP BY "o_orderpriority"

) agg5
ORDER BY agg5."o_orderpriority";

67

	Abstract
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Thesis Structure

	2 Background
	2.1 Spark
	2.1.1 DataFrame API

	2.2 Relational Databases
	2.3 In-Memory Databases

	3 Approach
	3.1 Initializing a data frame in the C++ DataFrame API
	3.2 Analyzing a data frame in the C++ DataFrame API
	3.3 Evaluating a data frame in the C++ DataFrame API

	4 Evaluation
	4.1 Research Questions
	4.2 Study Objects
	4.3 How fast can a relational database answer data frame queries?
	4.3.1 Study Design
	4.3.2 Results
	4.3.3 Discussion

	4.4 How fast can a relational database working with CSV tables answer data frame queries?
	4.4.1 Study Design
	4.4.2 Results
	4.4.3 Discussion

	4.5 How time-consuming is the usage of the C++ DataFrame API instead of a SQL interface?
	4.5.1 Study Design
	4.5.2 Results
	4.5.3 Discussion

	4.6 How well can a relational database optimize queries generated from data frames?
	4.6.1 Study Design
	4.6.2 Results
	4.6.3 Discussion

	5 Related Work
	6 Conclusion
	6.1 Summary
	6.2 Future Work

	List of Figures
	List of Listings
	List of Tables
	Bibliography
	A TPC-H query 4 (C++ DataFrame API)
	B TPC-H query 4 (Gen. SQL query)

