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Abstract—The growth in compute speed has outpaced the
growth in network bandwidth over the last decades. This has led
to an increasing performance gap between local and distributed
processing. A parallel database cluster thus has to maximize the
locality of query processing. A common technique to this end is to
co-partition relations to avoid expensive data shuffling across the
network. However, this is limited to one attribute per relation and
is expensive to maintain in the face of updates. Other attributes
often exhibit a fuzzy co-location due to correlations with the
distribution key but current approaches do not leverage this.

In this paper, we introduce locality-sensitive data shuffling,
which can dramatically reduce the amount of network commu-
nication for distributed operators such as join and aggregation.
We present four novel techniques: (i) optimal partition assignment
exploits locality to reduce the network phase duration; (ii)
communication scheduling avoids bandwidth underutilization due
to cross traffic; (iii) adaptive radix partitioning retains locality
during data repartitioning and handles value skew gracefully;
and (iv) selective broadcast reduces network communication in the
presence of extreme value skew or large numbers of duplicates.
We present comprehensive experimental results, which show that
our techniques can improve performance by up to factor of 5 for
fuzzy co-location and a factor of 3 for inputs with value skew.

I. INTRODUCTION

Parallel databases are a well-studied field of research, which
attracted considerable attention in the 1980s with the Grace
[1], Gamma [2], and Bubba [3] systems. At the time, the
network bandwidth was more than sufficient for the perfor-
mance of these disk-based database systems. For example,
DeWitt et al. [2] showed that Gamma took only 12% additional
execution time when data was redistributed over the network—
compared to an entirely local join of co-located data. Copeland
et al. [4] stated in the context of Bubba in 1986:

“[...] on-the-wire interconnect bandwidth will not be
a bottleneck [...].”

The game has changed dramatically since the 1980s. On
modern hardware, this formerly small overhead of 12% for
distributed join processing has turned into a performance
penalty of 500% (cf. Section V-B). The gap is caused by the
development depicted in Fig. 1: Over the last decades, CPU
performance has grown much faster than network bandwidth.

†Work conducted while employed at Oracle Labs, Redwood Shores, CA.
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Fig. 1. The need for locality-sensitive distributed operators: CPU speed
grows faster than network speed for commodity hardware1

This trend is likely to continue in the near future as the wide-
spread adoption of 10 Gigabit Ethernet is currently projected
for 2015 [5]. Today, “even inside a single data center, the
network is a bottleneck to computation” [6].

Modern main-memory databases such as H-Store [8], HyPer
[9], MonetDB [10], or Vectorwise [11] are not slowed down
by disk access, buffer managers, or pessimistic concurrency
control. The resulting, unprecedented query and transaction
performance widens the gap to distributed processing further.

The current situation is highly unsatisfactory for parallel
main-memory database systems: Important distributed opera-
tors such as join, aggregation, and duplicate elimination are
slowed down by overly expensive data shuffling. A common
technique to reduce network communication is to explicitly
co-partition frequently joined tables by their join key [12].
However, co-partitioning of relations is limited to one attribute
per relation (unless the data is also being replicated), requires
prior knowledge of the workload, and is expensive to maintain
in the face of updates. Other attributes often exhibit a fuzzy
co-location due to strong correlations with the distribution key
but current approaches do not leverage this.

1CPU MIPS from Hennessy and Patterson [7]. Dominant network speed of
new servers according to the IEEE NG BASE-T study group [5].



0 25 50 75 100
0

10

20

30 standard join
location-aware

locality [%]

jo
in

tim
e

[s
]

(a) Benefit: Join time for 128 nodes,
1 GbE, and 200 M tuples per node

1 32 64 96 128
0%

0.5%
1.0%
1.5%

number of nodes

op
t

tim
e

(b) Cost: Overhead to optimize the par-
tition assignment for data locality

Fig. 2. Comparison of the location-aware join to a standard distributed join

In this paper, we introduce locality-sensitive data shuffling,
four novel techniques that can significantly reduce the amount
of network communication for distributed operators. Its corner-
stone is the optimal partition assignment, which allows opera-
tors to benefit from data locality. Most importantly, it does not
degrade when data exhibits no locality. We employ communi-
cation scheduling to use all the available network bandwidth
of the cluster. Uncoordinated communication would otherwise
lead to cross traffic and thereby reduce bandwidth utilization
dramatically. We propose an adaptive radix partitioning for the
repartitioning to retain locality in the data and to handle value
skewed inputs gracefully. Selective broadcast is an extension
to the partition assignment that decides dynamically for every
partition between shuffle and broadcast. With selective broad-
cast, our approach can even benefit from extreme value skew
and reduce network communication further.

We primarily target clusters of high-end commodity ma-
chines, which consist of few but fat nodes with large amounts
of main-memory. This typically represents the most economic
choice for parallel main-memory databases. MapReduce-style
systems are, in contrast, designed for large clusters of low-end
machines. Recent work [12] has extended the MapReduce pro-
cessing model with the ability to co-partition data. However,
MapReduce-style systems cannot leverage fuzzy co-location
yet and have to perform a network-intensive data redistribution
between map and reduce tasks. They would therefore also
benefit from a locality-sensitive reshuffling.

The immense savings that locality-sensitive data shuffling
can achieve (cf. Fig. 2(a)) justify the associated runtime
optimization costs (cf. Fig. 2(b)).

In summary, this paper makes the following contributions:
● Optimal partition assignment: We devise a method that

allows operators to benefit from data locality.
● Communication scheduling: Our communication sched-

uler prevents cross traffic, which would otherwise reduce
network bandwidth utilization dramatically.

● Adaptive Radix Partitioning: We develop an efficient
repartitioning scheme, which retains locality. It further
allows us to handle value skewed inputs gracefully.

● Selective Broadcast: We extend the partition assignment
to selectively broadcast small partitions. This increases
the performance for inputs with extreme value skew.

We describe our techniques based on Neo-Join, a network-
optimized join operator. They can be similarly applied to other

distributed relational operators that reduce to item matching,
e.g., aggregation and duplicate elimination.

II. RELATED WORK

As outlined in the introduction, distributed joins have first
been considered in the context of database machines. Fushimi
et al. introduced the Grace hash-join [13] of which a parallel
version was evaluated by DeWitt et al. [2]. These algorithms
are optimized for the disk as bottleneck. Disk is still the limit-
ing factor for distributed file systems and similar applications
[14], [15]. However, parallel join processing in main-memory
database systems avoids the disk and is limited by the network.

Wolf et al. proposed heuristics for distributed sort-merge
[16] and hash-join [17] algorithms to achieve load balancing
in the presence of skew. However, their approach targets
CPU bound systems and does not apply when network is the
bottleneck. Wilschut et al. [18] devised a distributed hash-join
algorithm with fewer synchronization requirements. Again,
CPU costs were identified as the limiting factor. Stamos and
Young [19] improved the fragment-replicate (FR) join [20]
by reducing its communication cost. However, partition-based
joins still outperform FR in the case of equi-joins. Afrati
and Ullman [21] optimized FR for MapReduce, while Blanas
et al. [22] compared joins for MapReduce. MapReduce focuses
especially on scalability and fault-tolerance, whereas we target
per-node efficiency. Frey et al. [23] designed a join algorithm
for non-commodity high-speed Infiniband networks with a ring
topology. They state that the network was not the bottleneck.

Systems with non-uniform memory access (NUMA) dis-
tinguish expensive remote from cheaper local reads similar
to distributed systems. Teubner et al. [24] designed a stream-
based join for NUMA systems. However, it does not fully
utilize the bandwidth of all memory interconnect links. Albutiu
et al. [25] presented MPSM, a NUMA-aware sort-merge based
join algorithm. Li et al. [26] applied data shuffling to NUMA
systems and in particular to MPSM. They showed that a co-
ordinated round-robin access pattern increases the bandwidth
utilization by up to 3× but improves the join by only 8% as
sorting dominates the runtime. We show that data shuffling
applied to distributed systems achieves much higher benefits.
Li et al. did also not consider skew in the data placement.

Bloom filters [27] are commonly used to reduce the network
traffic. They are orthogonal to our approach and can be used
as a preliminary step. However, they should not be applied in
all cases due to their incurred computation and communication
costs. Dynamic bloom filters [28] lower the computation costs
as they can be maintained continuously for common join
attributes. Still, the exchange of the filters itself causes network
traffic that increases quadratically in the number of nodes.
They should only be used for joins with a small selectivity.

CloudRAMSort [29] introduced the idea to split tuples into
key and payload. This is compatible with our approach and
should be applied to reduce communication costs. A second
data shuffling phase is merges result tuples with their payloads.
While this effectively represents a second join, it is computed
locally on the nodes where the payloads reside.



III. NEO-JOIN

Neo-Join is a distributed join algorithm based on locality-
sensitive data shuffling. It computes the equi-join of two
relations R and S, which are horizontally fragmented across
the nodes of a distributed system. Neo-Join exploits locality
and handles value skew gracefully using optimal partition as-
signment. Communication scheduling allows it to avoid cross-
traffic. The algorithm proceeds in four phases: (1) repartition
the data, (2) assign the resulting partitions to nodes for a min-
imal network phase duration, (3) schedule the communication
to avoid cross traffic, and (4) shuffle the partitions according
to the schedule while joining incoming partition chunks in
parallel. In the following we describe these phases in detail.

A. Data Repartitioning (Phase 1)

The idea to split join relations into disjoint partitions was in-
troduced by the Grace [1] and Gamma [2] database machines.
Partitioning ensures that all tuples with the same join key end
up in the same partition. Consequently, partitions can be joined
independently on different nodes. We first define locality and
skew before covering different choices for the repartitioning.

Locality. We use the term locality to describe the degree of
local clustering of a partitioning. Fig. 3(a) shows an example
with high locality. We specify locality in percent, where x%
denotes that on average for each partition the node with its
largest part has x% of its tuples with an additional 1/n-th
of the remaining tuples (for n nodes). 0% thus corresponds
to a uniform distribution where all nodes own equal parts
of all partitions and 100% to the other extreme where nodes
own partitions exclusively. Locality in the data distribution can
have many reasons, e.g., a (fuzzy) co-partitioning of the two
relations, a distribution key used as join key, a correlation be-
tween distribution and join key, or time-of-creation clustering.
Locality can be created on purpose during load time to benefit
from the significant savings possible with locality-sensitive
operators. One may also let tuples wander with queries to
create fuzzy co-location for frequently joined attributes.

Skew. The term skew is commonly used to denote the
deviation from a uniform distribution. Skewed inputs can
significantly affect the join performance and therefore should
be considered during the design of parallel and distributed
join algorithms (e.g., [16], [25], [30]). We use the term value
skew to denote inputs with skewed value distributions. Skewed
inputs can lead to skewed partitions as shown in Fig. 3(b).

In the following, we assume the general case that distribu-
tion and join key differ. Otherwise, one or both relations would
already be distributed by the join attribute and repartitioning
becomes straightforward: The existing partitioning can be
used to repartition the other relation. Our optimal partition
assignment can automatically exploit the resulting locality.

There are many options to repartition the inputs. Opti-
mal partition assignment (Section III-B) and communication
scheduling (Section III-C) apply to any of them. However,
repartitioning schemes such as the proposed radix partitioning
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Fig. 3. Example for locality and skew with three nodes and nine partitions

that retain locality in the data placement can improve the join
performance dramatically, as we describe in the following.

1) Hash Partitioning: Hashing is commonly used for par-
titioning as it achieves balanced partitions even when the
input exhibits value skew. However, hash partitioning can be
sub-optimal. An example is an input that is almost range-
partitioned across nodes (e.g., caused by time-of-creation clus-
tering as is the case with order and orderline in TPC-H). With
range-partitioning, the input could be assigned to nodes so
that only the few tuples that violate the range partitioning are
transferred. Hash partitioning destroys the range partitioning.
The resulting network phase is much longer than necessary.

2) Radix Partitioning: We propose radix partitioning [31]
of the join key based on the most significant bits2 (MSB) to
retain locality in the data placement. MSB radix partitioning
is a special, “weak” case of hash partitioning, which uses the
b most significant bits as the hash value. Of course, using
the key directly does not produce such balanced partitions as
proper hash partitioning. But more importantly, MSB radix
partitioning is order-preserving and thereby a restricted case
of range partitioning, which allows the algorithm to assign the
partitions to nodes in a way that reduces the communication
costs significantly. By partitioning the input into many more
partitions than there are nodes, one can still handle value skew,
e.g., when there is a bias towards small keys. Section IV covers
techniques that handle moderate and extreme cases of value
skew while keeping the number of partitions low.

Fig. 4 (on the next page) depicts a simple example with 5 bit
join keys (0 ≤ key < 32). First, the nodes compute histograms
for their local input by radix-clustering the tuples into eight
partitions P0, . . . , P7 according to their 3 most significant bits
b4b3b2b1b0 as shown in Fig. 4(a). Next, the algorithm assigns
these eight partitions to the three nodes so that the duration of
the network phase is minimal. As we show in Section III-C,
the network phase duration is determined by the maximum
straggler, i.e., the node that needs the most time to receive
or send its data. An optimal assignment, which minimizes the
communication time of the maximum straggler, is shown in
Fig. 4(b). With this assignment both node 0 and node 2 are

2More precisely, the most significant used bits to avoid leading zeros.
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(b) Compute an optimal partition as-
signment based on the histograms
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mine the network phase duration

Fig. 4. Example for the optimal partition assignment which aims at a minimal
network phase duration with three nodes and eight (23) radix partitions

maximum stragglers with a cost of 12 as depicted in Fig. 4(c).
For a perfect hash partitioning one would expect that every
node has to send 1/n-th of its tuples to every other node (≈
21) and also receive 1/n-th of the tuples from every other
node (also ≈ 21). In this simplified example, radix partitioning
reduced the duration of the network phase by almost a factor
of two compared to hash partitioning.

B. Optimal Partition Assignment (Phase 2)

The previous section described how to repartition the input
relations so that tuples with the same join key fall into the same
partition. In general, the new partitions are fragmented across
the nodes. Therefore, all fragments of one specific partition
have to be transferred to the same node for joining. This
section describes how to determine an assignment of partitions
to nodes that minimizes the network phase duration.

We define the receive cost of a node as the number of
tuples it receives from other nodes for the partitions that were
assigned to it. Similarly, its send cost is defined as the number
of tuples it has to send to other nodes. Section III-C4 shows
that the minimum network phase duration is determined by the
node with the maximum send/receive cost. The assignment is
therefore optimized to minimize this maximum cost.

A naı̈ve approach would assign a partition to the node that
owns its largest fragment. However, this is not optimal in
general. Consider the assignment for the running example in
Fig. 4(b). Partition 7 is assigned to node 1 even though node 0

owns its largest fragment. While the assignment of partition 7
to node 0 reduces the send cost of node 0 by 4 tuples, it also
increases its receive cost to a total of 13 tuples. As a result, the
network phase duration increases from 12 to 13 (cf. Fig. 4(c)).

1) Mixed Integer Linear Programming: We phrase the par-
tition assignment problem as a mixed integer linear program
(MILP). As a result, one can use an integer programming
solver to solve it. The linear program computes a configuration
of the decision variables xij ∈ {0,1}. These decision variables
define the assignment of the p partitions to the n nodes: xij = 1
determines that partition j is assigned to node i, while xij = 0
specifies that partition j is not assigned to node i.

Each partition has to be assigned to exactly one node:
n−1

∑
i=0

xij = 1 for 0 ≤ j < p (1)

The linear program should minimize the duration of the
network phase, which is equal to the maximum send or receive
cost over all nodes. We denote the send cost of node i as si
and its receive cost as ri. The objective function is therefore:

min max
0≤i<n

{si, ri} (2)

Using the decision variables xij and the size of partition j
at node i—denoted with hij—we can express the amount of
data each node has to send (si) and receive (ri):

si =
p−1

∑
j=0

hij ⋅ (1 − xij) for 0 ≤ i < n (3)

ri =
p−1

∑
j=0

⎛
⎝
xij

n−1

∑
k=0,i≠k

hkj
⎞
⎠

for 0 ≤ i < n (4)

Equation 3 computes the send cost of node i as the size
of all local fragments of partitions that are not assigned to
it. Likewise, equation 4 adds the size of remote fragments of
partitions that were assigned to node i to the receive cost.

MILPs require a linear objective, which minimizing a max-
imum is not. Fortunately, we can rephrase the objective and
instead minimize a new variable w. Additional constraints take
care that w assumes the maximum over the send/receive costs:

(OPT-ASSIGN)

minimize w, subject to

w ≥
p−1

∑
j=0

hij(1 − xij) 0 ≤ i < n

w ≥
p−1

∑
j=0

⎛
⎝
xij

n−1

∑
k=0,i≠k

hkj
⎞
⎠

0 ≤ i < n

1 =
n−1

∑
i=0

xij 0 ≤ j < p

One can obtain an optimal solution for a specific partition
assignment problem (OPT-ASSIGN) by passing the mixed
integer linear program to an optimizer such as Microsoft
Gurobi3 or IBM CPLEX4. These solvers can be linked as a
library to create and solve linear programs via API calls.

3http://www.gurobi.com
4http://ibm.com/software/integration/optimization/cplex

http://www.gurobi.com
http://ibm.com/software/integration/optimization/cplex
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Fig. 5. Time to compute the optimal partition assignment while increasing the locality and varying the number of nodes, partitions, and tuples per node

2) Argument Size Balancing: In general, one would like to
avoid that large fractions of the argument relations are assigned
to a single node. This could lead to exhaustion of the resources
on this node (e.g., main memory) during join computation or
when a (potentially very large) result set is generated. The
following constraint restricts the input size for all nodes i to
a multiple of the ideal input size:

p−1

∑
j=0

xij(hRj + hSj ) ≤ (1 + o) ⋅ ∣R∣ + ∣S∣
n

for 0 ≤ i < n (5)

where o ∈ [0, n−1] is the overload factor, which is allowed
in addition to the ideal input size, ∣R∣ and ∣S∣ denote the size
of the argument relations, and hRj and hSj are the total size of
partition Pj for relation R and S, respectively. Argument size
balancing is not used in the following experiments.

3) NP-hardness: We provide a proof sketch to show that
OPT-ASSIGN is NP-hard. We show that its decision vari-
ant (ASSIGN) is NP-complete by reducing the known NP-
complete partition problem (PARTITION) to it. We recall from
[32] that as a consequence OPT-ASSIGN is NP-hard. ASSIGN
decides whether the objective function of OPT-ASSIGN is
smaller or equal to a given constant k. PARTITION determines
whether a given bag B of positive integers can be partitioned
into bags S1 and S2 that have an equal sum.

The polynomial-time reduction is achieved as follows: Ev-
ery integer ci of the bag B corresponds to a partition Pi of size
2 ⋅ ci where two nodes n1 and n2 both own a fragment of size
ci. The send and receive cost for partition Pi is by construction
equal to ci for both nodes. ASSIGN can be used to decide
whether an assignment exists in which both nodes have the
same send and receive cost (r1 = r2 = s1 = s2 = sum(B)/2)
by choosing k = sum(B)/2. If this is possible, the partitions
assigned to node n1 represent the subset S1 and those for
node n2 the subset S2. Therefore, a solution to the assignment
problem is also a solution to the original partition problem. An
example is shown in Fig. 6.

ASSIGN is in NP, with the partition assignment as a
certificate. PARTITION is NP-complete [32] and we have
constructed a reduction to ASSIGN. Therefore, ASSIGN is
NP-complete and OPT-ASSIGN NP-hard.

20 4 10 11 5

20 4 10 11 5

PARTITION

PARTITIONASSIGN

S1 = {20, 5}
S2 = {4, 10, 11}

B = {20, 4, 10, 11, 5}, k = 25

Fig. 6. An example for the reduction of PARTITION to ASSIGN

4) Optimization Time: Despite the NP-hardness of the
partition assignment problem it is possible to solve real-world
instances in reasonable time, i.e., much faster than the potential
savings in network communication time. Fig. 5 depicts the
solve time using the linear programming solver CPLEX for
variations of the problem while increasing the locality.

In general, the solve time for a linear program increases with
the number of variables. For the partition assignment, every
combination between nodes and partitions is represented by a
variable. Consequently, there is a direct correlation between
the number of nodes/partitions and the solve time as visible
in Fig. 5(a) and 5(b). The number of tuples per node has no
impact on the solve time as expected and shown in Fig. 5(c).

Fig. 5 indicates that the optimal assignment becomes ex-
pensive for clusters with hundreds or even thousands of nodes.
As outlined in the introduction, our target are mainly clusters
with fewer but fatter nodes as this is typically the most
economic choice for parallel main-memory database clusters.
Consequently, we only show the benefits and costs associated
with the optimal solution. Efficient approximations should be
possible to support larger clusters. We further expect an even
slower network performance for very large clusters due to a
shared network infrastructure, which would also increase the
savings possible with locality-sensitive operators.

There are several options to minimize the optimization
time: One can reduce the number of partitions by adaptively
combining small partitions (cf. Section IV-A). The assignment
can be precomputed eagerly or cached for recurring queries
to avoid the runtime optimization overhead completely. Lastly,
the locality can be estimated to invest the optimization time
only when the expected savings are big enough.



TABLE I
TERMINOLOGY MAPPING

Open Shop Auto Shop Network Transfer

job car sender
task check engine data transfer
processor engine test bench receiver
execution time time for the check message size
preemption suspend check split message

C. Communication Scheduling (Phase 3)

The previous section described how to compute an optimal
assignment of partitions to nodes. The next step is to redis-
tribute the partitions according to this assignment. However,
when the nodes use the network without coordination, the
available bandwidth is utilized poorly. The scheduling of com-
munication tasks can improve the bandwidth utilization signifi-
cantly. We assume a star topology with uniform bandwidth that
is common for small clusters. Our approach can be extended to
non-uniform bandwidths by adjusting the partition assignment
problem without increasing its complexity by adding variables
or constraints (omitted due to space restrictions).

1) Network Congestion: A naı̈ve distribution scheme would
let all the nodes send their tuples to the first node, then to the
second node, and so on. Fig. 7(a) depicts a naı̈ve schedule for
the running example. This simple scheme leads to significant
network congestion since the nodes compete for the bandwidth
of a single link while other links are not fully utilized. Fig. 7(c)
visualizes the reason for the network congestion: Both, node 1
and node 2 send data to node 0 at the same time and therefore
share the bandwidth of the link that connects node 0 to the
switch. Node 0 can send with only 1 Gbit/s to either node 1
or node 2 although both could each receive simultaneously.
Ultimately, 1 Gbit/s of bandwidth remains unused.

Network congestion can be avoided entirely by dividing the
communication into distinct phases. In each phase a node has
a single target to which it sends, and likewise a single source
from which it receives. However, it is not obvious how to
determine the phases so that a schedule with minimum finish
time is realized. In practice, the nodes send different amounts
of data to different nodes, which renders a simple round-robin
scheme impractical. The problem to devise a communication
schedule with minimum finish time corresponds to the open-
shop scheduling problem [33]. It can be solved in polynomial
time when preemption is allowed, which in this case corre-
sponds to splitting network transfers into smaller chunks.

2) The Open Shop Scheduling Problem: The open shop
problem is defined for abstract jobs, tasks, and processors. We
explain it with the example of an auto shop. Afterwards, we
translate the problem of computing optimal network phases
into an open shop problem. As a result, one can use the
polynomial-time algorithm that solves open shop problems to
compute communication schedules.

An auto shop consists of m processors each dedicated to
perform a specific repair task, e.g., the engine test bench, the
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Fig. 7. Naı̈ve and optimal schedule for our running example with three nodes

wheel alignment system, and the exhaust test facility. There are
multiple jobs, i.e., cars that need maintenance, consisting of
m tasks, which need to be performed, e.g., check the engines,
align wheels, and test the exhaust system. Each task of a job is
performed by the corresponding processor. Every task has an
associated processing time. The tasks may be performed in any
order as it is irrelevant if the engine or the wheel alignment is
checked first. However, two repair tasks cannot be performed
for the same car simultaneously, since the processors are all
located in different buildings. Similarly, a processor can check
only one car at a time. Suspension of tasks is allowed. The
goal is to find a schedule with minimal total processing time.

The network scheduling problem can be translated to an
open shop scheduling problem with preemption as summarized
in Table I: A task is the data transfer from one node to another
and it has an execution time corresponding to the size of the
data transfer. The job to which the task belongs is the sending
node and the processor is the receiving node. A node should
not send to several nodes simultaneously, similarly to the tasks
of a job, which cannot be processed at different processors at
the same time. A node should receive from at most one other
node, just as a processor can execute only one task. The data
transfer between two nodes can be split into multiple transfers,
just as tasks can be preempted.

3) Solving Open Shops: Gonzales and Sahni [33] describe
a polynomial time algorithm, which computes a minimum
finish time schedule for open shops. The algorithm is based
on finding perfect matchings in bipartite graphs. We explain
it on the basis of the running example with three nodes.

The algorithm starts by generating the two vertex sets of the
bipartite graph. The first set of vertices consists of a vertex
for each sender and an equal number of additional vertices
for virtual senders. Similarly, the second set has vertices for
normal and virtual receivers. In the example, there are N = 3
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Fig. 8. Time to schedule the network communication between nodes while varying the number of nodes, partitions, and tuples per node
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Fig. 9. The bipartite graph for our example with initial matching

nodes and therefore a total of 12 vertices in the bipartite
graph as shown in Fig. 9. Each network transfer is represented
as an edge connecting a sender with a receiver. Every edge
is weighted with the transfer size, e.g., node 2 has to send
7 tuples to node 0. For optimality, it is important that all
nodes have a weight equal to α, the maximum send or receive
cost across nodes (12 for the running example as shown in
Fig. 4(c)). Gonzales and Sahni describe how to insert edges
between nodes and their virtual partners to achieve this.

The second step of the algorithm repeatedly finds perfect
matchings. Every matching corresponds to a network phase
and the edges of the matching define which nodes communi-
cate in this phase. The minimal edge weight in the matching
determines its duration. All matching edges are decreased by
this amount and edges with weight zero are removed. Senders
that are matched to virtual receivers do not send in this phase
and receivers matched to virtual senders do not receive. This
process is repeated until no edges remain.

The matching highlighted in Fig. 9 corresponds to the first
phase of the schedule. Every transfer in this phase sends
6 tuples as this is the minimum edge weight. The edges of
the matching specify that node 0 sends to node 1, node 1 to
node 2, and node 2 to node 0. The resulting optimal schedule
is shown in Fig. 7(b). It consists of three phases and achieves
a network bandwidth utilization of 94%. In contrast, the naı̈ve
schedule utilizes only 67% of the available bandwidth.

4) Optimality: A schedule with a duration of less than α
is not possible since α is the maximum send or receive cost
across all nodes. At least one node has this send or receive cost

and cannot finish earlier. Surprisingly, the algorithm always
finds an optimal schedule with duration equal to α. The proof
by Gonzales and Sahni can be found in [33].

5) Time Complexity: The runtime of the algorithm is in
O(r2) where r is the number of non-zero tasks [33]. Every
transfer of the communication scheduling problem translates
to a non-zero task. A system with n nodes has no more than
n(n − 1) transfers because each of the n nodes sends to at
most all other nodes. The runtime is therefore in O(n4).

Fig. 8(a) compares the time needed to schedule the commu-
nication for a varying number of nodes. It is apparent that the
problem size increases with the number of nodes. Fig. 8(b) and
8(c) show that the number of partitions or tuples do not affect
the schedule time. The error bars show the standard deviation.

While the network scheduling is quite fast for up to 64 nodes
where it takes about 50 ms, this increases to 623 ms for
128 nodes and even further for more nodes. Still, this is not
a problem as the communication schedule can be computed
incrementally and in parallel to the actual data shuffling. The
nodes can start communicating as soon as the first phase is
computed—which takes less than a millisecond. The remain-
ing phases are then computed during the data shuffling.

6) Simultaneous Communication: We have until now as-
sumed that no other communication happens over the network
during the data shuffling. In the general case where simulta-
neous communication takes place, all network traffic needs to
be scheduled to achieve the total available bandwidth of the
database cluster. In this case the communication scheduling
should be extended to guarantee fairness, so that no operator
can “starve”. However, this is out of scope for this paper.

D. Partition Shuffling and Local Join (Phase 4)

At this point, we have a partition assignment and a schedule,
which describe how to redistribute the partitions. The only
task that remains is to actually transfer the partitions over the
network and join incoming partition chunks in parallel.

1) Partition Shuffling: In theory, there is no need to syn-
chronize between the phases of the communication schedule.
All nodes that participate in a phase send the exact same
amount of data and should therefore also finish together. In
reality, some nodes stop sending a little bit earlier than others
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due to variations in the TCP throughput, e.g., caused by packet
loss. These nodes then send to their next target, which still
receives from another node. As a result, both nodes share the
bandwidth of the same link and are slowed down. The problem
intensifies when other nodes start to use the links still occupied
by the slower nodes. The situation is similar to a traffic jam.

To mitigate this problem, all nodes synchronize before
they begin the next phase. While this avoids cross traffic, it
introduces a synchronization barrier at which nodes could be
forced to wait for a node with temporarily less bandwidth.
Waiting for synchronization did not noticeably impact the
performance in our experiments. Nevertheless, we propose a
solution for it: The nodes stop sending when they exceed the
time limit for the current phase and report their remaining
tuples. The communication scheduler updates the bipartite
graph, which represents the network transfers, accordingly. It
then computes a perfect matching to determine the next phase.

2) Local Join: CPU performance and network bandwidth
have grown at different speeds over the last decades. In today’s
systems the runtime of a distributed join is dominated by the
network, whereas the local join computation on the nodes is
less critical. Arriving tuples can be joined in parallel to the
network transfer. Fig. 10 shows the result generation for three
hash-join variants over time. It shows that the join finishes
instantaneously when the last tuple arrives independent of
the choice for the local join. Consequently, we have so far
focused on the optimization of the data shuffling. Still, there
are implementation choices to be made for the local join.

The standard hash-join [34] first builds a hash-table for the
smaller input, which is then probed with the larger input. This
two-phase approach effectively blocks for the probe input. In
a distributed join, the probe input needs to be cached until
after the entire build input has been received and processed.
Only then can probing of the hash-table start to produce result
tuples. This is visible as a steep incline in the result size about
20 seconds into the join computation.

The symmetric hash-join [18], a variant thereof known as
XJoin [35], consists of only one phase: An incoming tuple is
first probed into the hash-table of the other input and then

added to the hash-table of its own input. The symmetric
hash-join processes each tuple immediately, thereby avoids
to postpone work, and still computes the correct result. It
finishes at the same time than the standard hash-join even
though it processes every tuple twice, once for each hash-table.
The network transfer dominates the runtime to such a large
extent that this additional work has no impact. The continuous
processing of incoming tuples is reflected in the steady incline
in the number of result tuples as shown in Fig. 10.

The partitioned hash-join is a third hash-join variant that
performs no more work than the standard hash-join and can
produce results earlier. It maintains a hash-table for every
partition and can probe those hash-tables that are fully built,
while build tuples for other partitions are still missing. This
is evident in Fig. 10 as result tuples are generated already
16 seconds into the join computation.

Neo-Join supports all three hash-joins. It uses the partitioned
hash-join by default since it is able to perform its work earlier
than the standard hash-join. Further, the partitioned hash-join
processes every tuple only once in contrast to the symmetric
hash-join, which maintains two hash-tables. This becomes
important for inputs with high locality since Neo-Join reduces
the network transfer time. Partitioned and standard hash-join
are in this case up to twice as fast as the symmetric hash-join.
All subsequent experiments use the partitioned hash-join.

E. Shuffling the Join Result

So far, we have not considered the cost for reshuffling a
large join result in preparation for the next join or aggregation
operator in the query plan. There is no need to redistribute
the join result when the subsequent operator references the
same attribute as the current join. In fact, locality-sensitive
data shuffling identifies and exploits the resulting co-location
automatically. In all other cases, reshuffling is necessary and
can have a significant impact on the total query execution time.
All techniques described in this paper should be applied for
the optimization of this additional data shuffling phase.

A combined optimization of successive operators could
result in further improvements. The assignment of partitions
to nodes influences the result sizes on the nodes, which in
turn determine the cost for shuffling the result. We leave the
adjustments to the partition assignment model that are needed
to consider the duration of a succeeding result transfer phase
as future work as this goes beyond the scope of this paper.

Instead of a separate phase, the result could already be
redistributed during the join computation. However, it is hard
to estimate at which point in time result tuples are available at
specific nodes. Moreover, the bandwidth of the nodes should
already be fully utilized during the data shuffling for the join.
The redistribution of the result could instead start after the
data shuffling for the join has finished, yet possibly before
the end of the join computation. This further increases the
overlapping of communication and computation. However, in
a network-bound system this situation will only arise when
the data shuffling phase of the join has a short duration due
to data co-location.



IV. HANDLING SKEW

We extend the locality-sensitive data shuffling to handle
value skew and high numbers of duplicates without increasing
the problem size for the partition assignment. Extreme value
skew can even be leveraged to reduce communication further.

A. Adaptive Radix Partitioning

The optimal partition assignment as presented so far handles
skewed inputs by balancing larger partitions with many smaller
ones. This handles those cases quite well where for example
80% of the data lies in the first 20% of the value range. How-
ever, for extreme cases of value skew a considerable number of
partitions is needed for a balanced partition assignment. This
is highly undesirable as the runtime of the partition assignment
increases with the number of partitions.

We extend radix partitioning to handle inputs with ex-
treme value skew by adaptively combining small partitions,
hence called adaptive radix partitioning (ARP). With ARP
the nodes create wide histograms with many buckets. The
partition assigner aggregates these into a global histogram and
combines buckets that are smaller than a certain threshold. The
resulting partitions are better balanced than with standard radix
partitioning. Most importantly, the number of partitions used
in the optimal optimal partition assignment is kept small.

We evaluate ARP with the Zipf distribution, which is
commonly used to model extreme cases of value skew and
high numbers of duplicates. The Zipf factor s ≥ 0 controls
the extent of skew, where s = 0 corresponds to a uniform
distribution. Zipf is known to model real world data accurately,
including the size of cities and word frequencies [36].

Our micro-benchmark consists of two relations, city and
person, where person has a foreign key hometown referencing
the city relation. Both relations contain 400 M tuples. The
hometown attribute of the person table is skewed to model
the fact that most persons live in few cities. We varied the
Zipf factor s from 0 to 1. s = 0 corresponds to a uniform
distribution as mentioned before, while s = 1 implies that 77%
of the values are in the first 1% of the value range. Note that
for s = 1 the number of duplicates is also quite high: the value
0 occurs in 21 M tuples (5%), the value 1 in 10 M (2.4%), the
value 2 in 7 M (1.6%), etc. The Zipf factor n denotes the
number of elements, in this case n = 400M.

Table II shows the join duration using 4 nodes for an in-
creasingly skewed person table. With simple radix partitioning,
even 512 partitions do not suffice to maintain the join duration
for s = 1. On the other hand, adaptive radix partitioning needs
only 16 partitions to sustain the duration of the uniform case.

Since ARP produces better results for the same number of
partitions, it should be used as a replacement for the standard
radix partitioning we described in Section III-A2.

B. Selective Broadcast

Selective broadcast (SB) extends the optimal partition as-
signment so that it dynamically decides for every partition
whether to assign it to a node or broadcast one of its relation
fragments instead. This achieves two things: First, it covers the

TABLE II
JOIN DURATION IN SECONDS FOR INCREASING VALUE SKEW

Zipf factor s

0.00 0.25 0.5 0.75 1.00

16 partitions 27 s 24 s 23 s 29 s 44 s
512 partitions 23 s 23 s 23 s 23 s 33 s
16 partitions (ARP) 23 s 24 s 24 s 24 s 24 s
16 partitions (SB) 24 s 24 s 23 s 20 s 10 s
16 partitions (SB + ARP) 23 s 23 s 24 s 20 s 10 s

case when one relation is significantly smaller than the other
so that broadcasting it is more efficient than partition shuffling.
Second, the ability to decide between broadcast and shuffle for
every single partition is highly beneficial for skewed inputs.

1) Shuffle or Broadcast: There are two fundamental options
for distributed joins: (i) shuffle both relations so that tuples
with the same key end up on the same node, or (ii) let one
relation remain fragmented across the system and broadcast
the other—also known as the fragment-replicate join [20].
Shuffling relations R and S incurs communication costs of
n−1
n
⋅ (∣R∣ + ∣S∣)/n as each of the n nodes sends 1/n-th of its

fragments of R and S to the other n − 1 nodes. Broadcasting
R costs (n−1)⋅∣R∣/n as every node sends its fragment of R to
every other node. Broadcast thus performs better than shuffling
when the ratio between relations is higher than 1 ∶ (n − 1).

The locality-sensitive data shuffling as presented so far only
considers shuffling. Selective broadcast extends our approach
so that it decides for every partition whether to shuffle or
broadcast it. In particular, this covers the case where one
relation is much smaller than the other and should be broadcast
as a whole. As a consequence, selective broadcast performs
always at least as good as shuffling both relations or broadcast-
ing the smaller as illustrated in Fig. 11 for 4 nodes. Selective
broadcast can even outperform broadcast and shuffle for inputs
with high value skew as we explain in the next section.

2) Skew: Selective broadcast can lead to significant speed-
ups in the case of extremely skewed inputs. It broadcasts those
partition fragments of one relation that are significantly smaller
than their counterpart of the other relation. The remaining
partitions are either broadcast by the other relation or assigned
to nodes as before. Fig. 12 illustrates this for two relations R
and S where S is skewed towards small values. The first five
partitions of R are broadcast as the corresponding partitions
of S are much larger. The remaining partitions are assigned to
nodes and shuffled as before. This has the additional benefit
that partitions are kept local that are large due to a high number
of duplicates, which is common for Zipf distributions.

To show the potential savings with selective broadcast, we
come back to the example of the city and person relations.
For Zipf factor s = 1 and 16 partitions, the join performance
increases by a factor of 2.8 when compared to the non-
skewed case s = 0. In particular, the first three partitions are
broadcast by city, the next four partitions are shuffled, while
the remaining nine partitions are broadcast by person.
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3) Model Extension: In the following, we describe how
to extend the mixed integer linear program of the partition
assignment to support selective broadcasting of partitions.

We have to model the choice between assigning a partition
to a node or broadcasting it by either relation S or relation
R. The existing binary variables xij ∈ {0,1} specify whether
partition j is assigned to node i. We add two new variables
yj , zj ∈ {0,1} per partition j that denote if its fragment for
relation R respectively S is broadcast instead.

The constraints have to be updated using the new variables.
Previously, the model included the restriction that every parti-
tion has to be assigned to exactly one node (cf. Equation 1). In
the new model, each partition j is either assigned to a node or
broadcast for one of the two relations. All variables that refer
to the same partition therefore have to be mutually exclusive:

(
n−1

∑
i=0

xij) + yj + zj = 1, for 0 ≤ j < p − 1 (6)

The constraints for the send and receive costs have to be
updated as well. The send cost ri of node i was previously
defined as the sum of all partitions it has to send because they
were assigned to other nodes (cf. Equation 3). For selective
broadcast, one has to account for the additional cost for
partitions that are broadcast instead: If a partition is broadcast,
all nodes that own a relation fragment of this partition have
to send it to all n−1 other nodes. The additional send cost of
node i for broadcasts sBi is therefore:

sBi =
p−1

∑
j=0

(yj(n − 1)hRij + zj(n − 1)hSij) for 0 ≤ i < n (7)

where hRij and hSij denote the size of the relation fragments
of partition j at node i for R and S, respectively. In addition
to the receive cost ri for partitions that were assigned to node
i (cf. Equation 4), it also receives all relation fragments from
the other nodes for partitions that are broadcast. The additional
receive costs of node i for broadcasts rBi are:

rBi =
p−1

∑
j=0

⎛
⎝
yj

n−1

∑
k=0,i≠k

hRkj + zj
n−1

∑
k=0,i≠k

hSkj
⎞
⎠

for 0 ≤ i < n (8)

The objective (cf. Equation 2) remains unchanged, the
program still minimize the maximum send or receive cost

across all nodes. One can now update the linear program for
the partition assignment with equations 6-8 to support selective
broadcasts, modulo a smaller adjustment to the send cost:

(SEL-BCAST)

minimize w, subject to

w ≥ si + sBi −
p−1

∑
j=0

(yjhij + zjhij) 0 ≤ i < n

w ≥ ri + rBi 0 ≤ i < n

1 = (
n−1

∑
i=0

xij) + yj + zj 0 ≤ j < p

The runtime of the partition assignment increases by an
average of 39% with selective broadcast enabled (comparing
the geometric mean of 720 experiments: 8 to 64 nodes, 4 to
16 partitions per node, 20 levels of locality, 3 repetitions).

V. EVALUATION

All experiments of this paper were conducted on a shared-
nothing [37] cluster of four identical machines except the scale
up experiment. The cluster is connected via Gigabit Ethernet.
Each of the four nodes has 32 GB of RAM, an Intel Core i7-
3770 processor with four cores at 3.4 GHz each. The machines
run Linux 3.8 as operating system. The implementation links
to the IBM CPLEX library for MILP solving.

A. Data Shuffling Alternatives
Fig. 13 compares the bandwidth utilization of four different

data shuffling schemes for uniform and skewed inputs. For
the naı̈ve scheme all nodes first send to node 0, followed by
node 1, and so on. In the random data shuffling scheme targets
are selected at random. Both the naı̈ve and the random scheme
are not synchronized as this decreases their performance. The
round-robin scheme orders the nodes in a cycle. Each node
sends first to its clock-wise neighbor, then to the one after
that, etc. The phases are synchronized to avoid cross traffic.
Open shop is our data shuffling scheme, which is based on an
open shop schedule and is also synchronized.

The naı̈ve and random distribution scheme perform similar
for both inputs. The bandwidth utilization of round-robin dete-
riorates for the skewed input. Open Shop handles the skewed
input better due to its optimal communication scheduling.
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B. Locality

Fig. 14 compares Neo-Join to MySQL Cluster 7.2.10, Hive
0.10 on a Hadoop 1.1.1 cluster, and the commercial system
DBMS-X for five different levels of locality. MySQL Cluster is
a distributed variant of the MySQL database, which uses main
memory as storage. Hive is a data warehouse system based on
Hadoop, the open source implementation of MapReduce. For
better comparability, we use the in-memory file system ramfs
instead of a disk and tuned the number of map/reduce tasks.
DBMS-X is a disk-based column store, which is configured
likewise to use main memory. However, whether disk or main
memory were used did not result in noticeable differences
in performance, which indicates that indeed the network
bandwidth is the limiting factor. All systems were configured
to use three data nodes and one coordinator.

The experiments use a total of 600M tuples (100M tuples
per relation per node). Each tuple consists of a key and a
payload, both defined as DECIMAL(18, 0), which allows
for a physical representation as two 64bit integers. Neo-Join is
in general independent of the data layout, but we implemented
it for a row-store. The join key is constrained to [0,232) so that
the join result is not nearly empty—which is the case for 64 bit
uniform join keys. We varied the locality, where x% denotes
that for each partition the node with its largest part owns x%
of its tuples with an additional 1/n-th of the remaining tuples
(for n nodes). 0% thus corresponds to a uniform distribution
where all nodes own equal parts of all partitions and 100% to
the other extreme where nodes own partitions exclusively.

For the case of uniformly distributed data, MySQL needs
about an hour for the join while Hive finishes in 4 minutes,
DBMS-X in 30 seconds, and Neo Join in 20 seconds. The join
performance of MySQL and Hive stays mostly unchanged with
increasing locality while DBMS-X’s performance deteriorates
by 41%. Neo-Join is able to improve its performance with
increasing locality from 30 million tuples/s to more than
150 million tuples/s. The join performance for perfectly co-
located data (100% locality) is 5× higher compared to a

5Exasol, record holder in the TPC-H cluster benchmark, was measured
with the same input on a different cluster with lower CPU performance but
the same network bandwidth—which is the bottleneck for distributed joins.

uniform distribution (0% locality). This emphasizes the impor-
tance of locality-sensitive distributed database operators. None
of the contenders were able to take advantage from locality.

C. Scale Up

The scale up experiment was conducted on a cluster of
16 nodes. Each node has an Intel Core 2 Quad Q6700 CPU
with four cores at 2.66 GHz and 8 GB of main memory.
They are connected over Gigabit Ethernet—still the dominant
connection speed for new servers [5]. The nodes are somewhat
aged as visible in the rather inferior single node join perfor-
mance. Note that a higher processing power would also further
improve the join performance for joins with high locality.

A linear scale up is defined as a linear increase in join
performance when the number of nodes and the size of the
input is increased proportionally. In this case, the input is
increased by 100M tuples for every additional node. Fig. 15
demonstrates that Neo-Join scales linearly with the number of
nodes. Moreover, it shows that locality-aware data-shuffling
does not deteriorate when there is no locality in the data.

D. TPC-H

We chose the TPC-H benchmark to test our approach with
a more realistic data set. We generated the relations for a scale
factor of 100 and split them into four parts, one per node. The
resulting data set has about 100 GB. We compare our approach
to a hash-based shuffle of both relations and a broadcast of
the smaller relation. These are the two state-of-the-art choices
for the data shuffling phase of a distributed query. The results
for selected single-join queries are shown in Fig. 16.

The selection of Q12 is so restrictive that one of the join
inputs is 45× larger than the other. Consequently, a broadcast
of the smaller relation is much faster than shuffling both
relations. Neo-Join improves over this by exploiting the near-
perfect co-location of the orders and lineitem tables caused by
time-of-creation clustering. Note that Neo-Join does not assign
the few partitions that violate the co-partitioning but instead
selectively broadcasts them by the smaller relation, which
is even faster. It achieves a speedup of 7.6× over shuffling
and 1.5× over broadcasting. For Q14, Neo-Join is able to
exploit the time-of-creation clustering of the part relation and



repartitions the lineitem table, which exhibits no locality on the
join attribute. This improves the execution time by a factor of
3.4 over shuffling respectively 1.2 for broadcast. The size of
the input relations for Q19 differ only by 55%, thus shuffling
becomes faster than broadcast. Neo-Join again exploits the
locality in the data placement of the part relation and is 1.7×
faster than a shuffle and 2.3× faster than a broadcast.

VI. CONCLUSION

Over the last decades, compute speed has grown much faster
than network speed. In parallel main-memory database clus-
ters, it is thus of utmost importance to maximize the locality
in query processing. A common technique is to co-partition
relations to reduce the expensive data shuffling. However, co-
partitioning is restricted to one attribute per relation (unless
it is also being replicated) and expensive to maintain under
updates. Other attributes often exhibit a fuzzy co-location but
current approaches do not leverage this.

In this paper, we have introduced locality-sensitive data
shuffling, a set of four techniques that can dramatically reduce
the amount of network communication of distributed oper-
ators. We have presented four novel techniques: (i) optimal
partition assignment computes an assignment with minimum
network phase duration given any repartitioning of the input
while considering locality, skew and the case that some nodes
own larger parts of a relation than others; (ii) communication
scheduling leverages all the available network bandwidth in
a cluster; (iii) adaptive radix partitioning retains locality in
the data and handles value skew gracefully; and (iv) selective
broadcast allows to reduce network communication for cases
with extreme value skew by dynamically deciding whether to
shuffle or broadcast a partition. We have presented compre-
hensive experimental results, which show that our approach
can improve performance by up to a factor of 5 for fuzzy
co-location and a factor of 3 for inputs with value skew.
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