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ABSTRACT
Efficiently evaluating text pattern matching is one of the most com-
mon computationally expensive tasks in data processing pipelines.
Especially when dealing with text-heavy real-world data, evaluat-
ing even simple LIKE predicates is costly. Despite the abundance of
text and the frequency of string-handling expressions in real-world
queries, processing is an afterthought for most systems. We argue
that we must instead properly integrate text processing into the
flow of DBMS query execution. In this work, we propose a code gen-
eration approach that specifically tailors the generated code to the
given pattern and matching algorithm and integrates cleanly into
DBMS query compilation. In addition, we introduce a generalized
SSE search algorithm that uses a sequence of SSE instructions to
compare packed strings in the generated code to efficiently locate
longer input patterns. Our approach of generating specialized code
for each pattern eliminates the overhead of interpreting the pattern
for each tuple. As a result, we improve the performance of LIKE
pattern matching by up to 2.5×, demonstrating that code gener-
ation can significantly improve the efficiency of LIKE predicate
evaluation in DBMSs.
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1 INTRODUCTION
Modern data processing systems offer outstanding performance on
simple data, which makes them an essential component for efficient
data processing pipelines. However, these systems are still lacking
in compute-heavy string processing, which is common in real-world
applications. Tableau’s research shows that approximately 50% of
all attributes use text-based data types, even when there are more
suitable data types [26]. Thus, database systems need to focus on
efficient text operations such as LIKE expressions.

In current systems, a common technique to process text is to
use a third-party library that focuses on matching string patterns,
often offering advanced features such as SIMD acceleration [23, 28].
Unfortunately, these do not integrate well with DBMS-specific text
representation. For example, DBMS commonly use special string
storage formats, e.g., with parts of the string inlined or lightweight
compressed [3, 8]. However, to use external text libraries, these
systems need expensive string conversions before they can invoke
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Figure 1: Different options to integrate pattern-matching al-
gorithms to evaluate LIKE expressions in DBMS.

a matching function, while a better integrated approach could al-
low just-in-time decompression. In addition, string search libraries
optimize for finding patterns in a large continuous text corpus, e.g.,
a text document. In contrast, for database systems, the per-tuple
overhead to interpret the string pattern or transition tables leaves
significant performance on the table, which a better integrated
approach can overcome.

Figure 1 illustrates the different options, how databases can pro-
cess the tuples. The two traditional options are:
Naïve: A generic function performs the matching process and is
called once per tuple during query execution. For each tuple, it
preprocesses the pattern again and executes the search phase.
Preprocessed: The pattern is preprocessed only once before the first
search starts, and the result of this preprocessing (e.g., a transition
table) is stored. For each tuple, the database engine still calls a
generic pattern-matching function, but this function reuses the
stored information in the search.

In contrast to these approaches, we need to integrate LIKE pat-
tern matching deeper into the data processing engine. Code gen-
eration allows specializing the matching function by inlining the
patterns and shift tables. We can also inline the generated code
in a larger processing kernel, e.g., using data-centric code gen-
eration [19], or in just-in-time compiled vectorized functions. In
this work, we integrate common algorithms such as Knuth-Morris-
Pratt [13], Boyer-Moore [4, 10, 22], Two-Way [5], and SIMD opti-
mized routines [24]:
Generated: During query compilation, we preprocess the pattern
once. Then, we generate code for the entire search process using as
much preprocessed results as possible. The entire matching process
is performed in the generated code to avoid repeating function
calls.

In this paper, we focus on how to generate code for the most
common subset of regular expressions in SQL: LIKE expressions.
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Section 3 introduces the string-matching algorithms and outlines
how our Generated approach utilizes a code generation framework
to rebuild each matching function and specialize the code for the
given pattern. Furthermore, we present a generalized SSE Search
algorithm that generates highly efficient code for longer patterns
by utilizing SSE instructions. In Section 4, we evaluate these algo-
rithms alongside the mentioned options in our code-generating
DBMS Umbra [20]. This provides a fair analysis of the different
options to evaluate LIKE predicates within a single system. While
patterns are typically short, we also analyze the performance with
longer patterns, reaching up to nearly 300 characters. Additionally,
we compare our Generated approach with the publicly available
systems Postgres, DuckDB, Hyper, and ClickHouse.

2 RELATEDWORK
Kemper and Neumann introduced Hyper, a pure in-memory data-
base for both OLTP and OLAP workloads [11], with a data-centric
approach for generating and compiling compact and efficient ma-
chine code using LLVM [19].

The idea of code generation has become widely accepted among
database researchers and developers [2, 6, 9, 27]. Umbra [20], the
research successor of the HyPer system, introduced a type-safe
code generation framework with a tailored intermediate represen-
tation to compile directly into machine code, which makes Umbra
applicable for low latency applications [12]. Together with adaptive
execution, this allows us to switch between prioritizing low-latency
or high throughput in execution [14].

In general, regular expression matching can benefit from using
just-in-time code generation. Thompson introduced the concept in
1968 to produce an IBM 7094 programs for locating characters by
regular expressions [25]. Today, many state-of-the-art libraries use
code generation to convert the given regular expression pattern into
an internal representation of bytecode: Python’s re module gener-
ates bytecode for regular expressions and uses an internal C engine
for efficient execution [15]; Google’s re2 represents the regular
expression as an automaton in bytecode and passes it for interpre-
tation to an execution engine [29]; Microsoft’s .NET framework
provides both a bytecode interpreter and a just-in-time compiler
that converts the expression to native machine code [1].

However, only a few projects aim to generate machine code for
regular expression matching at runtime, and no database system
actively combines code generation and pattern matching.

3 IMPLEMENTATION
This section outlines how pattern-matching algorithms can use
parts of code-generation frameworks to be integrated into compil-
ing database engines. The concept of code generation for queries,
as used in HyPer [11, 19] or Umbra [20], presents a novel opportu-
nity for evaluating LIKE expressions in relational database systems
by generating code for the matching process instead of interpret-
ing the pattern. We start with Naïve, which uses a hand-written
function for pattern matching. It is called for every tuple in the
generated code by the database system. We can already improve its
performance by preprocessing the pattern passed to the function.

However, we aim to entirely replace the function by generating
code specifically for the pattern and algorithm. The generated code

is then directly embedded in the surrounding generated function
code. Our current focus is on constant LIKE patterns without any
underscores or collations. Thus, a bytewise comparison between
the pattern and input text is feasible, allowing us also to handle
non-ASCII characters. Within Umbra, we are using our type-safe
code-generation framework, which allows us to pass the generated
code in static single assignment (SSA) form on to Umbra’s different
execution backends [12].

Throughout this chapter, let us consider the following query that
filters the uni relation and counts how many names contain the
relatively short pattern ‘TUM’:

select count(*) from uni where name like '%TUM%';

In the upcoming Section 3.1 and Section 3.2, we discuss the Knuth-
Morris-Pratt (KMP) and Boyer-Moore (BM) algorithms and explain
in detail how they integrate into the code generation process. Sec-
tion 3.3 briefly introduces the Two-Way (TW) search algorithm that
combines KMP and BM. Moving away from the well-known pattern
matching algorithms, Section 3.4 presents the Hybrid-Search (HS)
algorithm which uses an SSE instruction to match patterns up to a
certain size. In Section 3.5, we show how blockwise processing can
improve performance in finding possible occurrences of the pat-
tern. Finally, Section 3.6 presents the SSE Search algorithm which
uses SSE instructions to perform pattern matching expressions for
longer patterns. It is important to note that this algorithm can only
be implemented effectively in a code-generating database engine.
This is due to the diverse nature of input patterns, where the flex-
ibility offered by a code-generating process surpasses that of an
interpreting algorithm.

3.1 Knuth-Morris-Pratt Algorithm
In 1977, Knuth, Morris, and Pratt introduced an algorithm for per-
forming exact string pattern matching without the need to back-
track in the input text by preprocessing the pattern [13]. The al-
gorithm builds a table with pattern length + 1 entries that point
to where, in the pattern, we continue the search after a mismatch.
Thus, the table holds information about the longest proper prefix
that is also a proper suffix of the pattern (lps). For the prefix of
length 0, the table stores the value −1, indicating that if a mismatch
occurs, the pattern can be shifted one position to the right since no
suffix exists at that point.

1 KMP(text, pattern):

2 lpsTable = preprocess(pattern), pPos = 0, tPos = 0;

3 while (tPos - pPos + pattern.size() <= text.size())

4 if (pattern[pPos] == text[tPos])

5 pPos++; tPos++;

6 if (pPos == pattern.size()) return true;

7 else

8 shift = lpsTable[pPos];

9 if (shift < 0) pPos = 0; tPos++;

10 else pPos = shift;

11 return false;

Listing 1: Pseudocode for the Knuth-Morris-Pratt algorithm

Listing 1 presents the pseudocode of the KMP algorithm. Line 2
preprocesses the pattern and initializes two position counters for
text and pattern.When the characters at these indexesmatch (lines 4
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whileLoopHeader:
check tPos - pPos + 3 ≤ text.size()

return falsecheck pPos = 0

check text[tPos + 0] = ‘T’check pPos = 1

check pPos = 2 check text[tPos + 1] = ‘U’

unreachable check text[tPos + 2] = ‘M’

return true

performShift:
shift = 𝜙 [-1, 0, 0]
isNegative = shift < 0
pPos = isNegative ? 0 : shift
tPos = isNegative ? tPos + 1 : tPos

1

2

3

Figure 2: Control flow of the generated code for the KMP
algorithm to search for the pattern ’TUM’. The green arrows
( ) are taken if the condition evaluated to true, the red or
otherwise colored arrows ( ) if not.

to 6), the function increments both position counters. When reach-
ing the pattern end, a match is found.

If the characters do not match (lines 7 to 10), the function reads
the optimal shift value from the lps table based on the pattern
position. A negative value indicates that there is no proper suffix
in the pattern that is also a prefix of the pattern. Thus, we need to
restart the comparison from the following text character. Otherwise,
the function updates the pattern position to the lps table value and
increments the text index.

In line 3 of Listing 1, we introduce an optimization for the KMP
algorithm called the early return, which we use in all our variants.
This optimization checks every iteration to determine whether the
end of the pattern lies within the text. If that is not the case, we
will stop the comparison, as it is impossible to find another match.

3.1.1 Preprocessed approach. To prevent the pattern from being
processed repeatedly for each tuple, we preprocess the pattern
during code generation time to get the lps table and then save this
table along with the pattern in the generated program. We do not
need to store any additional information for the lps table because
its size depends on the pattern size.

When executing the generated code, we still make a function call
to perform the search, but instead of recalculating the table every
time, we reuse the stored lps table. So, we omit the preprocessing
in line 2 of Listing 1.

3.1.2 Generated approach. We replace all calls to the matching
function with specifically generated code for the query’s pattern. So,
we embed the search phase algorithm entirely within the generated

code. Figure 2 shows how we can reconstruct the Knuth-Morris-
Pratt algorithm using the example we discussed earlier to search
for the pattern ’TUM’ in the input text.

We begin the algorithm in the whileLoopHeader block by check-
ing if the remaining length of the input text is sufficient. In this
check, we can inline the size of the pattern into the arithmetic
expression 1 . Then, we move to the correct pattern position to
continue the comparisons from this position. We generate the com-
parisons out of the pattern from left to right 2 . If the characters
match, we proceed directly to the next character, but if there is a
mismatch, we jump to the performShift block. In this block, we
choose the shift value from the inlined lps table 3 based on the po-
sition of the failed comparison. We then determine how to proceed
and continue the search by jumping back to the whileLoopHeader.

3.2 Boyer-Moore Algorithm
In 1977, Boyer and Moore presented a pattern-matching algorithm
that iterates backwards over the pattern to search it in the input
text [4]. We focus on their fast implementation shown in Listing 2.

1 BM(text, pattern):

2 // Ψ > text.size() + pattern.size() for all inputs

3 Ψ = 1 << 48, pPos = pattern.size() - 1, tPos = pPos;

4 𝛿1 = preprocessBadCharacterHeuristic(pattern);

5 𝛿2 = preprocessGoodSuffixHeuristic(pattern);

6 𝛿0 = 𝛿1;

7 𝛿0[pattern[pattern.size() - 1]] = Ψ;

8 while (tPos < text.size())

9 tPos += 𝛿0[begin[tPos]];

10 if (tPos >= Ψ)

11 tPos = tPos - Ψ - 1;

12 if (pattern.size() == 1) return true;

13 else

14 pPos = pattern.size() - 2;

15 while (pPos && begin[tPos] == pattern[pPos])

16 pPos--; tPos--;

17 if (!pPos && begin[tPos] == pattern[pPos])

18 return true;

19 tPos += max(𝛿1[begin[tPos]], 𝛿2[pPos]);

20 return false;

Listing 2: Pseudocode for the Boyer-Moore algorithm

Before the search phase begins, the algorithm requires two pre-
processing steps, namely Bad Character Heuristic (BCH) in line 4
and Good Suffix Heuristic (GSH) in line 5. The BCH ensures that
the text’s letter at which the mismatch occurred aligns with its
rightmost occurrence in the pattern. Alternatively, the GSH shifts
the pattern based on the longest suffix of the matched input text.
This part is aligned with the rightmost occurrence of that char-
acter sequence in the pattern (except for the suffix of the pattern
itself). Both heuristics precalculate shift values for the pattern and
store them in tables. The original papers contain a more detailed
explanation of the heuristics and their effects [4, 22].

The fast implementation requires a third table, 𝛿0, which is es-
sentially a copy of the result of BCH but holds the value Ψ (called
large in [4]) for the last character of the pattern. This value needs
to be greater than the sum of the lengths of all possible input texts
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whileLoopHeader:
check tPos < text.size()

return false

𝛿0-shift = match text[tPos] {‘T’: 2, ‘U’: 1, ‘M’: Ψ, ␣: 3}
tPos = tPos + 𝛿0-shift
check tPos < Ψ

tPos = tPos - Ψ - 1
check text[tPos] = ‘U’

tPos--
check text[tPos] = ‘T’

return true

performShift:
goodShift = 𝜙 [5, 4]
badShift = match text[tPos] {‘T’: 2, ‘U’: 1, ‘M’: 0, ␣: 3}
tPos = tPos + max(badShift, goodShift)

1

2

3
4

Figure 3: Control flow of the generated code for the BM al-
gorithm to search for the pattern ’TUM’. The green arrows
( ) are taken if the condition evaluated to true, the red or
otherwise colored arrows ( ) if not.

and patterns. At the beginning of the search phase, the pattern is
aligned with the start of the input text and the comparison starts
from the rightmost character. The implementation looks up the
value in 𝛿0 and either shifts the pattern to the right or adds Ψ to the
current position (line 9 of Listing 2). This allows us to scan through
the input text, and once we add Ψ to the current position, we know
the last character was found. Thus, the algorithm recalculates the
index for the second last character and starts comparing the pat-
tern from right to left with the input text (lines 14 to 18). In case
of a mismatch during this comparison, the algorithm applies the
maximum of the shifts according to the heuristics (line 19) before
the search for the last character of the pattern restarts.

3.2.1 Preprocessed approach. As the BCH table contains 256 values
and the size of the GSH table matches the pattern length, repetitive
processing is quite expensive. Like the KMP algorithm, we move all
preprocessing steps to code generation and store the resulting tables
directly along with their corresponding pattern. When storing the
tables, we do not require additional information since the size of
the tables is either known beforehand or can be derived from the
pattern size. We replace the calls to the preprocessing functions
(lines 4 to 5) with pointers to the corresponding table. As the only
difference between 𝛿0 and 𝛿1 is the value for the pattern’s last
character, we do not copy the table but instead, modify the code in
the search phase loop to actively add the correct value, so either
the value Ψ or the value from 𝛿1.

3.2.2 Generated approach. Similar to the KMP algorithm, we re-
build the Boyer-Moore algorithm to get pattern-specific code. Fig-
ure 3 presents the conceptual control flow for searching the pat-
tern ’TUM’ in the input text. We check whether enough characters
are left in the input string before we start the matching process
in the whileLoopHeader block. If so, we get the shift value from
the inlined 𝛿0 table 1 and add it to the pattern position. If that
value is smaller than Ψ, we continue in this loop by going to the
whileLoopHeader block. Otherwise, we know the input text con-
tains the last character of the pattern, so further checks are required.
Before the checks, we recalculate the character index aligned with
the second last character in the pattern. In order to proceed, we
check the text based on the reversed pattern 2 . In case of a mis-
match, we jump to the performShift block. In this block, we de-
termine goodShift from 𝛿2 3 based on the preceding block and
the badShift from 𝛿1 4 based on the mismatching text character.
We then add the maximum of both shift values to the text posi-
tion before returning to the whileLoopHeader to continue with
the matching process.

When analyzing the instructions in the performShift block of
Figure 3, one may mistakenly perceive the inclusion of the inlined
𝛿1 table for determining the shift caused by the BCH as unneces-
sary. This impression arises from the fact that the minimum shift
resulting from the GSH is always greater than the maximum possi-
ble shift caused by the BCH. Consequently, the maximum shift is
consistently determined by the good suffix heuristics. It is impor-
tant to note, however, that this observation cannot be universally
applied to all patterns. To address this, we have implemented an
optimization in the code generation process, which generates code
for determining the BCH shift only when it is truly required.

3.3 Two-Way Algorithm
As an alternative to the Knuth-Morris-Pratt and Boyer-Moore al-
gorithms, Crochemore and Perrin presented the Two-Way String-
Matching algorithm (TW) which combines both previous algo-
rithms into one [5]. To achieve this, the algorithm first splits the
pattern according to the known Critical Factorization Theorem [18].
With that, the pattern is theoretically split into a left and right part.
In the search phase, the right half is compared from left to right
first; if all characters match, then the left half is compared from
right to left. If any mismatches during the comparisons occur, the
pattern is shifted by a certain number of positions. After a close
analysis of the interpreting Two-Way algorithm, its functionality
can be rebuilt using the available code generation framework as
for the other algorithms.

Again, we implement a Naïve, Preprocessed, and Generated ver-
sion for the Two-Way algorithm. In the Naïve version, the Critical
Factorization preprocessing step is performed repeatedly for each
input text. In the Preprocessed version, we store the necessary pre-
processed result along with the pattern in the data section of the
generated code. This value is then loaded along with the pattern
when needed and used in an interpretive algorithm. The Generated
version of the algorithm depends on the output of the preprocessing
function. It generates the relevant part of the Two-Way algorithm
based on the outcome of the Critical Factorization step and inlines
as much of the information as possible into the algorithm.

4



3.4 Hybrid-Search Algorithm
Sitaridi et al. have introduced an algorithm which uses the SSE 4.2
SIMD instruction set, which comprises instructions that efficiently
accelerate string and text processing [24]. According to Intel, these
instructions are designed to enhance the performance of databases
or complex searching and pattern matching algorithms [21]. How-
ever, the presented algorithm is restricted to patterns to fit into a
128-bit SIMD register.

1 HS(text, pattern):

2 if (pattern.size() <= 16 && text.size() >= 16)

3 iter = text.begin(), end = text.end();

4 safeMatch = 17 - pattern.size();

5 pattern16 = load16(pattern);

6 while ((iter + 16) < end)

7 match = pcmpistri(pattern16, load16(iter);

8 if (match < safeMatch) return true;

9 iter += safeMatch;

10 if (iter < end)

11 match = pcmpistri(pattern16, load16(end - 16);

12 return match < safeMatch;

13 return false;

14 return TW(text, pattern)

Listing 3: Pseudocode for the Hybrid Search algorithm

With our Hybrid Search, we extend this algorithm to handle
any size of input text and pattern, as presented in Listing 3: For
patterns up to the length of a vector register, we use the pcmpistri
instruction, given that the input text is at least 16 bytes long. In
such cases, we process 16 bytes of the input text at once until
less than 16 bytes are left (lines 6 to 9). To check the end of the
input text, we load the last 16 bytes of the input text, which is
safe since we know that the input text is long enough (lines 10
to 12). However, if either of the input parameters does not meet its
length criterion, we resort to a default string search algorithm. In
our case, it is the Two-Way algorithm (line 14). Considering that
the best-suited algorithm depends on various factors, such as the
pattern and workload, it would be beneficial to implement multiple
fallback algorithms, allowing the selection of the most appropriate
one.

3.4.1 Preprocessed approach. Based on the chosen fallback algo-
rithm, one might consider how to include the corresponding Pre-
processed function of the chosen algorithm. To match the chosen
Two-Way algorithm as default fallback algorithm in the Naïve ap-
proach, we chose the Preprocessed version for this approach.

3.4.2 Generated approach. To generate code for our Hybrid Search,
we extended the custom code generation framework of Umbra to
support the necessary SSE instruction for comparing packed strings.
This enables us to generate the parts of the algorithm needed for
the specific pattern. For patterns that are longer than 12 bytes, we
only generate the code for the default matching algorithm, as we
do not use the SSE instruction for that kind of patterns. For shorter
patterns, we generate both the part using the SSE instruction and
the default fallback. While executing the code, we determine which
part of the algorithm to use based on the length of the input text.
The decision to set the limit to 12 bytes is guided by the fact that this

still allows performant shifting of the input pattern (cf. safeMatch,
measured in Figure 9 in Section 4.3.1).

3.5 Blockwise Processing Optimization
Blockwise Processing can improve the initial pattern search. It
draws inspiration from SIMD within a register (SWAR) [16] and
enhances the efficiency of character search in an input text over the
naïve idea. This would involve iterating over the text and examining
each character resulting in a wastage of cycles simply searching
for the desired character. However, blockwise processing can be
implemented to rapidly locate the first character of the pattern
and then continue with the chosen pattern-matching algorithm.
Listing 4 demonstrates the algorithm to detect the presence of the
ASCII character ’T’ in the block. We read the next eight bytes
from the input text into a register. With another register having
the character broadcasted to each byte, we perform various bitwise
operations between the registers and specific constants. After these
operations, we get a value back which is either 0, so ’T’ could
not be found in block, or the highest bit of the byte at which the
character appeared is set. This code can also be adjusted for non-
ASCII characters which have the highest bit set. While certain
SSE instructions may provide similar functionality, our objective is
to present a versatile approach that is not limited to any specific
hardware support.

1 uint64_t block = loadNext8Bytes(...);

2 // broadcast 'T' to each byte: 0x5454545454545454ull

3 uint64_t searchedChar = broadcast('T');

4 const uint64_t high = 0x8080808080808080ull;

5 const uint64_t low = ~high;

6 uint64_t lowChars = (~block) & high;

7 uint64_t cleared = (block & low) ^ searchedChar;

8 uint64_t found = ~((cleared + low) & high);

9 uint64_t matches = found & lowChars;

10 bool matchFound = matches != 0;

Listing 4: Blockwise search for ASCII character T

3.6 SSE-Search Algorithm
TheHybrid Search algorithm employs an SSE instruction for pattern
matching, limiting the pattern length to at most 16 bytes. For longer
patterns, the algorithm provides an alternative approach that does
not use the SSE instruction. Expanding the algorithm to handle
longer patterns with SSE instructions is feasible but significantly
increases its complexity.

However, the emergence of code-generating database engines
has opened up new possibilities for generating code optimized with
SSE instructions that are specifically tailored to long patterns. In
Figure 4, we present the conceptual design of the generated code
for searching the pattern ’Technical University of Munich’.
Similar to the KMP algorithm, we initially check if the pattern
can fit within the remaining text by directly including the pattern
length 1 . If there are enough characters remaining, we proceed
with the comparison.

The search algorithm aims to locate the starting position of
the pattern within the input text. Once the start position is found,
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whileLoopHeader:
check tPos + 30 ≤ text.size()

return false

data = load16(text, tPos)
match = pcmpistri(’Technical Univer’, data)
check match == 0

tPos = tPos + 1

data, size = loadAtMost16(text, tPos + 16)
match = pcmpestri(’sity of Munich’, 14, data, size)
check match == 0

return true

performShift:
tPos = applyShift(tPos)

1

2

3

Figure 4: Control flow of the generated code for the SSE
Search algorithm to search for the long pattern ’Technical
University of Munich’. The green arrows ( ) are taken if
the condition evaluated to true, the red or otherwise colored
arrows ( ) if not.

we continue comparing subsequent parts of the pattern and text
sequentially from that position.

To achieve this, we extract the first 16 bytes of the pattern and
load the next 16 bytes from the text. Using the SSE instruction
pcmpistri, we search for the start of the pattern in the input text 2 .
If nomatch is found, we shift the text position to the right and restart
the overall search for the pattern start in the input text. In the case of
a match, we enter the generated code, which loads the next 16 bytes
from the input text and compares them to the corresponding part
of the pattern. This comparison can be performed using either the
SSE instruction pcmpistri or another binary comparison function
for vector registers. Since we know that the subsequent pattern
blocks must follow the previous ones, we can easily generate code
to handle this logic. This is repeated until less than 16 bytes of the
pattern are left.

Handling the remaining bytes of the pattern requires special
handling, as both the pattern and input text may not fully occupy
an SSE register. Therefore, we load a maximum of 16 bytes from
the input text and also return how many bytes were read. With
the loaded block and the number of read bytes, we employ the
SSE instruction pcmpestri 3 . This instruction requires explicit
specification of the length of the input data as additional arguments.

If there is a mismatch between one of the blocks of the pattern
and the corresponding text block, we stop the comparison and go to
the performShift block. Within this block, we apply a shift heuris-
tic that moves the pattern as far to the right as feasible. Following
the pattern shift, we return to the whileLoopHeader to resume the
matching process by checking the remaining length of the text.

Shift heuristics. For shift heuristics, we have two options: a simple
shift to the right by one position or a more advanced KMP-like
heuristic. The latter relies on identifying the longest suffix of the
already matched pattern that is also a proper prefix. This operation
results in no additional runtime overhead since it can be prepro-
cessed during code generation and is directly written to code.
Size of start block. Figure 4 presents the version of the algorithm,
which directly loads the first 16 bytes of the pattern into a vector
register. However, when fully utilizing the vector register, one can
only shift one position to the right if the start of the pattern does
not match the loaded text block. To increase the possible shift in
case this part is not found in the loaded input text, we can reduce
the number of bytes loaded from the pattern.

4 EVALUATION
In order to check our implementations on a more realistic dataset,
we use ClickBench1. It includes typical modern workloads and
queries used in ad-hoc analytics and real-time dashboards. The
data used in the benchmark is collected from a real-world web
analytics platform. While it is anonymized, it retains the essential
distributions of the data, including non-ASCII characters. For our
experiments, we used the queries 20, 21, 22, and 23 from the Click-
Bench benchmark, which contain the following LIKE predicates:
Q20, 21, 23: url like '%google%'
Q22: title like '%Google%'

and url not like '%.google.%'
Query 20 scans the relation hits and counts how many tuples

fulfill the predicate; the other queries involve more operators like
aggregates or sorting, so the overall performance is not entirely
dominated by the pattern matching algorithm.

Since the patterns mentioned above are shorter than the length of
a vector register, we classify them as short patterns. To evaluate the
effects of longer patterns, we increased the pattern length for Q 20
to 31, 160, and 291 characters, categorizing them as long patterns.

We run the microbenchmarks on an Intel i9-7900X CPU (Skylake-
X, 3.3-4.5 GHz) with 10 cores and 128 GB 4-channel DDR4-2133
memory, running Ubuntu 22.10 (Kernel 5.19, gcc 12.2), and repeat
all measurements five times.

4.1 Full System Comparison
We compared our Generated approaches for pattern matching with
other popular database systems, namely Postgres, DuckDB, Hyper,
and ClickHouse. Figure 5 demonstrates that our approach of gener-
ating pattern-specific code performs better than the other databases.
While Umbra outperforms the other databases for Query 21 and 22,
Hyper is slightly faster than our Boyer-Moore algorithm for Query
20 but slower than the other three algorithms. However, Hyper
uses a pattern matching algorithm which is quite similar to our
Hybrid-Search algorithm, also using an SSE instruction to search
for the given pattern. As our pattern is relatively short, we observe
that in nearly all cases we benefit from generating pattern specific
code. Due to the shortness of the pattern, one can observe that
the Hybrid-Search benefits from the SSE instruction, as it clearly
dominates the other algorithms, especially for Query 20.

1https://benchmark.clickhouse.com
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Figure 5: In a system comparison, Umbra’s code generation
approaches outperform the other database systems using
each system’s default setting for the parallelism.

4.2 Short Pattern Microbenchmark
We continue our comparison within our database system Umbra
to analyze the differences between the algorithms in detail. In this
section, we will focus on the more common case of short patterns.

4.2.1 Blockwise Processing. Our initial investigation evaluates the
efficacy of using Blockwise Processing in combination with KMP
as explained in Sections 3.1 and 3.5. If a mismatch occurs, we check
how the KMP algorithm would shift the pattern according to its
preprocessing. In case the pattern would be shifted by one character,
we switch back to blockwise processing and restart the search for
the first character of the pattern. Figure 6 illustrates the advantages
of blockwise processing compared to the non-blockwise approach
for Query 20 on the ClickBench dataset. By applying this optimiza-
tion, larger blocks of the input text can be processed at once instead
of reading byte by byte.

In the non-blockwise case, both the Naïve and Preprocessed ver-
sions show similar throughputs. After conducting a performance
analysis, we identified that loading the lps table value from the data
section in the Preprocessed approach yields performance similar to
repeatedly preprocessing the relatively short pattern in the Naïve
approach. By using the Generated approach, we can completely
avoid any indirections, resulting in the highest throughput for the
KMP algorithm.

In the blockwise algorithms, larger blocks of the input text can
be skipped if the first character of the pattern is not found. Conse-
quently, the Preprocessed approach is faster than theNaïve one since
it doesn’t need to access the lps table as often. Still, the Generated
approach remains superior to the other alternatives. Based on these
findings, we directly focus further analysis on the KMP algorithm
with blockwise processing.

4.2.2 AlgorithmComparison. Figure 7 illustrates the results of com-
paring the matching algorithms discussed in Section 3 for Q 20 and
Q 21 of the ClickBench benchmark. The Preprocessed and Generated
approaches outperform the interpreting approaches.
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Figure 6: The KMP algorithm with Blockwise Processing
outperforms the unoptimized KMPusing one thread for Q 20.

This is because the preprocessing phases of the KMP and BM
algorithms generate large lookup tables. By employing code gen-
eration capabilities for the Preprocessed approach, we can avoid
redundant preprocessing of the pattern. Storing the tables in the
data section of the generated program leads to a substantial im-
provement in throughput. As the Generated approach suggests,
generating highly specialized code further enhances performance.
However, for the Boyer-Moore algorithm, the performance im-
proves less in Query 20. According to further analysis, this is due
to many branches in the generated code, which can result in mis-
predictions and overall slow performance.

For Query 21, we observe similar behavior as for Query 20. How-
ever, the generated code for the Boyer-Moore algorithm appears
marginally different, leading to higher performance improvement
for the Generated approach over the Preprocessed version.

The preprocessing function of the Two-Way algorithm only re-
turns a number, so it does not have to generate a table as the other
two algorithms. Consequently, the Generated approach achieves a
higher throughput compared to the Naïve approach.
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Figure 7: Single threaded throughputs for the different algo-
rithms running Q20 and Q21.
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Näıve Preprocessed Generated

Figure 8: Development of the multi-threaded performance
for the different pattern matching implementations for Q 20.

When it comes to the Hybrid-Search algorithm, one can see
the benefit of using SSE instructions to search for a pattern in an
input text. For each approach, this algorithm dominates all the
other algorithms. Additionally, it benefits from avoiding repetitive
function calls to the matching function, resulting in the throughput
of the Generated version being nearly 2.5× the throughput of the
Naïve approach.

4.2.3 Multithreading. The final interesting aspect of ourmicrobench-
marks is how throughput develops when running queries using
multiple threads. We expect the throughput to scale linearly with
an increasing number of threads, as Umbra uses morsel-driven par-
allelism [17]. As shown in Figure 8, this expectation aligns with the
observed results. When hyperthreading is reached, the throughput
still increases, but at a different rate than before.

Our different degrees of code generation provide the most benefit
to the KMP algorithm when comparing the different approaches.
In the Generated version, we can nearly double the throughput
compared to the Naïve approach, while the Preprocessed version is
in the middle.

The Boyer-Moore algorithm also benefits from the code genera-
tion approaches. However, the Preprocessed and Generated versions
are much closer together, and when it comes to hyperthreading,
both versions are approaching each other. Nevertheless, the main
problem with this algorithm is the higher number of branches re-
quired to get the correct shift from the BCH table. In the Preprocessed
approach, this is just a memory lookup. With more branches, more
mispredictions happen to cause a generic function to outperform
specifically generated code.

Lastly, the Generated version of the Two-Way algorithm is also
slightly faster than its Naïve version. Due to the less complexity of
the preprocessing phase, the difference between both versions is
small. Still, the Generated version has higher throughput.

Analyzing the Hybrid-Search algorithm is a bit more involved,
as it depends on both the pattern and input text which specific part
of the algorithm is executed. In the experiment, the pattern falls
within the length limit and the input texts are on average also large
enough. Therefore, the Hybrid-Search algorithm predominantly
executes the search with the SSE instruction and rarely falls back

Table 1: Execution (20 threads) and compilation time ([s]) for
Q 20.

Naïve Preprocessed Generated

comp. exec. comp. exec. comp. exec.

KMP 0.008 0.493 0.008 0.297 0.010 0.221
BM 0.008 0.740 0.008 0.366 0.010 0.346
TW 0.008 0.774 0.008 0.618 0.009 0.501
HS 0.008 0.325 0.008 0.196 0.010 0.178
SSE - - - - 0.009 0.189

to the default algorithm. This method of utilizing SSE instructions
for pattern matching shows a significant performance improve-
ment, even with the Naïve approach. By applying the Generated
approach and eliminating the overhead of the repeated function
calls, the throughput further increases. However, after using more
than eight threads, the throughput levels out because it approaches
the memory limit of the machine.

Table 1 presents the execution times of the different approaches
for Query 20 using 20 threads. One can observe that, with theGener-
ated approach, the SSE Search algorithm is slightly slower than the
Hybrid-Search algorithm. This can be attributed to the SSE Search
algorithm’s need for specialized handling of short patterns and
input texts, resulting in more complex code and slower execution.

4.2.4 Compilation Overhead. When dealing with code-generating
database engines, it is essential to consider the overhead of compi-
lation. In Table 1, we also show the compilation times for Query
20 using the LLVM backend of Umbra. The data reveals that as we
move from the Naïve to the Generated approach, the compilation
times for the algorithms increase marginally. Nevertheless, this
increase is balanced out by the reduction in execution time.

Moreover, it is worth mentioning that Umbra could employ the
Flying Start technique or the FireARM backend. This means that
the compilation overhead could be concealed by using a specific
backend until the compiled LLVM function becomes available [7,
12]. However, in our experiments, we did not employ this option,
as during compilation, only 0.5% of the tuples could be processed
when running the Hybrid-Search algorithm fully multi-threaded.

4.3 Long Pattern Microbenchmark
As the final part of the evaluation, we look at the effect of long
patterns. We classify a pattern which exceeds the length of a single
vector register (16 bytes) as a long pattern. For our experiments, we
use three patterns: patternAwith 31 characters, pattern Bwith 160
characters, and pattern C is a combination of three long patterns
totaling 291 characters.

4.3.1 Size of start block. Figure 9 presents the results of varying the
number of characters in the start block, which is employed to locate
a potential pattern start. The top plots visualize the performance
using only one thread, while the bottom ones show performance
with 20 threads.

When executing with a single thread, the algorithm achieves
peak performance when three bytes of the pattern are employed
in the localization phase. This size allows for sufficient shifting of
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Figure 9: Experimental evaluation for the optimal start block
size of the SSE Search. We found using 3 to 5 bytes of the pat-
tern yields the highest performance. In case of mismatches,
this range allows shifts of 14 to 12 bytes, respectively.

the pattern to the right while minimizing false positives. When
utilizing 20 threads, the performance remains largely unaffected
by the size of the start block. The limiting factor in this scenario is
the available memory bandwidth, which operates at 68 GB/s and is
utilized over 90%.

Moreover, the combination of longer patterns and the early re-
turn implementation proves advantageous, leading to increased
throughput with larger pattern sizes.

4.3.2 Algorithm overview. Finally, the comparison of different code
generating algorithms using 20 threads in terms of long patterns is
illustrated in Figure 10. For the SSE Search algorithms, we have cho-
sen the start size with the highest performance. Since the fallback
option for the Hybrid-Search algorithm is the Two-Way algorithm
for long patterns, both algorithms show similar performance.

For all patterns, the SSE Search algorithm, which generates pat-
tern specific code for the matching process, outperforms the other
algorithms. Furthermore, as patterns become longer, the algorithms

0

0.2 G

0.5 G

0.8 G

1.0 G

1.2 G

Workload A
31 characters

Workload B
160 characters

Workload C
291 characters

T
h
r
o
u
g
h
p
u
t

[T
u
p
le

s
/
s
]

KMP BM TW HS SSE

Figure 10: Performance of the code generating patternmatch-
ing algorithms for the long patterns using 20 threads.

demonstrate improved performance, as more input texts are too
short for the given pattern. The performance for the Boyer-Moore al-
gorithm is quite similar, except for the patternCwhich is composed
of multiple long patterns. In this case, the SSE Search algorithm
clearly outperforms the others. Despite the increasing length of the
pattern, the performance of the Knuth-Morris-Pratt algorithm only
increases marginally compared to the other algorithms.

5 LESSONS LEARNED
Each matching algorithm combined with a code generation ap-
proach offers different performance benefits and use cases but also
challenges.

Knuth-Morris-Pratt is relatively straightforward to implement in all
three approaches. It can be enhanced by adding blockwise optimiza-
tion with just a few modifications. Our experiments demonstrated
that the code-generating approach significantly improved the per-
formance of the KMP algorithm. The blockwise version of KMP is
particularly effective when the first character of the pattern has a
low frequency of occurrence in the input text. This allows efficient
consumption of large portions of the text. Applying the early return
optimization further enhances the performance. This optimization
discards longer patterns faster once they no longer fit in the input
text. Additionally, the KMP algorithm iterates over the input text
from left to right. Thus, the algorithm can also process texts with
Unicode characters based on their codepoints rather than only their
bytewise representation.

Boyer-Moore is also easy to realize in the Naïve and Preprocessed
approaches. The Generated approach requires more bookkeeping
during code generation for correct SSA form. The experiments
show that Generated is superior, while Preprocessed is better in case
of hyperthreading. This algorithm is more effective when the last
pattern character has a lower distribution than the first character. It
also works better with longer patterns due to early rejection once
they exceed the input text.

Two-Way is complex to implement in both approaches. In our
experiments, Generated is slightly faster than Naïve, due to its less
costly preprocessing function. However, the performance varies
depending on pattern factorization. The pattern of the experiment
was not optimally factorized, leading to a similar performance as for
the KMP algorithm. With a pattern better suited for factorization,
performance improves.

Hybrid-Search ’s complexity is relatively low when using the Naïve
approach, and it depends solely on the chosen default algorithm.
Implementing the SSE search component is a simple task and com-
pletely decoupled from the fallback algorithm. However, integrating
the Generated approach into Umbra and its backends requires more
effort. This is because we needed to introduce a new internal in-
struction for the SSE string comparison function which then maps
to the corresponding function for the backend. Nevertheless, this al-
gorithm shows the most promise and consistently outperforms the
other algorithms in all three approaches. The Generated approach
is only limited by the memory speed of the machine. Since the SSE
part has a pattern length restriction, this algorithm is particularly
suitable for short patterns. For longer patterns, it is necessary to
carefully investigate the selected default algorithm.
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SSE Search introduces an innovative method for generating special-
ized code for long patterns by leveraging SSE vector instructions.
Incorporating this algorithm into a code-generating database en-
gine is straightforward. The only challenge is adding the necessary
SSE instructions to the backends. Furthermore, this approach fa-
cilitates the seamless implementation of various shift heuristics
and dynamic adjustment of the size of the start block. The perfor-
mance of the algorithm surpasses that of alternative methods across
all three versions, consistently delivering superior results. More-
over, the performance is mostly bound by the available memory
bandwidth.

Ultimately, tuning the performance for the pattern-matching
algorithms in a code-generating database system is still a trade-off.
The Preprocessed approach is sufficient to improve performance
compared to the classic Naïve approach while keeping the complex-
ity of generated code low. However, generating pattern-specific
code for the matching process further improves overall query
throughput at the cost of increased code complexity. Utilizing spe-
cific SSE instructions for pattern matching offers the dual advantage
of enhancing performance and reducing code complexity in cer-
tain aspects of the matching algorithm. Based on our experimental
findings, it can be inferred that when the required SSE instructions
are not supported by the hardware, no single matching algorithm
exhibits consistently superior performance across all patterns. How-
ever, if hardware support is available, we can conclude that for short
patterns the Hybrid Search algorithm is superior, while for long pat-
terns, the new SSE Search algorithm is more effective. Integrating
both the Hybrid Search algorithms and the SSE Search algorithm
into a code-generating database engine can be achieved seamlessly
by designating the SSE Search algorithm as the default fallback.
Furthermore, employing algorithms that utilize SSE instructions
offers an additional advantage. The code required in the database
engine for these algorithms is relatively small and straightforward
to maintain and the generated code is clear and well-structured,
facilitating easy verification and debugging processes.

6 CONCLUSION
This paper demonstrates the effectiveness of code generation for
pattern-matching algorithms to evaluate LIKE predicates. The per-
formance increases by up to a factor of two compared to func-
tion calls and outperforms state-of-the-art systems like Postgres,
DuckDB, Hyper, or ClickHouse on text-heavy datasets like Click-
Bench. The results indicate that replacing generic function calls
with pattern-specific generated code significantly increases the
throughput. We have also demonstrated that using SSE instruc-
tions to compare packed strings has a positive impact on overall
performance, particularly when incorporating them into the gener-
ated code. Additionally, we have presented a generalized algorithm
which uses multiple SSE instructions to perform efficient pattern
matching for long patterns as a favorable alternative to classic
algorithms.
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