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ABSTRACT

In this paper, we introduce a new methodology for constructing

database benchmarks using Large Language Models (LLMs), as well

as SQLStorm v1.0, a concrete benchmark on a real-world dataset

of three sizes (1 GB, 12GB, 220GB) consisting of over 18 K queries.

This methodology of using AI to generate query workloads breaks

new ground, not only in its ability to cheaply ($15) generate huge

volumes (22MB) of realistic queries but especially because it greatly

expands the amount of SQL functionality and query constructions

that is covered, compared to human-written SQL benchmarks such

as TPC-H, TPC-DS, and JOB. The use cases of SQLStorm that we

thinkwill advance data systemsmost are: (i) improving SQL compat-

ibility between systems, (ii) increasing system quality by identifying

crashes/errors and �xing those, (iii) improving cardinality estima-

tors and query optimizers, by identifying trends and opportunities

(queries where other systems do much better), as well as (iv) overall

system performance, both in terms of speed and robustness.
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1 INTRODUCTION

Benchmarks crystallize performance, providing an objective foun-

dation for comparing database systems. Beyond mere measurement

tools, they shape the evolutionary trajectory of database technolo-

gies by in�uencing which workloads vendors and researchers pri-

oritize. In the OLAP space, TPC-H and TPC-DS have emerged as

dominant benchmarks in industry and academia.

Both benchmarks rely on a limited set of handcrafted queries

and synthetic data generators. While this controlled design ensures

repeatability and comparability, it also comes with drawbacks. TPC

benchmarks, for instance, have been criticized for their limited

coverage of key real-world functionalities, such as string process-

ing, and their reliance on unrealistic data distributions that fail to
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Figure 1: Comparison of query generation pipelines in

template-based benchmarks (TPC-H/DS) and our LLM-based

SQLStormmethodology. The generated queries are optimized

and executed in Umbra and we report the number of distinct

query plans and execution traces. The LLM-based approach

yields a more diverse query set than templated benchmarks.

capture the complexities of production workloads [49, 56, 59, 60].

However, given the privacy concerns surrounding real-world query

logs and database contents, synthetic OLAP benchmarks have re-

mained the primary – if not the only – viable alternative.

Generative AI, powered by Large Language Models (LLMs),

presents a novel opportunity to rethink SQL benchmarking. LLMs

from major AI vendors have been trained on vast open-source SQL

corpora, implicitly capturing real-world SQL usage patterns. With

appropriate prompting, these models can generate realistic SQL

queries that better re�ect practical database workloads. Moreover,

the stochastic nature of LLMs enables random sampling from a

distribution of real-world SQL queries, creating large, diverse, and

representative query sets.

We propose a new benchmarking methodology called SQLStorm

that leverages LLMs for SQL generation. By providing a database

schema and carefully designed prompts, LLM APIs can generate

hundreds of thousands of complex queries that more accurately re-

�ect real-world SQL workloads than traditional handcrafted bench-

marks. Figure 1 illustrates SQLStorm’s generation pipeline for

rewriting and �ltering LLM-generated SQL queries. It removes er-

roneous queries and ensures compatibility with multiple systems

by testing them in PostgreSQL, Umbra, and DuckDB. Our new

approach facilitates automated large-scale benchmark generation.

Conventional OLAP benchmarks, like TPC-H and TPC-DS, rely

on a small set of expert-curated query templates that, while useful
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for comparability, are highly sanitized and often fail to capture

the diversity and unpredictability of real-world workloads. Even

when instantiated thousands of times, template-based benchmarks

yield only a limited variety of query plans, and executions of the

same template are similar. In contrast, LLM-generated benchmarks

exhibit a much broader range of complexity, sometimes incorpo-

rating unexpected constructs observed in open-source SQL cor-

pora, resulting in thousands of distinct query plans and execution

traces. Furthermore, the stochastic behavior of LLMs generates a

long-tailed distribution of queries, with some containing up to 38

operators – a characteristic common in production databases but

rarely seen in traditional benchmarks.

Using our methodology, we also contribute SQLStorm v1.0, a

concrete benchmark designed to be both comprehensive and chal-

lenging for modern database systems, built on the StackOver�ow

dataset, available in three sizes (1 GB, 12GB, and 220GB). For this

�rst version, we employ OpenAI’s GPT-4o-mini model to generate

a diverse set of SQL queries tailored to the StackOver�ow schema.

This constitutes a rich, realistic dataset alongside an extensive query

set that spans a wide array of SQL constructs. The sheer volume

of queries (over 22MB) not only ensure broad SQL pattern cover-

age but also makes it nearly impossible to optimize for individual

queries. TPC-H, in particular, allows for per-query chokepoint anal-

ysis and hand-optimized implementations, as it contains only 22

query templates [10, 14, 16].

As the name suggests, SQLStorm is designed to stress-test data-

base engines across multiple dimensions, including functionality,

error handling, optimization, and execution. The benchmark sup-

ports several key use cases:

Optimizer Stress Testing: The extensive query set exposes

weaknesses in query optimizers by incorporating a broad

mix of simple, complex, and edge-case queries.

Cardinality Estimation: SQLStorm challenges cardinality es-

timation techniques on real-world data with complex queries

and a large set of relational operators.

Performance Regression Testing: SQLStorm’s extensive and

stable query set enables developers to track performance

across versions, ensuring reliability as systems evolve.

Scalability Analysis: With datasets spanning three orders of

magnitude in size, the benchmark enables systematic evalu-

ation of database scalability.

Comparative Benchmarking: SQLStorm facilitates head-to-

head comparisons of database systems.

Query Optimization Mining: Large relative performance dif-

ferences between systems often highlight missing query

optimization rules in the slower system.

Bring your own data: SQLStorm can be applied to any dataset,

allowing users to generate custom benchmarks.

By leveraging LLMs for benchmark generation, SQLStorm repre-

sents a paradigm shift in SQL benchmarking –moving beyond static,

expert-designed queries toward a scalable, adaptable methodology

that better re�ects real-world workloads.

The rest of this paper is organized as follows: We begin by re-

viewing related work in Section 2. Next, Section 3 introduces the

SQLStorm methodology and details how LLMs can be used to ef-

�ciently generate large-scale benchmarks. We then present and

analyze the SQLStorm v1.0 dataset and queries. Following that,

Section 4 explores practical use cases for SQLStorm. Finally, we

conclude Section 5 and discuss future directions.

2 RELATED WORK

There is a large body of work on human-expert crafted database

benchmarks. On the industrial side, the most important have been

the e�orts of TPC [20]. Good performance on TPC-H/-DS and

TPC-C are now primary targets to show that a new analytical re-

spective transactional database systemmasters the basic techniques

required to enter the (mature) database market. While these well-

understood [10, 16, 53] benchmarks exercise execution engines

reasonably well, they fail to address crucial optimizer problems

like join ordering due to their small schemas, limited queries, and

uniform data distributions. JCC-H [9] and DSB [15] extend exist-

ing benchmarks by incorporating complex correlations and skew

to stress systems. From the academic side, JOB [30] and its vari-

ants [25, 63] introduced complex join query patterns on the real-life

IMDB dataset with skewed and correlated data distributions, help-

ing spur recent e�orts to improve query optimization. However,

the decision to keep the query sets in these benchmarks small and

hence understandable for humans naturally limits the coverage of

complex structures.

Previous benchmarks with a large set of realistic queries, most

prominently, did so by distilling real workloads – consisting of data

schemas and query logs – into synthetic equivalents [13, 26, 41, 57].

These methodologies, while valuable, only work for database teams

that already have access to such customer-donated workloads. Also,

real-life workloads [56, 60] are typically dominated bymany simpler

queries. Hence, a sample from those may not adequately cover the

space of complex, large, or even outlandish queries that mature

database systems are expected to handle robustly.

SQLStorm uses the Stack Over�ow datasets – a decision also

followed by STATS-CEB [18] and Stack [36], whose query set con-

sists of 100 human-generated queries. These queries are relatively

simple and cover only a small fraction of database functionality

exercised by SQLStorm. The only existing database benchmark,

to our knowledge, that exploits LLMs to generate queries, is the

Surprise Benchmark [7] – however, it generates batches of only 5

queries incrementally. A �nal relevant �eld is database testing and

database fuzzing [44]. We tried using SQLSmith [45], and while it

can generate many queries quickly, these lack credible semantics

and, consequently, relevant operator and expression patterns.

Large language models have been investigated for a variety

of database-related tasks [31, 70]. Given their capabilities as cod-

ing assistants, they are naturally suited for text-to-SQL transla-

tion [19, 32, 54, 68]. However, researchers are also exploring deeper

integration of LLMs into data systems, including applications such

as database tuning [12, 27, 33, 55], query optimization [5, 50, 64],

query rewriting [34, 35, 48], data cleaning [40, 58], and diagnostic

tools [69].

3 SQLSTORM

Existing benchmarks like TPC-H and TPC-DS are widely used

to evaluate the performance of database systems. However, these

benchmarks have several limitations: (a) the query sets are relatively



small and contain at most a hundred query templates, (b) the queries

only use a fraction of the SQL standard and do not include more

complex constructs like recursion, arrays, or JSON, and (c) the

benchmarks use synthetic data that fail to represent real-world

scenarios. Our novel SQLStorm methodology uses a real-world

dataset and large-scale query sets to address these limitations.

This section describes how SQLStorm generates database bench-

marks using LLMs. The process can be divided into four steps:

(1) Query Generation: We use OpenAI’s GPT-4o-mini model

to generate SQL queries based on user-de�ned prompts.

(2) Query Rewriting: We rewrite the generated queries to in-

crease compatibility and remove duplicates.

(3) Query Selection: SQLStorm relies on PostgreSQL, Umbra,

and DuckDB to identify parsable and executable queries.

(4) Complexity Classi�cation: We classify the generated SQL

queries based on their complexity and the features they use.

3.1 The StackOver�ow Dataset

The Stack Exchange network is a valuable knowledge base for tech-

nical topics with millions of questions, answers, and comments.

The StackOver�ow website, in particular, is a popular platform for

asking and answering programming-related questions [4]. Stack

Exchange makes data dumps of their network available under the

Creative Commons BY-SA 4.0 license, allowing us to use the data

for research purposes. Compared to other real-world datasets, like

IMDB [30], the Stack Exchange data dumps contain more than

100GB of data, and di�erent sizes are available for download. This

allows for a scalable and challenging benchmark for modern ana-

lytical database systems.

We downloaded three datasets in di�erent sizes from the Stack-

Over�owwebsite [23], theMathematics Stack Exchange (Math) [22],

and the Database Architects Stack Exchange (DBA) [21]. The data

dumps contain all the questions, comments, votes, and users up to

the 3rd of October 2024. The extracted CSV from the StackOver-

�ow website is the largest, with 240GB; the other two datasets are

smaller and contain only 13.8 GB and 1.26 GB, respectively. Instruc-

tions for downloading a newer version of the dataset can be found

here [3]; we provide scripts to convert the dumps to CSV �les. In

addition, the database schema and documentation are also avail-

able online at [1]. We make the extracted datasets and the schemas

available for download along with the SQLStorm benchmark.

The dataset consists of 13 tables, 5 of which encode enum types

and are the same size for all datasets. The remaining 8 relations

contain the actual data and scale with the dataset size. Table 1 lists

their size and the number of records for SQLStorm-220 (StackOver-

�ow) the largest of the three datasets with 220GB. The two smaller

datasets SQLStorm-1 (DBA) and SQLStorm-12 (Math) consist of

3.1M rows with 1.2 GB and 39.6M rows with 12.6 GB, respectively.

The Users and Badges tables model the users and the badges they

have earned. The Posts and Comments tables contain the website’s

actual content, while the PostHistory table stores the edit history.

The PostLinks, Tags, and Votes relations store further metadata for

the posts. In addition, the �ve tables not listed — PostTypes, PostHis-

toryTypes, CloseReasonTypes, VoteTypes, and LinkTypes — model

Table 1: The number of rows and (uncompressed) binary

size of the Stack Over�ow dataset. The last part of the table

reports how many columns with the data type exists and

the fraction of space they occupy on SQLStorm-220. Text

columns consume more than 200GB.

Table #Rows Size Integer Date Text

Users 26.1M 2.2GB 6 (30.3 %) 2 (17.3 %) 5 (52.3 %)
Badges 52.9M 1.5GB 4 (37.1 %) 1 (27.0 %) 1 (36.0 %)
Posts 60.2M 71.6 GB 11 (3.3 %) 5 (3.1 %) 6 (93.6 %)
Comments 91.0M 16.5 GB 4 (8.2 %) 1 (4.1 %) 3 (87.7 %)
PostHistory 161.9M 122.7 GB 4 (1.7 %) 1 (1.0 %) 5 (97.3 %)
PostLinks 6.5M 0.2GB 4 (69.2 %) 1 (30.8 %) 0 (0.0 %)
Tags 66.0 K 1.9MB 6 (61.0 %) 0 (0.0 %) 1 (39.0 %)
Votes 242.4M 5.9GB 5 (69.2 %) 1 (30.8 %) 0 (0.0 %)

Total 641.1M 220.5 GB 44 (5.1 %) 12 (3.1 %) 21 (91.8 %)

enum values. The database schema contains 19 foreign key rela-

tionships, including self-references, allowing complex join graphs.

Every table has a 32-bit integer as primary key.

We chose the three datasets as their size is in di�erent orders of

magnitude. SQLStorm-12 is roughly 10× larger than SQLStorm-1,

while SQLStorm-220 is almost 20 times larger than the Math dataset.

Note that the datasets do not scale perfectly linearly; for example,

the number of users grows only by 5× between the smallest scale

factor and SQLStorm-12, while the number of posts and comments

is 20× larger. This characteristic makes cardinality estimation and

query optimization more interesting as the data’s scale and distri-

bution change. Alternatively, �ltering records by creation date can

reduce the 220GB StackOver�ow dataset to smaller scale factors.

Over the last 17 years, the dataset has grown by 5GB to 20GB per

year, scaling smoothly from a few gigabytes to two hundred while

retaining real-world characteristics.

Next, we investigate which data types are used and their storage

size. Table 1 reports the number of integer, date, and text columns,

including their size on SQLStorm-220. 44 of the 77 columns are

numerical, mostly 32-bit and 16-bit integers for encoding primary

and foreign key relationships or counters. However, these columns

account only for 5.1 % of the total data size. Most of the data is

stored in text columns, which make up for almost 92 % of the con-

sumed space, even though only 27% of columns use a character

data type. The longest text contains 116,293 characters, while the

average string length is 338 characters. This distribution matches

the observations from real-world data where variable-sized strings

are dominant [39, 49, 56, 59]. Furthermore, the strings also contain

Unicode characters; synthetic benchmarks like TPC-H and TPC-DS

lack these characteristics.

3.2 Query Generation

Large language models are trained on a vast amount of data to pro-

duce human-like output and solve complex tasks. This includes pub-

lic source code or questions from programming-related platforms

like StackOver�ow [8, 67]. The 2024 StackOver�ow Developer Sur-

vey reports that SQL is the second most popular programming

language among professional developers [2]. As a result, LLMs

have seen many programming problems and solutions, including



Table 2: The prompts used to generate the query set on the StackOver�ow dataset. Besides the prompt, we also include the

database schema in the request. The table also shows the number of queries that pass each step of the selection process; queries

from simple prompts are cheaper and more likely to be selected.

Prompt (GPT-4o-mini) Parse 1 Parse 2 Exec. Yield Cost

P1 Generate an interesting and elaborate SQL query for performance benchmarking, potentially including

constructs such as outer joins, (correlated) subqueries, CTEs, window functions, set operators,

complicated predicates/expressions/calculations, string expressions, and NULL logic.

1927 2690 2533 50.7 % $2.38

P2 Generate an interesting and elaborate SQL query for performance benchmarking. 2472 3461 3196 63.9 % $2.19

P3 Generate a SQL query for performance benchmarking. 3188 4205 3791 75.8 % $1.83

P4 Generate a simple SQL query for benchmarking. 3343 3694 3690 73.8 % $1.54

P5 Generate an interesting and elaborate SQL query for performance benchmarking, potentially including

constructs such as outer joins, (correlated) subqueries, CTEs, window functions, set operators,

complicated predicates/expressions/calculations, string expressions, and NULL logic. Incorporate

obscure semantical corner cases and unusual or even bizarre SQL semantics.

1430 2060 1848 37.0 % $2.72

P6 Generate an interesting and elaborate SQL query for benchmarking string processing. 1895 2676 1987 39.7 % $2.41

P7 Generate an interesting and elaborate SQL query for performance benchmarking, potentially including

constructs such as outer joins, (correlated) subqueries, (recursive) CTEs, window functions, set

operators, complicated predicates/expressions/calculations, string expressions, and NULL logic.

951 1432 1206 24.1 % $2.66

Total 15206 20218 18251 52.1 % $15.73

SQL. Therefore, asking an LLM for random queries will sample the

real-world distribution of queries it was trained on and produce a

realistic workload.

OpenAI and Anthropic provide batch APIs, allowing to run the

models in an asynchronous fashion and reduce cost by 50%. This al-

lows for fast, scalable, and cost-e�ective generation of large sets of

SQL queries. Not all queries will be syntactically correct or semanti-

cally meaningful, but the same is true for queries written by humans.

Our selection process will �nd useful queries for benchmarking

and remove the rest. The queries’ semantics are of secondary im-

portance in an analytical benchmarking context, provided they

process a su�cient volume of data and incorporate various SQL

features, such as complex joins, window functions, recursion, and

other advanced operations.

Since LLMs are a black box, �nding the right prompt is more of

an art than a science. We tested several prompts and found that the

following prompt provides good results and diverse SQL queries:

P1 Generate an interesting and elaborate SQL query for performance

benchmarking, potentially including constructs such as outer

joins, (correlated) subqueries, CTEs, window functions, set

operators, complicated predicates/expressions/calculations,

string expressions, and NULL logic.

From our experience, adding hints to the prompt can help the

model explore a broader range of possibilities. However, sometimes

hints may limit the search space, causing the LLM to over-commit

on the explicitly enumerated features. It requires careful consid-

eration of what information is given to the model. However, we

must provide the LLM with enough details to generate correct and

meaningful queries. To achieve this, we also included the database

schema as CREATE TABLE statements as a su�x to the main prompt:

PS Do not explain the query, only output one SQL query. Use

the following StackOverflow schema: CREATE TABLE ...

The schema includes foreign key relationships and primary keys,

allowing the LLM to generate queries that join multiple tables and

�nd the correct join conditions. Additionally, we added some com-

ments to the schema, clarifying the structure of the database and

the �ve enum tables.

While P1 generates a diverse set of queries comparable to TPC-

DS in terms of complexity, it has two signi�cant drawbacks: (1) The

queries are more complex than the majority observed in real-world

workloads [56]. Hence, simple statements using basic SQL features

and accessing only one or two tables should also be part of the

benchmarks. (2) The prompt does not cover advanced SQL con-

structs like deeply correlated subqueries or recursive CTEs. While

these constructions are not prevalent in actual workloads, they are

still important for evaluating the system’s robustness and testing

edge cases that database engineers might not have considered.

We modi�ed the prompt step-by-step to generate simpler and

more complex queries. Table 2 lists the �nal seven prompts we

used for creating SQLStorm. P2 - P4 gradually remove hints from

the prompt to make the statements simpler. P5 and P7 instruct

the LLM to generate unusual SQL constructs to test corner cases

and recursion. As strings are prominent in real-world datasets

and workloads, P6 explicitly asks for queries focused on string

operations. We call OpenAI’s GPT-4o-mini model for each prompt

with a batch of 5,000 requests. A batch is processed within one day

(typically much faster) and costs $2 on average. The cost between

batches di�ers, as simple prompts produce shorter queries and

require fewer input and output tokens than complex prompts.

Next, let us discuss two example queries generated by the LLM

using the prompts P1 and P4. The �rst query in Figure 2 �nds all

users with posts from the last year and outputs statistics about

their badges and closed posts. The second query retrieves the top

10 highest-scoring posts, along with the author and comments. We

can observe a signi�cant di�erence in the complexity: while the �rst

query uses window functions, �ltered aggregations, and multiple

CTEs, the second only uses simple SQL constructs.

3.3 Query Cleaning & Rewriting

Using our generation process, we obtained 35,000 queries on the

StackOver�ow dataset. However, these queries include duplicates,

references to the current time, or comments where the LLM tries

to explain the query. Sometimes, the output also contains multiple



1 WITH RankedPosts AS (

2 SELECT p.Id AS PostId, p.Title, p.CreationDate, p.Score,

3 p.ViewCount, p.OwnerUserId, u.Reputation,

4 ROW_NUMBER() OVER (PARTITION BY p.OwnerUserId

5 ORDER BY p.CreationDate DESC) AS rn

6 FROM Posts p JOIN Users u ON p.OwnerUserId = u.Id

7 WHERE p.CreationDate >=

8 (CAST('2024-10-01' AS DATE) - INTERVAL '1 year')),

9 UserBadges AS (

10 SELECT b.UserId,

11 COUNT(*) FILTER (WHERE b.Class = 1) AS GoldBadges,

12 COUNT(*) FILTER (WHERE b.Class = 2) AS SilverBadges,

13 COUNT(*) FILTER (WHERE b.Class = 3) AS BronzeBadges

14 FROM Badges b GROUP BY b.UserId),

15 ClosedPostCount AS (

16 SELECT ph.UserId, COUNT(*) AS ClosedPosts

17 FROM PostHistory ph

18 WHERE ph.PostHistoryTypeId = 10 GROUP BY ph.UserId)

19 SELECT rp.PostId, rp.Title, rp.CreationDate, rp.Score,

20 rp.ViewCount, rp.Reputation,

21 COALESCE(ub.GoldBadges, 0) AS GoldBadges,

22 COALESCE(ub.SilverBadges, 0) AS SilverBadges,

23 COALESCE(ub.BronzeBadges, 0) AS BronzeBadges,

24 COALESCE(cpc.ClosedPosts, 0) AS ClosedPosts,

25 CASE WHEN rp.Score > 100 THEN 'High Score'

26 WHEN rp.Score BETWEEN 50 AND 100 THEN 'Medium Score'

27 ELSE 'Low Score' END AS ScoreCategory

28 FROM RankedPosts rp LEFT JOIN UserBadges ub

29 ON rp.OwnerUserId = ub.UserId

30 LEFT JOIN ClosedPostCount cpc

31 ON rp.OwnerUserId = cpc.UserId

32 WHERE rp.rn = 1

33 ORDER BY rp.Score DESC, rp.ViewCount DESC;

Figure 2: Complex query generated by prompt P1. As in-

structed, the prompt constructs outer joins, window func-

tions, and complicated expressions, like �ltered aggregates.

1 SELECT U.DisplayName AS UserName, P.Title AS PostTitle,

2 P.Score AS PostScore, C.Text AS CommentText,

3 C.CreationDate AS CommentDate

4 FROM Posts P JOIN Users U ON P.OwnerUserId = U.Id

5 LEFT JOIN Comments C ON P.Id = C.PostId

6 WHERE P.PostTypeId = 1

7 ORDER BY P.Score DESC LIMIT 10;

Figure 3: Simple query generated by prompt P4. Without

additional instructions, GPT-4o-mini generates queries with

few joins and no complex SQL constructs.

queries or DML statements instead of the expected SELECT state-

ments. In order to make the queries suitable for performance bench-

marking, our next step is to clean and rewrite the LLM’s output.

We start by deleting duplicated queries; on the StackOver�ow

dataset, we found 1287 duplicates, all generated by the prompt

P4. Next, we remove comments in the query text and extract the

�rst SELECT statement if multiple are present. Furthermore, we re-

place current_time and similar functions with a �xed timestamp

to ensure the queries are reproducible. For example, the query in

Figure 2 originally used current_date in line 7; we replaced it with

a �xed date, 2024-10-01 to prevent empty scans in the future.

After rewriting the queries, we test how many can be parsed by

PostgreSQL, Umbra, and DuckDB. We consider a query parsable

if at least two of the three systems can execute the query on an

empty database. Table 2 reports the number of parsable queries for

each prompt under Parse 1. Unsurprisingly, the simple prompts P3

and P4 yield more correct queries. More than 60% of the queries

Table 3: The number of queries that are parseable and exe-

cutable by PostgreSQL , Umbra , and DuckDB . Almost

half of the initial queries (Parse 1) are compatible with two

systems. After rewriting the queries (Parse 2), even more

queries can be parsed by . The queries that pass the

SQLStorm selection process are highlighted in green.

∅

Parse 1 9427 5644 32 103 166 381 1875 16085
Parse 2 17016 2157 39 137 144 379 1138 12703
Exec. 10910 1164 24 2747 63 3312 31 1967

are parsable, while for complex prompts like P5 and P7, only less

than 30 % qualify. On average, 43 % of the queries can be parsed.

We noticed that GPT-4o-mini primarily generates queries in the

PostgreSQL dialect. This may be explained by the fact that Post-

greSQL is widely used in open-source projects and its dialect follows

the SQL standard more closely than the dialects of some commer-

cial systems. Table 3 indicates that all three systems together can

parse 9,427 queries. However, several queries are incompatible with

DuckDB: 5644 queries only run in PostgreSQL and Umbra. The

two systems implement a relatively obscure feature from the SQL

standard that allows them to omit columns from the group by

clause if they are functionally dependent on another column in the

clause, which is used by the LLM. DuckDB, in contrast, can parse

1875 queries that neither PostgreSQL nor Umbra can execute. For

instance, DuckDB supports SUM aggregations on boolean values.

Ideally, we want to have queries that run in all three systems and

avoid dialect-speci�c constructs. In order to make queries compati-

ble between systems, we use the LLM again to rewrite the query

text with the following prompt:

PF Make the following PostgreSQL query more compatible with

different SQL dialects. The query might contain ’::’ casts,

rewrite them to standard SQL. Remember to put all ungrouped

columns and columns that appear in window functions into

the group by clause. Do not explain the query, only output

the converted query.

The prompt instructs the LLM to make the query compatible with

standard SQL.We speci�cally address PostgreSQL’s shorthand casts

and missing attributes in GROUP BY clauses, as these are common

patterns. After the prompt, the query text is appended.

In the second pass, GPT-4o-mini rewrites 24,692 queries; these

queries could not be parsed by all three systems or contain a short-

hand cast. It �xes several incompatibilities: adding missing columns

into the group by clause, rewriting short hand casts to function-

style casts, and converting boolean expressions in SUM aggregations

to integer values using a case expression. In addition, the LLM

was also able to �x several problems we did not mention in the

prompt. As a result, after the second pass, 20,218 queries qualify, as

shown in Table 2 (Parse 2), an increase of more than 5,000 queries.

More importantly, the number of queries that all three systems can

parse almost doubles to 17,016 queries (cf. Table 3), and queries

not compatible with any system are reduced by 20 %. However, 869

queries became incompatible after the LLM attempted to �x them;

we revert these queries to the original version.

Cleaning and rewriting makes the queries suitable for a bench-

mark. Rewriting queries with the same LLM signi�cantly improves



the compatibility with di�erent systems and �xes some errors in

the queries. The cost of this step is similar to generating the queries:

the �rst LLM pass costs $10, and the second pass $6.

3.4 Query Selection

After rewriting, we select the �nal set of queries that will be used

for the benchmark. First, we remove all queries that cannot be

parsed by at least two systems, then test if each query runs on the

SQLStorm-1 dataset. The dataset contains roughly 1GB of data,

and a query is executable if one of the three systems �nishes it in

under 1 second. We require two systems to be able to parse the

query, as we want to avoid system-speci�c language constructs. For

execution, one system is su�cient: if a query runs in one system but

times out in another, it indicates that the system does not optimize

the query well and is interesting for performance evaluation. The

timeout eliminates queries that are too expensive to execute, such

as queries with huge intermediate results due to cross-products.

Table 2 lists the results of this step: 18,251 of the 20,218 queries

from the parsing step qualify and remain in the benchmark. Yield

rates in the di�erent batches di�er signi�cantly, while from our

�rst prompt, P1, 50 % of the queries remain, only 24 % of the queries

from P7 are parsable and executable. P3 and P4 have the highest

yield rates; more than 70% of the queries qualify. Recall that P4

generated 1287 duplicated queries, which we eliminated during the

cleaning step. If we do not consider these duplicates, the prompt

yields more than 99 % of the queries.

Of the 17,016 queries that were parsable by all three systems,

10,910 queries run in all three systems, see Table 3. PostgreSQL’s

query engine is slower than Umbra’s and DuckDB’s, and more

queries time out. Consequently, 2,747 queries can only be executed

by Umbra and DuckDB, and 3,312 queries only by Umbra.

Admittedly, developing this benchmark had a major impact on

Umbra’s compatibility, prompting us to implement missing features

and resolve several bugs. Section 4.3 analyzes our changes to Umbra

caused by SQLStorm in more detail. To summarize, the SQLStorm

methodology generates a large-scale analytical benchmark at a

negligible cost. We spend less than $16 and obtain over 18,000

queries compatible with PostgreSQL, Umbra, or DuckDB.

3.5 Query Validation & Correctness

In this chapter, we evaluate the correctness of the generated queries

and assess whether they are suitable for result validation. We fo-

cus on two main aspects: whether the generated queries address

real-world scenarios and whether they are semantically correct. In

addition, we o�er a validation set to verify the correctness of the

results, similar to benchmarks like TPC-H and -DS.

To evaluate the correctness, we randomly sampled 100 queries

from the �nal set and manually categorized them into three groups:

(1) correct queries accurately join and �lter the data, producing se-

mantically meaningful and logically sound results, (2) almost correct

queries are accurate in terms of join and �lter conditions but contain

minor errors, e.g., using a count where a distinct count would be

semantically more meaningful, and (3) incorrect queries are seman-

tically �awed due to incorrect or missing join conditions, empty

�lter criteria, or erroneous computations. A manual inspection of

Table 4: Number of queries with identical results in at least

two systems. In some cases, one system di�ers from the other

two; for example, DuckDB returns di�erent results than Post-

greSQL and Umbra for 1,932 queries ( - ). Additionally,

5,664 queries yield inconsistent outputs across all systems.

match in ≥ 2 systems one system di�ers from the other
- - - ∅

9519 86 685 1932 257 108 5664

the sampled queries revealed the following distribution: 53% of the

queries are correct, 34% almost correct, and 13% incorrect.

Manually classifying the queries is tedious; therefore, we use a

heuristic to check the queries automatically. We inspect the query

plan generated by Umbra and test if all joins use one of the 19 for-

eign key relationships or reasonable attributes such as user names.

69 % of the queries join only along foreign keys, and 11% con-

tain reasonable joins. The remaining 20% of the queries contain

incorrect or missing join conditions. However, this automatic clas-

si�cation reports some false positives as queries are semantically

meaningful, even though they use an incorrect join attribute or per-

form a cross-join. For the manually reviewed sample, eight queries

were falsely classi�ed as incorrect by the heuristic.

Combining the two analyses, we conclude that the majority of

the queries are correct or almost correct; however, a notable portion

contains minor or, occasionally, signi�cant errors. Nevertheless,

we choose to retain these queries, as errors occur in real-world

scenarios as well: Users interactively write and re�ne SQL queries

step-by-step, leading to underspeci�ed queries, e.g., missing join

or �lter conditions [59]. Moreover, AI assistants are becoming in-

creasingly common in the industry, helping users generate SQL

snippets, optimize existing queries, and automatically correct er-

rors [6, 46, 51]. Recent research indicates that while human experts

outperform LLMs in SQL query correctness, they still make mis-

takes on more than 7% of tasks on the BIRD dataset [29, 32]. This

error rate rises for less experienced users [56], suggesting that a

query set containing mistakes more accurately re�ects reality than

a perfectly error-free set. Machine-generated SQL and non-expert

written queries are common in practice and lead to erroneous or

underspeci�ed queries [56, 59].

A manual review of the queries shows that they cover various

realistic analytical tasks. Common patterns include (a) ranking

users, posts, or comments based on various scoring metrics, often

requiring complex computations and multi-table joins; (b) retriev-

ing recent records from di�erent tables; (c) enriching tables with

additional statistics or detailed information; and (d) aggregating

data across multiple tables to produce summaries or reports. In

our analysis, we found that many queries answer similar questions.

However, they di�er in part greatly in their implementation, the

used attributes and tables, and the SQL constructs.

Lastly, we assess the suitability of the generated queries for

result validation. We computed the result sets for all queries on

the three systems: 12,587 produce identical results in at least two

systems, while the remaining 5,664 exhibit inconsistent or non-

deterministic behavior. Table 4 shows the number of queries with

matching outputs for di�erent combinations of the three systems.



We observe that DuckDB di�ers from PostgreSQL and Umbra more

often because Umbra closely follows PostgreSQL’s semantics [52].

This highlights subtle di�erences in SQL interpretation and imple-

mentation across systems; such queries are particularly valuable to

database engineers as they expose bugs and incompatibilities.

SQLStorm generates semantically meaningful queries that are

well-suited for result validation. Yet, it includes erroneous and

underspeci�ed queries, re�ecting the reality of machine-generated

and non-expert written SQL commonly found in practice [56, 59].

3.6 Complexity Classi�cation

SQLStorm has diverse queries, including simple ones with only a

few joins and complex queries with advanced SQL constructs. For

developing new database systems or research prototypes, support-

ing all queries upfront will be challenging. We therefore classify

the queries into three complexity classes: low, medium, and high.

Low complexity queries can be supported by implementing basic

operations and require only a small subset of the SQL standard. Re-

searchers can use them to evaluate prototype systems with limited

functionality. The medium complexity queries require additional

operators such as window functions, set operations, and outer joins.

The high complexity class include the remaining queries, demand-

ing advanced features such as recursion, arrays, json, and complex

query unnesting (e.g., mark joins [43]).

We use the matrix in Table 5 to determine the complexity of a

query based on the execution traces collected by Umbra. For in-

stance, medium complexity queries only use operators from the low

complexity class in addition to Window and SetOperation. Simi-

larly, the expressions must not use complex regex or json functions.

We also limit the number of joins and aggregations, as deeper query

trees require sophisticated join ordering and cardinality estimation

for e�cient execution. If a query does not ful�ll one condition, it

falls into a higher class.

We developed the assignment based on how many queries qual-

ify in each category and our experience developing the required

features. The medium complexity class is the largest with 10,195

queries, followed by 4,596 simple queries and 3,460 high complex-

ity queries. Table 6 shows the average number of operators per

Table 5: Matrix to determine the complexity of a query.

Complexity low medium high

Operators

TableScan, Join,

GroupBy, Select,

Map

Window,

SetOperation

Iteration,

RegexSplit,

ArrayUnnest

Expression

Categories

comparison, cast,

case, arithmetic

(simple)

nulls, strings, date,

array, arithmetic

(complex)

regex, json

Types

bool, int, text,

numeric, �oat,

date, timestamp

arrays
record, json,

timestamptz

Join Types inner, outer semi, anti, single mark

#Joins <= 3 <= 8

#GroupBy <= 1 <= 3

Table 6: Average number of operators, expressions, and query

text size. Basic relational operators are present in all bench-

marks, whereas advanced features like recursion (Iteration),

arrays, regexes, and JSON are unique to SQLStorm.

SQLStorm TPC Redshift [56]
low med. high -H -DS [60s,∞) Total

Query Text 334 1168 1347 472 1370 n.a. 4396

Operators 6.42 14.41 22.08 9.09 19.27 10.74 3.50
TableScan 2.87 4.94 5.75 3.68 7.22 6.51 2.03
Join 1.87 4.17 6.20 2.82 6.30 2.28 0.53
Sort 0.99 1.03 1.10 0.82 0.83 0.34 0.12
GroupBy 0.68 2.33 4.01 1.32 2.08 0.72 0.52
Select 0.004 0.97 1.78 0.09 1.17 n.a. n.a.
Window 0 0.64 1.01 0 0.20 0.2 0.04
SetOperation 0 0.004 0.003 0 0.28 n.a. n.a.
ArrayUnnest 0 0 0.49 0 0 n.a. n.a.
Iteration 0 0 0.05 0 0 n.a. n.a.
RegexSplit 0 0 0.001 0 0 n.a. n.a.

Expressions 6.42 29.12 35.61 12.86 37.51 n.a. n.a.
string modif. 0 0.13 0.77 0.23 0.18 n.a. n.a.
string match. 0 0.07 0.18 0.32 0.01 n.a. n.a.
regex 0 0 0.004 0 0 n.a. n.a.
json 0 0 0.003 0 0 n.a. n.a.

query and SQL text length in the di�erent complexity classes. As

query complexity increases, both the average query text length and

the number of operators and expressions grow accordingly. Low

complexity queries are roughly 3 times smaller regarding code and

plan size. The table also includes statistics for the TPC benchmarks:

TPC-H is, on average, more complex than the low class and simpler

than the medium class. TPC-DS is similar to the high complexity

class, except that it uses more expressions per query.

The queries from the low complexity class use fewer operators

as we limit the number of joins to 3. Sorts often appear as the last

operator in the query tree to order the output. However, in more

complex queries they are also used to select the top-k results on

intermediate computations. The Iteration operator implements re-

cursive CTEs in Umbra; 157 queries from P7 in SQLStorm use this

feature. ArrayUnnest and RegexSplit iterate through arrays/regex

matches; besides set operations, these operators are the least com-

mon. SQLStorm also features regex and JSON expressions.

van Renen et al. also report numbers on the query complexity in

their analysis of the Amazon Redshift �eet [56]. We extracted their

results from the paper to compare with SQLStorm. The queries

from the entire Redshift �eet are, on average, less complex than

those in the low complexity class. However, Redshift is closer to

the medium and high class if we only consider the long-running

queries. The average number of table scans in long-running queries

exceeds the high complexity class.

3.7 Query Diversity

SQLStorm contains a large number of queries, raising the important

question: Is the query set genuinely diverse or minor variations

of a few templates, like TPC-H and -DS? To assess the workload’s

diversity, we compute the number of unique query plans and ex-

ecution traces produced in Umbra. A query plan is unique if its



Table 7: Number of unique query plans and execution traces

recorded in Umbra on SQLStorm and TPC-H/DS.

Unique / Total SQLStorm TPC-H TPC-DS

Plans 12,384 / 18,251 30 / 44,000 256 / 51,500
→ Trees 9,869 / 18,251 24 / 44,000 154 / 51,500
→ Operators 26,667 / 267,401 153 / 416,000 1,028 / 1,317,151

Traces 10,692 / 18,251 206 / 44,000 769 / 51,500

tree structure di�ers or contains a new instance of an operator. The

tree’s shape is de�ned by the exact layout of the operators and their

operator type (e.g., join, map, groupby, etc.). We consider additional

details for operator instances, such as the number of attributes used,

the speci�c expressions evaluated, and the join or aggregation type.

Umbra’s optimizer produces 18,233 plans with 267,401 operators on

SQLStorm. Among these are 9,869 distinct query trees and 26,667

unique operator instances, resulting in 12,384 unique queries. Com-

pared to TPC-H and TPC-DS, SQLStorm o�ers greater query plan

diversity. The template-based benchmark corpora cannot match

the textual and structural diversity of LLM-generated queries.

For execution traces, the trend is similar: Umbra records 10,692

distinct traces, while TPC-H and TPC-DS have 10× fewer despite

having almost 3× more queries (44 K and 51.5 K, respectively). The

traces capture dimensions such as runtime, memory usage, number

of scanned rows, allocated memory, and operator counts.

Snow�ake and Redshift published execution traces for their cloud

data warehouses [56, 60]. Figure 4 compares the runtime distri-

bution of SQLStorm to these traces. Unlike arti�cial benchmarks,

which lack a broad distribution and exhibit more pronounced spikes,

SQLStorm’s runtime distribution more closely resembles real-world

patterns. Snow�ake and Redshift report queries running for over

10 hours; for practicality, we limited execution time to 10 minutes

in our measurements. Nevertheless, some SQLStorm queries hit

this limit, so the workload also includes long-running queries.

The SQLStorm methodology generates queries with diverse

query plans and execution traces. We observe complex queries

with up to 61 operators and 72 expressions for the StackOver�ow

dataset. The queries cover a wider range of features than standard

benchmarks like TPC-H or TPC-DS and stress query engines in

multiple dimensions, resulting in more than 10,000 unique query

plans and execution traces. The runtimes range from milliseconds

to several minutes, similar to Redshift and Snow�ake.

3.8 Exploring Other Large Language Models

The state of the art for LLMs is changing rapidly: new models are

releasedmonthly, and funding has increased eightfold between 2022

and 2023, reaching $2.52 billion [37]. Training data sets, the number

of parameters, the context window, and underlying hardware all

grow rapidly. We anticipate signi�cant advancements over the next

decade, and the models’ capabilities will continue to improve. The

concrete benchmark we present in this paper is just the �rst version,

and we plan to extend it in future releases. Upcoming models and

prompt tuning will yield new queries with features not yet covered

and increase the query text size. The SQLStorm methodology is

the �rst step into systematically exploiting LLMs and Foundation

Models for database benchmarking.
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Figure 4: Runtime distribution of SQLStorm, compared to

real-worldworkloads (Redset & Snowset) and arti�cial bench-

marks (TPC-H & -DS).

Many companies o�er closed and open-source models: OpenAI

(GPT), Anthropic (Claude), Meta, and Google (Gemini), to name

only a few. The models di�er in their training data, number of

parameters, and capabilities and are optimized for di�erent tasks

and price points. When we generated the queries (October 2024

through February 2025), OpenAI’s GPT-4o-mini model was the

most cost-e�ective LLM in terms of query yield. Table 8 compares

LLMs for generating SQL benchmark queries.

The cheaper models, GPT-4o-mini, Claude 3.0 Haiku, and Claude

3.5 Haiku, produce query sets with similar complexity, i.e., the av-

erage number of operators is almost identical. The latest Haiku

model achieves the highest query yield but is three times more ex-

pensive than GPT-4o-mini. We also include the older GPT-3.5-turbo

model in the comparison. While many of the model’s generated

queries qualify, the queries are also signi�cantly shorter and less

complex; the results are comparable to P3 or P4 on GPT-4o-mini.

Even though Anthropic’s models are priced higher than OpenAI’s

GPT-4o-mini, the overall costs are comparable, as Claude supports

prompt caching, reducing the price by roughly two-thirds.

On average, the GPT-4o queries use two more operators than the

other models. Claude 3.5 Sonnet generates the highest number of

operators yet. However, as the two models generate more complex

queries, they are also more expensive. GPT-4o and Claude 3.5 Son-

net cost 10 times more than GPT-4o-mini. Therefore, we decided to

use GPT-4o-mini since it is the most cost-e�ective model.

To our surprise, Anthropic’s Claude 3.5 Sonnet model performs

worst of all LLMs regarding the number of qualifying queries. Only

15.4 % of the 1,000 generated queries pass the selection process and

can be executed by one of three database systems. We found that

the queries generated by the model often contain the same error:

Sonnet combines aggregations and window functions but “forgets”

to add the columns used by the window to the GROUP BY clause.

Table 8: Comparison of OpenAI’s GPT and Anthropic’s

Claude models for generating benchmark queries using P1

(cf. Table 2). While GPT-4o-mini is the most cost-e�ective,

newer and larger models generate more complex queries.

Model Yield Cost Avg length Avg ops.

GPT-3.5-turbo (2024-01-25) 66.7 % $3.44 620 B 8.7
GPT-4o-mini (2024-07-18) 49.7 % $2.38 1221 B 14.1
GPT-4o (2024-07-18) 52.3 % $26.27 1342 B 16.2
Claude 3.0 Haiku (2024-03-07) 38.1 % $3.29 1300 B 13.4
Claude 3.5 Haiku (2024-10-22) 57.9 % $6.73 1110 B 13.6
Claude 3.5 Sonnet (2024-10-22) 15.4 % $30.48 1575 B 20.9



Prompt PF attempts to resolve this issue in a second pass through

GPT-4o-mini. However, the queries are too complex for the small

model to �x the mistakes. Rewriting the queries with the Claude 3.5

Sonnet might be more e�ective but increases the cost signi�cantly.

SQLStorm v1.0 solely relies on GPT-4o-mini for query generation.

However, we observe a trend that newer and larger models are

capable of generating more complex queries. For example, GPT-4o

generates twice as many operators as GPT-3.5-turbo and doubles

the code size. Claude 3.5 Sonnet gives an idea of the potential of the

next generation of LLMs. We will explore these models in future

releases of SQLStorm and optimize the prompts further.

3.9 Availability and Future Releases

SQLStorm serves as both a methodology and a new database bench-

mark. With this paper, we release version 1.0 of SQLStorm, includ-

ing all associated artifacts – the query sets, benchmark results, and

recorded traces – and provide scripts to run the generated queries

in more than six database systems. Additionally, we also release

the source code and prompts used to generate, rewrite, and select

queries compatible with PostgreSQL, Umbra, and DuckDB. The en-

tire process is fully automated, enabling the creation of large-scale

benchmarks without human intervention.

For future releases of SQLStorm, we plan to incorporate more

datasets, prompts, and new models to increase the workload’s di-

versity and complexity. New LLMs and prompts are selected based

on their cost, query quality, and whether they can generate queries

with new features, e.g., query tree shapes and operator instances.

We encourage other researchers and database developers to propose

datasets, prompts, or query patterns to better re�ect real-world

workloads. For instance, SQLStorm can be extended to support

graph workloads, streaming data analysis, and other domains.

4 EXAMPLE USE CASES

The SQLStorm benchmark is designed to evaluate the performance

of database systems using a real-world dataset and a realistic work-

load. In this section, we will explore various use cases for SQLStorm.

We conduct all benchmarks on a server with an AMD EPYC

9454P CPU (48 cores, 96 threads) and 384GB of RAM. We evalu-

ate four database systems implementing the PostgreSQL dialect:

Umbra, PostgreSQL, DuckDB, and Tableau Hyper. In addition, we

also test two commercial systems, DBMS X and Y, which adopt a

di�erent SQL dialect. We list the di�erent database systems and

their versions in Table 9. The database systems run in privileged

Docker containers to improve reproducibility. A Python script sends

queries to the database and measures the end-to-end latency. Ex-

cept for PostgreSQL, all systems use a columnar storage format and

implement vectorized or compilation-based query execution.

4.1 Improving Compatibility and Robustness

First, we investigate the systems’ compatibility and robustness

when executing the queries. We run all queries on SQLStorm-1

and report the number of successful and failed queries in Table 9.

Queries might fail for multiple reasons, such as syntax errors, execu-

tion failures (e.g., arithmetic over�ows, scalar subqueries with mul-

tiple results, recursion depth exceeded, etc.), timeouts (we cancel

a query if it does not �nish within 10 seconds), out-of-memory

Table 9: Database systems used for evaluating di�erent use

cases for SQLStorm. The table also reports the number of

queries each system can execute on SQLStorm-1.

System (Version) Success
Syntax
Error

Exec.
Error

Timeout
+ OOM

Crash
Di�er.
Result

Umbra (25.01) 18,165 18 34 34 0 2.0 %
→ before SQLStorm 16,068 2,053 9 5 116 3.2 %
PostgreSQL (17.0) 15,731 87 13 2,420 0 0.9 %
DuckDB (1.2.0) 15,208 2,164 168 711 0 15.5 %
Hyper (0.0.21200) 13,316 4,727 37 123 48 1.7 %

DBMS X 2,938 14,566 307 440 0 8.3 %
→ rewritten 12,451 3,646 1,093 1,061 0 10.3 %
DBMS Y 8,744 9,200 0 307 0 15.1 %
→ rewritten 13,138 4,647 20 442 4 25.2 %

(OOM), or fatal crashes. We consider a query fatal if it crashes the

database system or the system is not responsible within 100 seconds

after the query exceeds its time limit. Additionally, we report the

percentage of queries that return incorrect results, considering only

those with deterministic outputs (see Table 4).

None of the six systems can execute all queries successfully.

Umbra has the highest success rate with 18,165 queries, followed

by PostgreSQL with 15,731 queries. However, both systems still

experience syntax errors as they do not support some features other

systems do. Timeouts are common in PostgreSQL due to its slower

performance on analytical queries.We have already improved the

current version of Umbra with the SQLStorm queries. Before these

changes, Umbra failed for over 2,000 queries and crashed for 116.

For the other systems, compatibility is a bigger issue. Hyper, for

instance, fails for 15.9 % of the queries as it lacks the string_agg

and string_to_array functions. More interestingly, 48 queries

crashed Hyper, requiring a system restart to continue the bench-

mark. For the large SQLStorm-220 dataset, we also observe database

crashes in DuckDB and Umbra. Only the commercial DBMS X and

PostgreSQL are stable and do not experience any fatal queries.

While the �rst four systems can parse most queries, the commer-

cial systems struggle with the SQLStorm. Their SQL di�ers from

the PostgreSQL dialect. As a result, DBMS X has syntax errors on

more than 14,500 queries. To evaluate these systems on a large set

of queries, we rewrite the benchmark using GPT-4o-mini to the

system-speci�c dialect using the following simple prompt:

PR Convert the following PostgreSQL query to <DIALECT> syntax.

Remember to put all ungrouped columns and columns that

appear in window functions into the group by clause. Do

not explain the query, only output the converted query.

The prompt works well for both commercial systems; we replace

<DIALECT> with the system dialect name and let the LLM translate

the queries. With the rewritten queries, every system can execute

at least two-thirds of SQLStorm successfully. Of course, the LLM

might accidentally change the semantics of the query; for DBMS X,

the number of incorrect queries increases by 2%, while DBMS Y

sees an increase of 10 %. Consequently, the rewritten queries are

not guaranteed to perform the same computations as the original

queries, and comparing the runtimes requires some caution.

4.2 Evaluating Cardinality Estimation

Cardinality estimation is a crucial part of query optimization. Ac-

curate estimates are decisive for �nding a cheap and robust query



Figure 5: Estimation error in SQLStorm-1 and JOB. Each box

plot shows the error distribution for operators with the given

number of downstream operators. While underest. are more

common on JOB, overest. dominate in SQLStorm as it com-

bines di�erent operators. Accurately estimating joins alone

is insu�cient for precise cardinality estimations.

plan, as mistakes during query optimization can accumulate [11,

30, 38, 42]. In this section, we evaluate the accuracy of Umbra’s,

DuckDB’s, and PostgreSQL’s query optimizer by comparing the

estimated cardinalities from the query plans with the actual car-

dinalities. Figure 5 shows the estimation error for di�erent levels

in the query tree for the three systems. We compute the factor by

which the estimate and the exact cardinalities di�er and distinguish

between under- and overestimation. The number of nodes in all

subtrees of an operator determines the number of downstream op-

erators. For instance, while table scans have no children and their

number of downstream operators is always 0, a join operator has

two subtrees, and we sum up the number of operators in both trees.

All three systems perform reasonably well for up to three down-

stream operators, maintaining a median estimation error close to 1.

However, as the number of downstream operators increases, the

error grows as well (note the logarithmic scale). Misestimations

propagate through the tree, making estimating the cardinality for

operators higher up more challenging. For eight or more operators,

DuckDB and PostgreSQL misestimate the cardinality by at least

two orders of magnitude for the majority of queries. Umbra, in

contrast, is more robust and keeps the median error below 3 for

all depths. Nevertheless, a signi�cant fraction of the queries are

over- and underestimated by more than four orders of magnitude,

even for a few downstream operators. DuckDB experiences errors

as severe as 14 orders of magnitude.

We included the estimation errors on the Join Order Benchmark

for comparison. A di�erent pattern emerges in JOB: underesti-

mations are more common than overestimations, and misestima-

tions exceeding four orders of magnitude are less frequent. The

combination of di�erent operators, in particular, aggregations and

joins, makes cardinality estimation more di�cult on SQLStorm

and results to more extreme errors. In addition, outer joins and

incorrect join conditions skew the estimation error in Umbra and
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Figure 6: SQLStorm on Umbra and DuckDB over the last 2

years. In Oct. 24 we created SQLStorm and started �xing bugs

in Umbra (dotted line). The dashed line in the last plot shows

the geometric mean runtime on TPC-H 10GB. SQLStorm

allowed Umbra to catch up with DuckDB in terms of crashes

and it reduced the number of errors signi�cantly.

PostgreSQL towards overestimations. JOB lacks this characteristic;

it only includes inner joins and aggregations at the end of long join

pipelines, missing the complexity of real-world workloads [28].

For robust query optimization, more accurate cardinality esti-

mate algorithms are needed. SQLStorm is a good starting point for

investigating these aspects further. Large-scale benchmarks help to

identify symptomatic weaknesses and edge cases in query optimiz-

ers and cardinality estimators. Furthermore, database developers

can use SQLStorm to identify the impact of changes made in the

query optimizer on the plan quality. For instance, several lines of

recent work focus on making cardinality estimation and query pro-

cessing more robust [24, 47, 62, 65, 66]; SQLStorm can be used to

evaluate the e�ectiveness of these approaches.

4.3 Regression Testing

Given the complexity of modern database systems, regression test-

ing plays a crucial role inmaintaining the integrity and performance

of database applications [17, 61]. For example, Umbra and DuckDB

use TPC-H and TPC-DS to ensure reliability, e�ciency, and func-

tionality across versions. However, these benchmarks have limited

scope, and the small query set may not reveal all issues. SQLStorm

tests a broader range of features and unveils performance gains

and losses on a large workload.

Figure 6 investigates how the robustness and compatibility of

Umbra and DuckDB changed over time. In January 2023, Umbra

could execute only 15,102 queries on SQLStorm-1. Until Septem-

ber 2024, the number of successful queries increased to 16,067 as

we implemented more features and �xed bugs in Umbra. To our

surprise, the number of fatal queries that cause system crashes tem-

porarily increased to 232 at the start of 2024. We �xed these issues;

however, it took several months to discover and resolve them. After

introducing SQLStorm, we could �x 90 % of the crashes within one

month, and until January 2025, we resolved all fatal queries and

most of the timeouts and exceptions on SQLStorm-1. At the time

of writing this paper, only 86 queries remain that Umbra cannot

execute. SQLStorm greatly improves development speed and helps

to identify and �x issues early.
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Figure 7: Scalability of Umbra and DuckDB on SQLStorm and

TPC-DS. The dashed lines show the median runtime. Queries

in TPC-DS are closer to the median and timeouts are almost

non-existent. Scaling on SQLstorm is more challenging.

DuckDB started with 361 crashes in January 2023, and the de-

velopers constantly reduced this number as they prepared for the

major 1.0.0 release in June 2024. At that point in time, some occa-

sional crashes still occurred, and the last ones were addressed in

the latest release, 1.2.0. DuckDB is supported by a large community

that played a crucial role in identifying the bugs, even without

SQLStorm. However, queries that return with error in DuckDB

remain almost unchanged over time. Syntax errors dominate this

category: there is no immediate need for DuckDB to implement

missing PostgreSQL construct as users can adapt their queries. The

number of timeouts in DuckDB �uctuates between 550 and 700

queries. SQLStorm aids in pinpointing regressions and addressing

them before releasing a new version.

While Umbra does not see a signi�cant change in runtime, the

geometric mean of the end-to-end time improve by almost 2× in

DuckDB of the last two years. For Umbra, we observe a perfor-

mance regression of 11.4 % around January 2024 that was resolved

in August of the same year. This regression was not evident in the

TPC-H 10GB benchmark, which explains why we did not notice

it earlier. In DuckDB, the latest release improved the performance

on SQLStorm considerably. Conversely, the same release caused

a performance regression of 22 % on TPC-H. This highlights the

limitations of TPC-H as a sole benchmark, as it may overlook perfor-

mance regressions or improvements that become evident in more

diverse, real-world workloads like SQLStorm.

4.4 Scaling with the Dataset Size

In contrast to other real-world datasets, such as IMDB [30], the

StackOver�ow dataset and therefore SQLStorm is available in dif-

ferent sizes: 1 GB (SQLStorm-1), 12 GB (SQLStorm-12), and 220GB

(SQLStorm-220). This substantially broadens the applicability of

SQLStorm, e.g., making it possible to run the benchmark on both

small machines and larger, e.g., distributed, deployments. Increasing

the dataset size and comparing the performance for the same query

furthermore provides insights into a query engine’s scalability.

Figure 7 shows the runtime distribution of the queries on the

three datasets for Umbra and DuckDB. The two systems behave

broadly similarly. On the small dataset, most queries complete in
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Figure 8: Umbra vs. DuckDB. We report per-query speedups

of Umbra over DuckDB in ascending order. Umbra succedds

on more queries and executes the majority of queries faster.

less than 100ms, and timeouts are rare. As the scale factor increases,

the queries take longer to �nish, and timeouts become more fre-

quent. Nevertheless, Umbra and DuckDB scale well, and the median

runtime only increases by 8× and 10×, respectively, when moving

from SQLStorm-12 to SQLStorm-220. On SQLStorm-220, DuckDB

times out on 4,938 queries, while Umbra exceeds the time limit of

10 s for 1,807 queries and the memory limit for 1,166 queries.

We also included the runtime distribution of TPC-DS, which

consists of 100 query templates and is considered one of the most

extensive and challenging analytical benchmarks. TPC-DS lacks

outliers, and the runtimes are spread closer to the median. Like real-

world workloads [56, 60], SQLStorm covers a broader spectrum and

experiences more timeouts. Furthermore, the median runtime of

TPC-DS increases by only 3× from TPC-DS-10 to TPC-DS-100 even

though the data grows by a factor of 10. In SQLStorm, 20× more

data leads to 10× longer runtimes in DuckDB. Therefore, scaling

up on SQLStorm is more challenging than on TPC-DS. We believe

that solving these scalability challenges involves not just better

engineering but also innovations in query optimization and query

processing. For example, one of the queries that succeeds on the

small dataset but fails on the larger datasets performs a join with

substring search as the join predicate of the form R.a LIKE ’%’

|| S.b || ’%’. In existing systems this semantically meaningful

query results in quadratic runtime even though the query could be

e�ciently processed using a su�x array.

4.5 Comparing Systems

Existing database systems can only execute a subset of SQLStorm.

Because this subset di�ers between systems, statistics such as aver-

age or geometric mean can be somewhat misleading, e.g., a system

that fails on di�cult queries might have good average performance.

Users would probably care at least as much about queries that fail

or take a very long time.

To illustrate this behavior, we compare the runtimes and fail-

ures for Umbra and DuckDB, shown in Figure 8. We consider only

queries that run in one of the evaluated systems and calculate the

speedup for every query. If a query timeouts or fails in one sys-

tem but succeeds in the other, we set the speedup to 1e4 in the

�gure. The speedups are arranged in ascending order from left to

right: �rst, the queries that fail or timeout in Umbra but succeed

in DuckDB; next, the queries that run in both systems; and �nally,

the queries that fail or timeout in DuckDB but succeed in Umbra.

This visualization provides a comprehensive but succinct overview

between two systems, even for thousands of queries.
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Figure 9: System comparison on SQLStorm-10. SQLStorm uncovers for every system promising queries for further optimizations.

Table 10: The query generation process, the number of exe-

cutable queries per system, and the number of operators on

the StackOver�ow, the TPC-H and the JOB dataset.

Dataset Query Selection Systems avg.
Parse 1 Parse 2 Exec. Ops.

StackOver�ow 15206 20218 18251 12161 18133 13712 13.9
TPC-H 16964 21074 17036 6964 16777 15301 16.0
TPC-DS 13361 16037 15242 12309 15053 14461 12.9
JOB 14749 17425 11714 2720 10948 9495 16.8

The plot reveals some interesting �ndings: 1 is the medium

speedup of both systems’ executable queries (success or timeout).

Umbra is 4.11× faster than DuckDB on SQLStorm-1 and 7.93× on

SQLStorm-220. While at 2 , DuckDB performs signi�cantly better

than Umbra, at 3 , Umbra outperforms DuckDB by up to 1,000×.

These queries are particularly interesting for database developers as

the other systems performmultiple orders of magnitude better. Such

large performance di�erences are usually caused by di�erences in

query optimizations such as missing optimization rules or large

cost model errors.

The red area at 4 shows the queries that fail in DuckDB but

succeed in Umbra. In 5 , DuckDB encounter timeouts while Um-

bra �nishes the queries in under 10 seconds. Even on the small

SQLStorm-1 dataset, the number of unsuccessful queries in DuckDB

is considerable. Umbra also has queries that time out or fail but

succeed in DuckDB. However, the number of such instances is small

and almost invisible in the �gures.

In Figure 9, we repeat the analysis between Umbra and all other

systems on SQLStorm-12. Interestingly, each system outperforms

Umbra on certain queries. For instance, PostgreSQL, which is typ-

ically 84× times slower than Umbra due to its row-based storage

and volcano-style query execution, still surpasses Umbra in per-

formance on 108 out of 17,531 queries. These queries will help

pinpoint weaknesses in Umbra and guide further performance im-

provements. Database developers can use SQLStorm to explore

optimization opportunities in their systems and uncover missing

features. While the median runtime indicates the performance ben-

e�ts of di�erent architectures, such as columnar versus row-based

storage, the long tails reveal isolated performance bugs.

4.6 Generating New Benchmarks

We selected the StackOver�ow dataset because it contains real-

world data and features more and longer strings than synthetic

datasets. Yet, the SQLStorm methodology can be applied to other

(real-world or synthetic) datasets as well. We tested this using

the well-known analytical benchmarks: TPC-H/-DS, and JOB [30].

The methodology remains the same: GPT-4o-mini generates 35,000

queries using the seven prompts from Table 2 for each dataset; only

the schema is adjusted to match the dataset.

Table 10 shows the number of queries for all three datasets, how

many are executable in PostgreSQL, Umbra, and DuckDB, and the

average number of operators per query. Although the speci�c num-

bers di�er, the broad picture is similar to the original SQLStorm.

After pre-processing and �ltering, more than 10,000 queries remain,

enough to stress-test any database system and provide a compre-

hensive evaluation. On TPC-H and JOB queries have two operators

more as they perform more joins than the queries from the other

two datasets. Aside from this di�erence, GPT-4o-mini generates a

similar distribution of operators across all datasets.

SQLStorm is not limited to the StackOver�ow data and can be

applied other datasets as well. The technique is a simple and cost-

e�cient way to generate large-scale benchmarks for database sys-

tems. Wemake all the queries publicly available, and database devel-

opers can use the SQLStorm prompts to generate new benchmarks

on custom datasets.

5 SUMMARY AND FUTUREWORK

SQLStorm shifts database benchmarking from handcrafted queries

to large-scale LLM-generated workloads. We demonstrate that large

language models generate diverse, complex, and unpredictable

queries that encompasses a broad range of SQL constructs. The

initial SQLStorm release includes 18,251 queries on a real-world

dataset. These challenging queries reveal weaknesses and opti-

mization potential in database system, fostering new research di-

rections in query optimization, cardinality estimation and robust

data processing. SQLStorm complements existing benchmarks like

TPC-H and TPC-DS, which are limited by a few query templates

and small feature spaces. While these benchmarks contain high-

quality expert-written queries, our generated queries occasionally

include rare SQL constructs, semantic mistakes, and edge cases

capable of stressing database systems.

SQLStorm v1.0 leverages OpenAI’s GPT-4o-mini model. Future

releases of this benchmark will incorporate next-generation LLMs,

further enhancing complexity and diversity. Database engineers

can re�ne the prompts and datasets to tailor the benchmark to their

needs and generate queries to new SQL features such as property

graph queries or ASOF joins. This paper takes the �rst step towards

automated large-scale database benchmark generation in the LLM

era; SQLStorm o�ers a scalable real-world dataset and a replicable,

cost-e�ective query generation pipeline.
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