
Diplomarbeit

Distributed Processing of Data Streams in P2P

Networks

Tobias Scholl
Alemannenstr. 11
86199 Augsburg

Erstgutachter: Prof. Alfons Kemper, Ph.D.
Zweitgutachter: Prof. Dr. Winfried Hahn
Betreuer: Dipl.-Inf. Richard Kuntschke

19. September 2005

Prof. A. Kemper, Ph.D.
Lehrstuhl für Informatik III : Datenbanksysteme

Fakultät für Informatik
Technische Universität München

To Nina, Elisabeth, and Hartmut

Abstract

In many industrial and scientific cooperations and communities, globally dis-
tributed institutions share their data and computational resources to compose so-
called virtual organizations. Efficient parallelization, network-aware load-balancing,
and distributed processing of heterogeneous data sources are exemplary for aris-
ing challenges.

Virtual observatories play an integer role to face data explosion and to support
distributed research in the fields of astronomy and astrophysics. The appearance
of many general issues in these communities is a great incentive to probe further.

As amounts of data are rising very fast due to technical advances, traditional
publish-subscribe approaches such as data shipping reach their border of feasibil-
ity. Disseminating data as streams to fellow researchers or realizing several key
applications such as matching processes over a Grid-based Peer-To-Peer infras-
tructure could gain significant benefits.

This thesis introduces an approach for distributed data processing which
applies concepts from distributed query processing of persistent data on data
streams. It describes further an interface to integrate user-defined operations
into a data stream management system and demonstrates how such a system can
be monitored and evaluated with a prototype.

Contents

1 Data Streams, P2P Computing, and the Grid 1
1.1 Challenges at the Borders of Disciplines 2
1.2 The StreamGlobe infrastructure 3
1.3 The StarGlobe Interface . 4

2 Astrophysical Scenarios 7
2.1 Spectral Energy Distributions Classification 7

2.1.1 Classification of luminaries 7
2.1.2 The A-Star Workflow . 9

2.2 Early Alerter Systems . 10
2.2.1 Automatic Follow-Up Observation 11
2.2.2 The Alerter Workflow . 11

2.3 Community Needs . 13

3 Mobile Operators 15
3.1 External Stream Processors . 15

3.1.1 Building Block Extraction 16
3.1.2 XML Transparency . 16
3.1.3 Processing the data stream 17

3.2 Implementation . 18
3.2.1 The StreamIterator Interface 19
3.2.2 The StreamWriter Interface 20
3.2.3 Parameter Passing and Extraction 20
3.2.4 Embedding Stream Iterators 21

3.3 Astrophysical Workflow . 22
3.3.1 Coordinate Transformation 24
3.3.2 Simple Cone-Search . 26
3.3.3 Mahalanobis Distance . 27

3.4 Integration of External Operators in FluX 29

4 Query Execution Plans 31
4.1 Query Execution Plan Requirements 31
4.2 Examples of Plans . 33

iv Contents

4.2.1 Executing an XQuery . 33

4.2.2 Executing the A-Star Workflow 34

4.3 Plan Structure . 37

4.3.1 Top-Level Plans . 37

4.3.2 Adding Operators . 38

4.3.3 Deleting Operators . 38

4.3.4 Stream References . 39

4.3.5 Stream Operators . 39

4.3.6 Extending the Operator Hierarchy 41

4.4 Plan Implementation . 41

4.4.1 Plan Distribution . 43

4.4.2 Synchronous vs. Asynchronous Plan Distribution 45

4.4.3 Defining XQuery Plans . 45

5 System Architecture 47

5.1 Thin-Peers . 47

5.1.1 Content Providers . 48

5.1.2 Query Subscribers . 48

5.1.3 Query Results . 48

5.2 Generating Scenarios . 51

5.3 Plan Installation . 51

5.4 Monitoring enabled . 52

6 Monitoring and Evaluating StarGlobe 53

6.1 General Requirements . 53

6.2 Demonstration-Specific Conditions 54

6.3 The Vela-Scenario . 55

6.4 Demonstration Data Set . 59

6.5 SGG Design . 61

6.5.1 StarGlobe Monitors . 63

6.5.2 Layout Engines . 65

6.5.3 StarGlobe Data . 66

6.6 Running the Demo . 68

6.6.1 Vela Walkthrough . 68

6.6.2 Throughput examples . 70

6.6.3 Demonstration of Bypassing 70

6.7 Evaluation Outlook . 74

7 Related Work 79

7.1 Grid Computing . 79

7.2 Peer-To-Peer Networks . 81

7.3 Data Streams . 82

Contents v

8 Looking Downstream 85

A Installing the Grid on Blades 87
A.1 Installation Issues . 87

A.1.1 Installation location . 88
A.1.2 Package Options . 88
A.1.3 CA Installation . 89
A.1.4 Directory Structure . 89

A.2 Changing the Globus - Migration Issues to Globus Toolkit 4 . . . 90

B Execution Plan XML Schema 91

C A-Star Workflow 99
C.1 Scenario . 99
C.2 XML Execution Plan . 100
C.3 User-Defined Operators . 103

C.3.1 Coordinate Transformation 103
C.3.2 Simple Cone Search . 104
C.3.3 Mahalanobis Distance . 106

D VLDB 2005 Scenarios 109
D.1 Vela Scenario . 109
D.2 Throughput Scenario . 112
D.3 Grid Scenario . 120
D.4 Linear Scenario . 128
D.5 Random Scenario . 131
D.6 Full-Demo Scenario . 133
D.7 Bypassing Scenario . 136

Acronyms 139

Bibliography 141

Eidesstattliche Erklärung 149

vi Contents

List of Figures

1.1 Overview of the StarGlobe interface 5

2.1 The A-Star workflow. 10
2.2 The Alerter Workflow . 12

3.1 Abstraction of a stream processor. 15
3.2 Package structure for external operators. 23
3.3 Communication between stream processor and stream iterator. . . 28

4.1 The A-Star workflow. 33
4.2 Classes of external operators in plans. 42
4.3 Centralized Operator Control . 43
4.4 Distributed Plan Dissemination 44

5.1 Thin-Peers and associated classes. 49
5.2 Query registration through thin-peer. 50

6.1 The Vela and RXJ0852.0-4622 Supernova Remnants. 56
6.2 The demonstration data set. 60
6.3 Energy distribution of the demonstration data set. 60
6.4 Main components of the graphical user interface. 61
6.5 streamglobe.gui package overview 62
6.6 Monitors for the StarGlobe system. 64
6.7 Connection strategies for monitors. 64
6.8 Pull-based monitoring connection setup. 65
6.9 Overview diagram of the streamglobe.gui.layout.graphviz package. . 66
6.10 streamglobe.services.management.dto package overview 67
6.11 Starting point of Vela scenario. 69
6.12 Network after installed Vela Query 70
6.13 Network after registration of RXJ Query. 71
6.14 Network after injection of first aggregate query. 72
6.15 Network after injection of second aggregate query. 72
6.16 The traditional Throughput scenario. 73
6.17 The Bypassing Scenario . 73

viii List of Figures

6.18 Average Load in simulated Vela Scenario. 75
6.19 Average Load in simulated Throughput Scenario. 76

Listings

3.1 The StreamIterator interface . 19
3.2 The StreamIterator interface . 20
3.3 The StreamIteratorEvent interface 20
3.4 User-defined coordinate transformation. 24
3.5 Coordinate transformer configuration from query execution plan

(fragment). 25
3.6 User-defined simple cone-search. 26
3.7 User-defined mahalanobis distance. 27
4.1 The query execution plan for the Vela-XQuery. 34
4.2 The A-Star query execution plan. 34
4.3 The coordinate transformer of the A-Star query execution plan. . 35
4.4 The cone search of the A-Star query execution plan (fragment). . 36
4.5 Optimizable XQuery format of external queries. 46
6.1 DTD of the Vela stream. 55

x Listings

List of Tables

2.1 Morgan-Keenan spectral classification 8

6.1 Selectivities of the Vela query and RXJ query 59
6.2 Query registration time comparison (Vela scenario). 77
6.3 Query registration time comparison (Throughput scenario). 77
6.4 Query success rates and overview (Throughput scenario). 77

xii List of Tables

Chapter 1

Data Streams, P2P Computing,
and the Grid

Databases as storage for persistent data are a crucial part of many enterprise
applications. The sky is the limit for money to be spent on high scalable and
performant hard- and software to cope with the many transactions of all-day’s
business or with the complex decision support queries on a data warehouse.

Many businesses are depending on applications like Customer Relationship
Management (CRM) or Enterprise Resource Planning (ERP) and as such, storing
and accessing data plays an integer part. State-of-the-art central or distributed
databases are used and are potentially reachable all over the world by interface
like SQL, ODBC or JDBC. Some might in fact not even use a database due to
monetary or historic reasons as they are not in favor of changing running systems
and foster gigabyte-scale files by providing access via FTP.

With technologies like Radio Frequency Identifiers (RFIDs), data process-
ing at the stock markets, health care monitoring or network traffic analysis at
providers, there are several applications where the processed data can be de-
scribed better as data streams than persistent data. These data streams are
published into a network and users subscribe to these data streams.

How does such a network look like? In these global scale information systems
the client-server approach using one or more centralized servers where thousands
of clients can attach to is phasing out. The prevalent technology jettisons the
idea of a centralized infrastructure in favor to a self-organized systems with au-
tonomous peers, the so-called Peer-To-Peer (P2P) networks.

There are several definitions of what a P2P network is and many emphasize
on the dynamic behavior of the individual participants in the network. Every
peer joins or leaves the network as it likes. In the context of this diploma thesis,
we focus more on the aspect that each participating peer provides the same
services although there might be differences in computational power. The peers
communicate over an overlay network, meaning that the interconnections between
peers are on a logical layer which hides the real physical connections between the

2 Chapter 1. Data Streams, P2P Computing, and the Grid

individual peers.
To shape these overlay networks in an efficient manner varies significantly

from application contexts and is subject to intensive research. Some exemplary
approaches are structured P2P networks (using distributed hash-tables), unstruc-
tured (also known as power-law networks), and hierarchical topologies like super-
peer networks which make allowances for the fact that not all machines have same
characteristics in terms of availability or processing power.

Many of these various systems aim on sharing resources. The kind of resources
ranges from physical resources like bandwidth, processing power, and storage to
resources on a conceptual level such as content or knowledge.

Sharing resources is also a central concept in grid computing, a discipline in
computer science that experiences currently a new revival. A basic principle of
grid computing is to join (mostly otherwise idle) resources to solve computational
tasks that are too hard for a single machine. Ian Foster et al. extended a grid
definition focusing only on hardware and software infrastructure by taking also
social and political points of view into account and coined the term ofvirtual
organizations [FKT01], which get an increasing importance in several communi-
ties. In a different publication [Fos02], Foster proposes a three-point checklist for
“Grid-determination”:

A Grid is a system that (1) coordinates resources that are not
subject to to centralized control (2) using standard, open, general-
purpose protocols and interfaces (3) to deliver nontrivial qualities of
service.

1.1 Challenges at the Borders of Disciplines

Several key research areas in the astronomical and astrophysical research com-
munities show the necessity to combine different institutions (and their data
archives) in virtual observatories. Two additional driving factors are the explo-
sion in size of the astronomical data sets and the prospect of new research areas.
The Internet or Grid-based P2P technologies are exemplary approaches used for
the interconnection.

As part of the German Astrophysical Virtual Observatory (GAVO), the Max
Planck Institute for Extraterrestrial Physics (MPE) focuses among other research
topics on the matching and classification of spectral energy distributions (SEDs).
The necessary information is partly distributed over several catalogs which of-
ten are situated at different sites. By specifying selection criteria (“objects of
interest”) and catalogs they are interested in, researchers want to examine the
resulting “whole picture”. This is provided by joining the different catalogs to-
gether and executing user-defined functions on them.

The challenges arising from designing and implementing a stable and efficient
architecture providing this functionality are an ideal environment for e-science

1.2 The StreamGlobe infrastructure 3

cooperations between astrophysics and computer scientists which both sides gain
a lot of benefits from.

On the one hand the specific domain knowledge of users’ needs and application
pitfalls of the former is extended by the expertise of the latter in processing vast
amounts of data in database systems or in heterogeneous environments. On the
other hand it is a unique opportunity for computer scientists to use a research
project on real instead of simulated testing data.

1.2 The StreamGlobe infrastructure

StreamGlobe is a Data Stream Management System (DSMS) for processing and
sharing data streams in a P2P environment. Peers can take part in several roles
in the StreamGlobe architecture:

Super-Peers are the backbone of the StreamGlobe infrastructure. On these
machines all the query processing and data stream routing takes places.
They are predominantly powerful stationary servers.

Thin-Peers have the complementary role to the Super-Peers. They publish
data streams into the super-peer network and issue subscriptions to those
available data streams. They are less powerful and more volatile peers
or sensors. Subscriptions on the data streams are written in Windowed
XQuery (WXQuery) which includes a fragment of XQuery augmented with
time-based and element-based windows [KSK05].

StreamGlobe works on XML data streams. There are several mechanism to
describe the structure of XML data, XML Schema and Document Type Defi-
nitions (DTDs) being the most common. In the following we will concentrate
on DTDs as for pragmatic reasons although conceptually XML Schema could be
supported as well. XML Schema tends to blow up the description of the data
structure and thus may more obfuscate the clarity of the description. Further-
more, handling with XML Schema offers several pitfalls for implementers and so
we decided to stick with DTDs.

We use the FluX [KSSS04] query engine for its scalable evaluation of (W)X-
Queries on streaming data. Using schema information can significantly reduce the
buffer consumption during the query execution and therefore can reduce response
time (first results come in faster) and memory usage.

The StreamGlobe interface is constructed atop of the Open Grid Services Ar-
chitecture (OGSA) using its reference implementation, the Globus Toolkit 3. The
individual stream processors, process an input stream and transform it into an
output stream. The OGSA interface is used for the communication process be-
tween the super-peers. Stream dissemination is implemented using a self-defined
protocol based on TCP/IP, the StreamGlobe Transfer Protocol (SGTP). Grid

4 Chapter 1. Data Streams, P2P Computing, and the Grid

services are special web services that also support inheritance, service properties
and stateful (in comparison to stateless) computations.

Many middleware systems currently follow a principle called data shipping.
When a user subscribes to a data stream, the whole data stream is transmitted
to and finally processed at the user’s machine. This conventional approach puts
the burden of processing a query on the subscriber’s machine. However, this has
major deficiencies. When the same query gets installed at different sites, the
transformation steps are redundantly executed. Additionally, data streams are
redundantly transmitted through the network and most of the data is filtered
at the final peer with projection or selection predicates. Looking at the overall
load situation, we see increased peer load (redundant executions) and increased
network traffic (redundant and unnecessary transmission).

How can we reduce network traffic and peer load? A first heuristic would
perform shortest path routing. All query execution is performed at the publisher’s
peer and therefore all unnecessary data is filtered out before dissemination along
the shortest path to the subscriber. Unfortunately, now all the work is done at
the publishers peer and we still – remember the same query installed at different
peers – have redundant execution.

StreamGlobe overcomes these deficiencies with in-network query processing
and multi-query optimization. Query operators are distributed in the network
(query shipping) and we perform early filtering and aggregation. This is achieved
with a cost-based optimizer that compares several processing alternatives and
chooses the best in terms of a cost function.

This query optimization is conducted by specific super-peers, the speaker-
peers. To speed up the optimization process, we divide the StreamGlobe network
into several subnets and all super-peers of a subnet “elect” a speaker-peer for
this subnet. Each super-peer then forwards the meta-data about its queries and
streams available to the speaker-peer which in return can use this information
for the optimization described above.

We leave it with this overview of the StreamGlobe architecture and provide
more details in the individual chapters when there are interfaces to the new
components. For further details about the StreamGlobe infrastructure and opti-
mization component, we refer interested readers to the literature [Fen05, Häu05,
KSH+04].

1.3 The StarGlobe Interface

The StreamGlobe system has its main focus on P2P Stream Sharing. This thesis
describes an extended interface to the StreamGlobe architecture called StarGlobe.

A component to distribute the query plans is designed as part of the Grid
Service which provides the basic functionality of a peer in the StarGlobe network.
A plan is issued to the peer which registered the query and is recursively forwarded

1.3 The StarGlobe Interface 5

(Thin-)Peer

St
ar

G
lo

be
In

te
rf

ac
e

St
ar

G
lo

be
C

or
e

Query Execution

Plan Distribution

M
et

ad
at

a
M

an
ag

em
en

t

Plan Distribution

M
et

ad
at

a
M

an
ag

em
en

t

Plan Distribution

Optimization

M
et

ad
at

a
M

an
ag

em
en

t

Speaker-Peer Interface(Thin-)Peer Interface

Query Execution

Super-Peer Interface

Speaker-Peer Super-Peer

Query Execution

FluX

Mobile Code

FluX

Mobile Code

FluX

Mobile Code

OGSA (Globus Toolkit)

TCP/IP Network Layer

XML Query Execution Plans XML Data StreamsXQuery Subscriptions

Figure 1.1: Overview of the StarGlobe interface. The Mobile Code (chapter 3)
and Plan Distribution (chapter 4) components as well as the interface
to XML Execution Plans (chapter 5) are contributed by this thesis
(comp. [KSKR05]).

to all participating peers.
This process of integration in StarGlobe is done in two steps. First the plan

is inserted manually into the network. Later on, the optimizer should perform
this job.

To provide access to the different data sources, wrappers for the astrophysical
catalogs have to be written.

The concept of mobile code (operators), which originates from the Object-
Globe project, is implemented as well, yet with less focus on security and privacy
issues, as e-science collaborations are assumed to take place in trusted environ-
ments.

Both query plan distribution and dynamic loading of user-defined operators
will be implemented in the StarGlobe interface tier (see figure 1.1).

6 Chapter 1. Data Streams, P2P Computing, and the Grid

Chapter 2

Astrophysical Scenarios

In the context of e-science, we consider two scenarios where the benefits for
the astrophysical communities motivate the usage of data stream management
systems.

The first is spectral energy distribution (SED) classification. Classification of
luminaries by means of spectral energy distributions is a central part in the work
of the Max Planck Institute for Extraterrestrial Physics (MPE) in the GAVO
project [GAV05]. Integration of data streams in the matching process promises
to free potential for optimization.

The second example is a more visionary scenario about a network of robotic
telescopes. Professionals collaborate with amateurs working on a global infras-
tructure connecting several telescopes around the world and satellites in the orbit.

To meet the needs of the communities which can be derived from scenarios as
the following are the crucible by which an infrastructure for collaborative research
will be judged.

2.1 Spectral Energy Distributions Classification

2.1.1 Classification of luminaries

The classification of spectral energy distributions (SEDs) is a key research area
for the astrophysics community. It gives clues about the physical characteristics
of celestial bodies, for example, whether they are active galactic nuclei (AGNs)1,
galaxies, or quasi-stellar objects (quasars).

What characteristics determine whether a star is classified “white dwarf”,
“bright giant”, or “G”? The most prominent characteristic used certainly is
the photospheric temperature. Table 2.1 shows the classification according to

1galaxies whose center emits irregular amounts of energy. The energy is freed by tidal forces
of supermassive (“very heavy”) black holes or stars which tear approaching stars apart.

8 Chapter 2. Astrophysical Scenarios

Class Temperature Star Color

O 30 000 - 60 000 K hottest blue
B 10 000 - 30 000 K hot blue
A 7 500 - 10 000K blue, blue-white
F 6 000 - 7 500K white
G 5 000 - 6 000K yellow (like the sun)
K 3 500 - 5 000K orange-red
M 2 000 - 3 500K coolest red

Table 2.1: Morgan-Keenan spectral classification. A well-known mnemonic for
these spectral types is “Oh Be A Fine Girl, Kiss Me” (adapted from
[Wik05b, Ill79]).

Morgan-Keenan and as there is a succinct overview on the other classification
models available at Wikipedia, we leave it by this short excursus [Wik05b].

Quality of classifications increase if a pan-chromatic collation of data or the
combination different dimensions is used. The pan-chromatic approach combines
photometric measurements from different frequency bands. As an example of
combining measurements from orthogonal dimensions consider using photometric
and gravitational data for classification.

Two kinds of spectra take an important role in the classification process:

• observational spectra

• theoretical spectra

The process to generate observational SEDs can be subdivided into SED-
matching and SED-assembly. First potential useful information is collected from
each catalog individually. The retrieved results are finally assembled (the in-
formation from the different catalogs is fused together) into the observational
SEDs.

Theoretical spectra are the spectra especially designed to represent a celestial
body with certain features (such as temperature or gravitation) and against which
the observational spectra are matched. Before the classification can take place,
these theoretical spectra have to be filtered, sampled, and modified to simulate
an observation. Without these modifications the theoretical results are far to
detailed or exact and the classification might fail due to this differences.

In general, users who want to conduct a classification have to provide two
things: a list of luminaries of interest (LOIs) and a list of catalogs they want to
retrieve the data from.

The list of LOIs, also called an input list, specifies the celestial coordinates
and describes the positions the researcher is interested in. The coordinates are
specified using the right ascension (ra) (comparable with the longitude of us
earthlings) and declination (dec) (equivalent to latitude).

2.1 Spectral Energy Distributions Classification 9

The second list specifies catalogs, archives, or similar data storages which will
be considered to match the observed objects on their theoretical counter parts. It
contains all necessary meta-data like the storage location, the access information,
data types and schema of the content.

At the end of the classification, researchers get a ranking of the n most prob-
able classifications for each LOI.

2.1.2 The A-Star Workflow

Adorf et al. describe the complete SED workflow and its implementation as an
automated Web service as part of a virtual observatory [AKL+04]. In the follow-
ing we go through a simplified scenario related to the SED classification which
focuses on some of its core building blocks.

An astrophysical group is interested in A-Star (right ascension = 20h 48m 13.3◦,
declination = 33◦ 26′ 26′′). It performs a cone-search on the ROSAT All-Sky Sur-
vey Bright Source Catalog (RASS-BSC) to find all sources (entries in the catalog)
within a radius of 0.5◦ around A-Star and is also interested in the distances to
A-Star of the retrieved sources.2 The RASS-BSC (or just RASS) is a catalog
which is derived from a all-sky survey performed by the ROSAT mission between
July 1990 and August 1991. With ROSAT (“Röntgenstrahlen Satellite”), the
MPE conducted the first all-sky survey in X-rays [VAB+99].

Retrieve all sources (stars) from the catalog RASS, that are within a
radius of 0.5 degree from star A-Star and calculate the Mahalanobis
distance, as well as the polar angle for those sources.

This kind of query is called a Simple Cone Search, followed by additional
distance calculations.

To conduct a (simple) Cone Search on a catalog, one specifies a center (point
on the sphere) and the search radius. Calculating this using Cartesian coordinates
is much faster, thus a conversion step from spherical coordinates to Cartesian co-
ordinates is necessary. To measure the distance between selected catalog sources
and the center of the cone the Mahalanobis (a multi-dimensional variance scaled)
distance is calculated.

Figure 2.1 shows a possible realization of these steps and a distribution of the
operators across the network.

Our network contains four peers (Peer 0 through Peer 3) and one catalog orig-
inated at Peer 0. Whether the catalog is a database or just a comma-separated
file accessible via the File-Transfer-Protocol remains transparent to users, and

2Among the astrophysical community A-Star is more commonly known as
1RXSJ204813.3+332626. That is far too long for a workflow title and we therefore use
the short-form A-Star.

10 Chapter 2. Astrophysical Scenarios

Figure 2.1: The A-Star workflow. A research queries all sources that are within
a certain radius to A-Star. The user-defined operations are installed
along the path towards the catalog.

so advanced access techniques as stored procedures or let alone user accounts to
execute shell scripts on the data are not available.

The infrastructure does not provide implementations for the building blocks of
the query but offers an interface for user-defined operations. The user implements
three operators with the necessary functionality and provides them on a web
server.

The user creates an XML-based query evaluation plan which specifies the
operators and where they should be installed. Finally, the plan is injected into
the network (step 1).

Each Peer receiving the plan installs the specified operators and propagates
the sub-plans to its neighbors (step 2 - 4).

Then the catalog is processed and directed through the operator chain and
the result is finally displayed at Peer 3 (step 5).

Even this simple example shows the potential for distributed parallelism and
pipelining in the SED classification process and how it would benefit from using
data streams.

2.2 Early Alerter Systems

Which little teenager has not gazed at the starry canopy in a starlit night to
count as many shooting stars as possible?

2.2 Early Alerter Systems 11

Amateurs or professional star-gazers curiously study such volatile events like
comets, asteroids, Gamma-ray Bursts (GRBs), or supernovae. To discover an
event of unknown type and to open new fields for scientific research propels
efforts in the astrophysics community to create a publish&subscribe architecture
for such events.

Various notification systems already exist and are now tried to be standardized
with the advent of new enabling technologies and the foundation of virtual obser-
vatories. The Central Bureau of Astronomical Telegrams (CBAT) [CBA05], the
Gamma-ray Burst Coordinate Network (GCN) [GCN05], and the Astronomer’s
Telegram [ATE05] are just a few examples for such notification systems, partially
still using natural language.

2.2.1 Automatic Follow-Up Observation

The IVOA Sky Event Reporting Metadata (VOEvent) specifies content and
meaning of an XML based notification packet which aims at driving robotic-
telescopes, triggering automatic archive searches, and to alert the community for
various purposes [SWA+05]. The specification provides a lot of valuable insights
about the current state and perspective of astrophysical notification services, even
in its early stage of development.

Robotic telescopes will respond to these alerts with near real-time follow-up
observations across different wavelength bands and extend the scientific coverage
of such short-time events.

2.2.2 The Alerter Workflow

We envision a scenario where several globally distributed institutions federate in
a common network. These sites provide archived data or contribute by publishing
new data from their telescopes and satellites into the virtual network. Of course,
sites can contribute to the network with both kinds of information. All sites use
a data stream management system (like our StarGlobe infrastructure) to publish
their data and to subscribe data from other catalogs. In addition to the result
streams, there also exists a special stream on which events are transmitted. Every
organization can configure which events it wants to listen to by installing a filter
on that stream.

Figure 2.2 shows the visionary example of distributed collaboration that we
now will describe in more detail.

At institution A new observational data is received (step 1). The data gets
filtered against previously defined thresholds. If a new event is matched by the
filter, it is a possible candidate for an unexpected event worth being monitored
by several institutions. Yet before a false alarm is broadcasted to the other
participating groups, results from previous observations are consulted (step 2).

12 Chapter 2. Astrophysical Scenarios

Figure 2.2: The Alerter Workflow. Distributed Organizations are interconnected
by a notification system which runs on StarGlobe. If new data arrives
(1) and comparisons with own (2) and distributed (3) data federations
show that it is an interesting observation, an event is sent across
the notification system (4) and automatic follow-up observations are
performed (5).

2.3 Community Needs 13

If a comparable event has occurred before several times it is conceivably not that
special.

If the query on the own catalog does not provide new information (step 3),
the new measurement is compared with data gathered by other projects (step 3).
As a consequence a search is placed on different data-sources in the federation.
Provided that there is no similarity to measurements by other organizations, the
observed event has a high probability of being extra-ordinary.

When this assumption holds, the region should be observed by as many ob-
servatories as possible, and institution A will send a notification to the other
research facilities (step 4).

Of course, a decision whether to join into such observation is scheduled ac-
cording to local priorities and whether the telescope is physically able (e. g., area
not visible to telescope or temporal constraints) to support it. In our example
only institution D joins into the observation (step 5).

By synchronizing many telescopes on a specific event observation time is in-
creased from six hours in average (caused either by the night-day cycle or wors-
ening observation conditions) to 24 hours.

2.3 Community Needs

These two examples show the needs that can be addressed by a data stream man-
agement system. As the relatively small number of catalogs is confronted with
an increasing number of queries, stream sharing and in-network query processing
will considerable reduce the network load.

Matching several catalogs against an input-list can be conducted in a dis-
tributed fashion and with high parallelism by balancing the load across several
machines, even those machines which do not provide data sources.

The convergence of broadcasting events to collaborative organizations and
the data stream paradigm is quite apparent and also the notion of continuous
listening for events, that trigger follow-up observations fit well into the context
of StarGlobe.

The individual steps in the catalog workflow as well as the processing of
VOEvents are special-purpose operations that underline the need to open the
StarGlobe interface to self-defined functionality.

14 Chapter 2. Astrophysical Scenarios

Chapter 3

Mobile Operators

As described in section 2, astrophysical applications need special purpose func-
tionality. Mobile operators will be the extension to the StarGlobe interface to
support these operations on data streams. Having defined the interface for the
operators, users can implement against it and integrate their functionality in
query execution. Another fundamental aspect of external operators is openness
for change. We may see and meet the needs of current users, but can we antici-
pate those of next-generation communities? Proficiency to support user-specific
behavior can be crucial for the adaption of an infrastructure. Throughout the
thesis the terms mobile, external, or user-defined operators or functions are used
as synonyms.

3.1 External Stream Processors

When such a query is installed following a manually designed query plan, several
operators are distributed among different peers. These operators may simply
forward streams between interconnected peers or display results of calculations.
But these calculations – and we focus mainly on that part – may be produced by
user-defined operators.

So, what are the general properties of these operators or stream processors?
Well, the obvious one is depicted in Figure 3.1: A stream processor transforms
an input stream into an output stream.

Stream ProcessorInput Stream Output Stream

Figure 3.1: Abstraction of a stream processor.

A stream processor can modify the structure of the incoming stream (e. g.,
adding additional data calculated inside of the stream processor) or it filters
the stream using content-based (a selection) and/or structure-based criteria. A

16 Chapter 3. Mobile Operators

projection filters the structure of a stream and modifies the resulting output
stream by leaving out some parts of the data.

There exist already some stream processors in the StarGlobe infrastructure,
for example forward, display, and query stream processors. Forward operators
forward streams from one super-peer to one of its neighbors, display operators’
functionality should be self-explanatory and query operators are generated from
a WXQuery. External stream processors are a new kind of stream processor that
support user-defined functionality.

3.1.1 Building Block Extraction

What is the content of a data stream? Several data items – building blocks as
we call them in StarGlobe. However these building blocks can vary. Consider a
data stream with the possible DTD fragment <!ELEMENT stream (a b | b c a | c
)+ > that contains a b b c a c . . . as building block sequence.1

Some properties of a building block make the difference whether we are inter-
ested into it or not. To identify building blocks is integral, especially for handling
very long streams. With a very long stream it is almost certain that we missed
the beginning of the stream. To operate on such a stream we need to inject a con-
trived stream tag before we start processing the stream. Allowing such streams
as described in the previous paragraph is possible yet quite complex to find a
valid building block. Imagine we start reading the upper building block sequence
at the first c. We have to read so much data from the input stream until we
find a valid insertion point for the opening stream tag. We have to match the
building block sequence against all suffices for any building block. Unfortunately
the third building block is contained in the second building block pattern and
thus after reading the follow-up element a, we can be sure just having read a
whole building block and can insert a building block. For the sake of simplicity
we assume in the following our streams to be homogeneous.2

A stream processor can extract the building blocks of the stream and as soon
as a building block is complete, it can be processed.

In StarGlobe, a building block is an XML fragment. A number of user-defined
functions only need to extract some properties of the building block. Consider
an exemplary selection on photons which have an energy pulse higher than 1.3
keV. The operator having this functionality either drops a building block (if it
has too low energy) or writes it on the output stream of the stream processor.

3.1.2 XML Transparency

To calculate whether a energy pulse is above 1.3 keV knowledge about XML
is not necessary, whereas for extract the information about the pulse from the

1The DTD fragment says that either the sequences a b, b c a, or c are valid building blocks.
2Homogeneous in the sense, that there is only one distinct building block for each stream.

3.1 External Stream Processors 17

stream it is. So how confident are programmers of user-defined functions with
XML?

This cannot be said clearly. Researchers who want to use StarGlobe might be
not confident using XML (maybe they are confident with using comma-separated
vectors) and this motivates the reduction of XML a implementor of user-defined
functionality is obliged to deal with. If users want more control over the data
accessed by their component they can access building blocks directly. The latter
approach though being more powerful is dependent on the representation between
stream processor and mobile operator.

All external operators have common parts in their stream processing. They
need to extract the building block, extract some parts of the building block,
and eventually change some parts of it before it is written back on the output
stream. The step where the “real” functionality is executed can be extracted into
a separate component; a processing unit or a stream iterator.

After the basic ideas of the stream processor concept, the next sections cover
what options for designing that stream iterator component exist, how it has been
implemented and what conclusions can be drawn from the current implementa-
tion.

Generally, operators are not restricted to work only on one input stream. For
complex queries sometimes the capability to join several streams is needed . Thus,
a stream processor may have at least one input stream. Structural information
about a stream is necessary to extract corresponding building blocks. This is
provided by either a DTD or an XML Schema for each input stream and also for
the output stream. The output-DTD is necessary as operators might be installed
in sequence. How to do joins on streaming data is one of the major challenges
for data stream management systems and deserves separate treatment.

To reemphasize, building a representation of the building block, extracting the
data for the stream iterator and writing the building block (with additional data)
back to stream are operations which are common to all external operators. So
this functionality should be provided by a generic stream processor. Whenever
we instantiate such a stream processor, we need to configure the data extrac-
tion mechanisms and probably send additional configuration parameters to the
stream iterators. The interfaces between the processing unit and the embedding
framework must be flexible enough, that it works with different processing units.

3.1.3 Processing the data stream

For processing the input stream we need a parser. As potentially infinite streams
are used, model-parsers are inappropriate for the whole processing (e. g., the
parsers using the DOM-model) as they would construct the whole document in-
memory.

Thus a SAX-Parser (an event-driven or push-based parser) seems the right
way to process the input stream. Bare SAX-Parsing is read-only. But for the

18 Chapter 3. Mobile Operators

modifying operators we need a model which is capable of such modifications.
That brings DOM-Parsers back into play as they are capable of constructing new
elements.

So there are several options. The SAX-Parser constructs a DOM-Node for
each data item and when returned from the processing unit it can be modified.
It combines the effectiveness of the SAXParser and the structure-modifying ca-
pabilities of the DOM-model.

A different strategy can be the usage of so-called SAXFilters. Such a parser
works like a ContentHandler (the class processing the parser events) to a parser
and filters (or modifies) these events to a different ContentHandler. The idea is,
to collect the events for one building block and extracting the data for the Stream
Iterator. When the Stream Iterator has processed the data item, the events are
passed (perhaps together with additional events for output of the Stream Iterator)
to the last Content Handler which writes onto the output stream.

The design of the stream processor that provides the input for stream iterators
should provide a framework that these different strategies can be transparent to
the Stream Iterators. Defining an abstract class with an generic event objects
realizes this. These event objects contain a representation of the current data
item.

Three approaches offer different design trade-offs. Implementers either work
directly on the event object or specify what properties of the building block
should be extracted and be written back to the output stream. Certainly, the
first approach keeps XML as transparent data structure and is suited for easier
functions. Complex user-defined functions profit from the flexibility how a build-
ing block is modified, however are dependent on the implementation of event
objects. The third option is to implement a stream processor providing the user-
defined functionality without using the stream iterator mechanisms.

The concrete implementations described above could then use either a DOM-
Node or a sequence of parser-events or implement the functionality without the
Stream Iterator concept.

At this stage, the streams can be seen as a collection of building blocks and
thus using a push-based variant of the Iterator design pattern [GRJV95] is ade-
quate.

3.2 Implementation

The StarGlobe system runs on JavaTM 2 Platform Standard Edition 5.0 [Sun05].
It uses several new features of the 5.0 release especially the java.util.concurrent
package, however generics, and other new language features cannot be used as
Globus Toolkit 3 uses the Axis3 library from the Apache project which has an

3ws.apache.org/axis/

3.2 Implementation 19

org.apache.axis.enum package. In the following we assume the reader is familiar
with the syntax of the Java programming language and use it for source code
examples.

The streamglobe.services.p2p.engine.operator package contains besides built-
in stream processors and stream processors necessary for query processing also
the parent type for all stream processors, the abstract StreamProcessor class and
a factory (StreamProcessorFactory) to instantiate an individual stream processor.
We integrated the handling of external operators in the starglobe sub package.
The external stream iterators are implemented in the org.gavo.streamoperators
package and thus are on the one hand “really” external and on the other hand
acknowledge the fact that they rely on libraries provided by the GAVO team
from the MPE.

3.2.1 The StreamIterator Interface

package streamglobe.services.p2p.engine.operator.starglobe;
import org.apache.commons.beanutils.DynaBean;
public interface StreamIterator {

public void open(DynaBean config, StreamWriter writer);
public void next(StreamIteratorEvent nextItem);
public void close(String streamId);

}

Listing 3.1: The StreamIterator interface

The original iterator is a means to abstract from an underlying collection.
After the initialization of an iterator, applications pull the next object from the
collection. In the Java Collections Framework, a client of an iterator invokes its
public Object next() method. Listing 3.1 describes the interface of stream itera-
tors. A stream iterator gets the next building block as event object, which were
discussed above and are realized in the interface StreamIteratorEvent. It provides
a transportation means between stream iterator and the generic framework for
embedding external functionality.

After processing a building block need a mechanism to send the event object
back to the stream processor. The decoupling of passing the building block to and
returning it from the StreamIterator is motivated by considering aggregate func-
tions. In this context, several building blocks are processed before the aggregate
gets passed back to the stream processor.

That led to the idea of introducing a StreamWriter interface and pass an as-
sociated instance to stream iterators during initialization.

20 Chapter 3. Mobile Operators

3.2.2 The StreamWriter Interface

When a stream iterator has processed (or generated) data that should be written
on the output stream, it sends a write(StreamIteratorEvent) message to its associ-
ated stream writer. Thus an aggregate function could store several items in an
internal buffer, calculate the aggregation and only communicate with its writer.
When the external operation needs to write new data to a building block, the
StreamWriter writes data to the specified locations into the building block.

package streamglobe.services.p2p.engine.operator.starglobe;
public interface StreamWriter {

public void write(StreamIteratorEvent item);
}

Listing 3.2: The StreamIterator interface

3.2.3 Parameter Passing and Extraction

package streamglobe.services.p2p.engine.operator.starglobe;

import org.apache.commons.beanutils.DynaBean;

public interface StreamIteratorEvent {
public DynaBean getParameters();
public void setParameters(DynaBean params);
Object getEventData();
void setEventData(Object o);

}

Listing 3.3: The StreamIteratorEvent interface

The parameters of individual stream iterators are unknown before such an
operator gets installed into the system. The access paths to relevant data depends
on the processed stream, and also the paths where to write the output variables
of an stream iterator are not fixed. Therefore the set of configuration properties
of a stream processor and the access paths have to be dynamically calculated.

APIs intended to simplify access to dynamically calculated sets of property
values are provided by the BeanUtils4 package and especially the Dynamic Beans
(DynaBeans). We use DynaBeans to configure StreamIterators and to provide
transparent access to building blocks.

The Standard JavaBeans mechanism to access a property myProperty of type
MyType generally happens with a getter MyType getMyProperty() and a setter
void setMyProperty(MyType). The DynaBean mechanism uses a hash table to

4http://jakarta.apache.org/commons/beanutils/

3.2 Implementation 21

access this property with getProperty(“myProperty”) and setProperty(“myProperty”,
value). There are various DynaBean flavors and for our very dynamic context the
LazyDynaBeans suite best as offering late instantiation and dynamic property
addition.

The org.apache.commons.beanutils package is used by the Apache Struts-
Framework5 and since 2000 developed in the Jakarta-Commons project. This
indicates that support and development of the library will go on and stable func-
tionality.

Another consideration is that the cooperating partners at the MPE already
used DynaBeans in a different project and so the customers using the system are
not obliged to learn a totally new mechanism.

We also looked at the XMLBeans6 technology as it supports the generation
of Java types from XML Schema and therefore seemed appropriate to generate
the building block representations. Eventually, the fact that we are using DTDs
and the existing user experience about DynaBeans ruled XMLBeans out for this
purpose, although we see, that using DynaBeans introduce the necessity of down-
casts, and thus possible exceptions during run-time.

In our prototype we have refrained from hiding the DynaBeans behind a self-
defined interface (see Listings 3.1 and 3.3), which is useful to hide the dependency
to this library. If DynaBeans are not appropriate in an other context, only the
implementation needs to change.

The StreamIteratorEvent interface (see Listing 3.3) provides access to the build-
ing block representation itself for more complex stream iterators and imple-
menters who are familiar with that specific implementation or the extracted
parameters in a DynaBean.

3.2.4 Embedding Stream Iterators

A framework which provides the functionalities as input- and output-stream han-
dling and building block extraction embeds the individual stream iterators. As
building block representation we decided to implement the DOM-Node approach
described in the previous section. This decision is reflected by the DomNode-
StreamHandler and DomNodeEvent types. The former processes SAX events to a
DOM-Node, wraps it into an instance of the latter class which implements the
StreamIteratorEvent interface and is passed to the user-defined StreamIterator.

All vital information for the stream processor including the DTD information
about the incoming and outgoing streams, configuration of the stream iterator
and the stream iterator itself are combined into StreamProcessorConfig. These
parameters are extracted from query execution plans. We use this kind of pa-
rameter object [Fow99] to keep classes interfacing with external stream operators

5http://struts.apache.org
6http://xmlbeans.apache.org

22 Chapter 3. Mobile Operators

unaffected from changes in the concrete parameters. Additionally the Stream-
ProcessorConfig separates plan representation and operator functionality. One
could have used a kind of assembler as described in the Data Transfer Object
design-pattern [Fow02] to increase the decoupling of these both domains, yet as
the plan structure can be considered stable and therefore this has seemed like an
unnecessary additional indirection for this implementation.

To map data between the streams and variables in the stream iterators we
use final-state-machines in both directions. We describe this at an more com-
prehensive example when we look at the implementation of the astrophysical
workflow.

In favor of simplicity of the prototype, we did not implement the feature,
that users can implement a complete stream processor and integrate it into the
system. We can address this issue by extending the StreamProcessorFactory to
use reflection instead of conditionals, let the AbstractExternalStreamProcessor im-
plement the StreamIterator interface as well. If a user then specifies an external
operator in a query execution plan (which we cover in the next section) we can
decide at run-time whether the type specified is a stream processor (and thus can
be integrated without embedding framework) or just a stream iterator. In the
latter case we would use a standard implementation like the one described above.

Figure 3.2 gives an overview about the classes described in this section.

3.3 Astrophysical Workflow

In this section we show the implementation details of three user-defined functions
for the astrophysical workflow described as an motivating example in chapter 2.
To achieve a reasonable succinctness of the source code shown, only important
parts are shown in this chapter. The complete sources for the three covered
operators are placed in appendix C.3. The course of description is equivalent to
the order of execution in the specified workflow.

The first operator performs a transformation from polar coordinates into
Cartesian Coordinates. This step is critical for the performance of the next op-
erator: a simple cone-search. A cone-search (selecting points on a sphere which
are within a certain radius to a given point) on astrophysical data is easier and
more efficient when using Cartesian coordinates. To calibrate the cone-search we
need a center and a radius. Eventually, the Mahalanobis distance is calculated.
It is measured from all data points that passed the cone-search filter to the center
of the cone-search. This gives a notion about how close the matching elements
actually have been. In addition to that, the operator calculates the polar angle.

3.3 Astrophysical Workflow 23

Figure 3.2: Package structure for external operators.

24 Chapter 3. Mobile Operators

3.3.1 Coordinate Transformation

Given two polar coordinates α (longitude) and δ (latitude) on a sphere with radius
R (resp. on the unit sphere), we get the Cartesian coordinates by the following
equations.

r = R · cos δ (cos δ) (3.1)

x = r · cos α (cos δ · cos α) (3.2)

y = r · sin α (cos δ · sin α) (3.3)

z = R · sin δ (sin δ) (3.4)

The right ascension and declination are measured on the unit sphere 7 and
therefore we can calculate the coordinates using the special case of the equations
above.

As an example, we transform the coordinates from A-Star into Cartesian
coordinates. So first we have to convert the right ascension 20h 48m 13.3◦ into
degrees (its declination was 33◦ 26′ 26′′). Right ascension is given in hours (24h)
and having a range of 360◦ (15◦ per hour) we get approx. 312.05542 degrees right
ascension and approx. 33.44056 degrees for declination. Inserted into the formulas
above we get approximately xa = 0.55896, ya = −0.61958, za = 0.55107.

The implementation (after knowing the math) is straightforward and therefore
an ideal example to start with looking at functionality of a stream iterator. As
the main functionality lies in the next(StreamIteratorEvent) method we only show
a fragment of the implementation.

public class CoordinateStreamIterator implements StreamIterator {
. . .
public synchronized void next(StreamIteratorEvent nextItem) {

DynaBean params = nextItem.getParameters();
Double ra = (Double) params.get(RA);
Double dec = (Double) params.get(DEC);

double[] cartesian = CoordinateTransformation.toCartesian(
ra.doubleValue(), dec.doubleValue());

for (int i = 0; i < cartesian.length; i++) {
params.set(CARTESIAN, i, String.valueOf(cartesian[i]));

}
writer.write(nextItem);

}
}

7using a certain reference system, currently J2000.

3.3 Astrophysical Workflow 25

Listing 3.4: User-defined coordinate transformation.

The extraction of the right ascension and declination values and the insertion
of the Cartesian coordinates into the stream is executed by the ExternalStream-
ProcessorImpl class. The mappings are specified in the query execution plan and
listing 3.5 shows the relevant part of the coordinate transformer configuration
(omitting the DTDs).

The variable-Tags have two functions. For the input stream they specify
which data should be loaded into the variable of the given type. The mapping
paths (the select-attribute) are relative to the building block. The external stream
processor builds for the building block and each input variable an automaton. It
starts the building block-automaton when the input stream begins and as soon
as the startElement event for the building block has been processed the product-
automaton for the variable-paths are started and each time a processed element
matches a step in the path the according automaton changes its state. When the
opening tag for the last step in a mapping path is processed (e. g., for the variable
RA it is the opening tag of the ra element. In this state a buffer is initialized and all
following characters-events are stored in a buffer until the according endElement
event has arrived at the content handler.

The implementor of the stream iterator defines mappings (i. e., keys), which
are specified in the plan to retrieve either configuration parameters or data from
the building block. As data types to initialize variables of stream iterators cur-
rently all wrapper classes for the primitive types (i. e., Integer, Double, Boolean,
. . .) are supported. However, this is extensible to any class which provides a
constructor with a String as parameter. This classes then can be instantiated
using the Java reflection mechanism.

<streamoperator id="transform"
name="org.gavo.streamoperators.CoordinateStreamIterator"

<variable name="RA" select="./coord/cel/ra" type="Double"/>
<variable name="DEC" select="./coord/cel/dec" type="Double"

/>
</inputstreamdata>
<outputstreamdata>

<variable name="cartesianCoordinates[0]" select="./
cartesian/x"/>

<variable name="cartesianCoordinates[1]" select="./
cartesian/y"/>

<variable name="cartesianCoordinates[2]" select="./
cartesian/z"/>

</outputstreamdata>
</streamoperator>

Listing 3.5: Coordinate transformer configuration from query execution plan
(fragment).

26 Chapter 3. Mobile Operators

3.3.2 Simple Cone-Search

Conducting a simple cone-search using transcendental functions is computational
intensive. Basically, a cone-search query on a sphere looks for points p around a
center c within a radius r. This can be imagined as follows. One takes the tan-
gential plane in c and pushes it towards the center of the sphere. The intersection
of this plane with the sphere resembles a circle with increasing radius. We push,
until the distance between c and the border of the circle is exactly r. The clue
is, that all points above the “pushed plane” fulfil the query, the others do not.
It turns out that having the Cartesian coordinates reduces this to whether the
dot product of the c = (xc, yc, zc) and p = (a, b, c) is greater than the cosine of r.
Equation 3.5 describes the formula of the simple cone-search.

a · xc + b · yc + c · zc > cos r (3.5)

This operator is another example for trigonometric mathematics, typical for
astrophysical applications.8 The next-method implements equation 3.5. The
filtering function is performed by only sending the StreamIteratorEvent back to the
ExternalStreamProcesser if the processed item qualifies. The center and search
radius are initialized in the open-method.

public class SimpleConeSearchStreamIterator implements StreamIterator {
. . .
public void open(DynaBean config, StreamWriter writer) {

center[0] = Double.parseDouble((String) config.get(CENTER X));
center[1] = Double.parseDouble((String) config.get(CENTER Y));
center[2] = Double.parseDouble((String) config.get(CENTER Z));
Double radius = Double.valueOf((String) config.get(SEARCH RADIUS

));

maxDistance = Math.cos(radius.doubleValue());
this.writer = writer;

}

public void next(StreamIteratorEvent nextItem) {
. . .
double angle = SphericalTrigonometry.arcDistance(center, point);

if (Trigonometry.cos(angle) > maxDistance) {
writer.write(nextItem);

}
8Jim Gray et al. address in a technical report how cone-searches and other spatial data

searches can be realized in relational algebra and how database techniques can propel responses
to these queries significantly [GSF+04].

3.3 Astrophysical Workflow 27

}
}

Listing 3.6: User-defined simple cone-search.

3.3.3 Mahalanobis Distance

The SimpleMahalanobisDistanceIterator comprises the final steps of the small work-
flow. It computes the Mahalanobis distance and the polar angle between the
center of the cone-search and the data-item in the stream. This gives the user a
measurement how good the actual matches from the data stream are.

public class SimpleMahalanobisDistanceIterator implements StreamIterator
{
. . .
private double[] refPointCartesian;
private double[] refPointSpheric;
private double sigma = 1.0;
private StreamWriter writer;
public void open(DynaBean config, StreamWriter writer) {

List referencePoint = new ArrayList();
referencePoint.add(Double.valueOf((String) config.get(REF X)));
referencePoint.add(Double.valueOf((String) config.get(REF Y)));
referencePoint.add(Double.valueOf((String) config.get(REF Z)));

refPointCartesian = getDoubleArray(referencePoint);
refPointSpheric = CoordinateTransformation.toSpherical(

refPointCartesian);

if (config.get(SIGMA) != null) {
sigma = Double.parseDouble((String) config.get(SIGMA));

}
this.writer = writer;

}
. . .
public void next(StreamIteratorEvent nextItem) {

DynaBean parameters = nextItem.getParameters();

double[] cartesian;
double[] spherical;
List pointCartesian = (List) parameters.get(POINT);
cartesian = getDoubleArray(pointCartesian);

28 Chapter 3. Mobile Operators

Figure 3.3: Communication between stream processor and stream iterator.

List sphericalCoords = (List) parameters.get(SPHERIC);
spherical = getDoubleArray(sphericalCoords);

double arcDistance = SphericalTrigonometry.arcDistance(
refPointCartesian, cartesian);

double mahalanobis = arcDistance / sigma;
double polarAngle = SphericalTrigonometry.positionAngle(

refPointSpheric, spherical);

parameters.set(DISTANCE, String.valueOf(mahalanobis));
parameters.set(POS ANGLE, String.valueOf(polarAngle));

writer.write(nextItem);
}

}

Listing 3.7: User-defined mahalanobis distance.

In general case the processing of data items is implemented in the next(Stream-
IteratorEvent) method. It reads the input parameters from the provided parameter
object, calculates the result and writes the results back into the predefined pa-
rameters. Eventually, the processed data item – if it belongs to the result set –
is passed to the StreamWriter to write it on the output stream.

The sequence diagram 3.3 sums up the interaction between stream iterator,
stream writer, and external stream processor.

3.4 Integration of External Operators in FluX 29

3.4 Integration of External Operators in FluX

To integrate user-defined functions into FluX a special namespace udf is re-
served. Let’s assume our external operator is implemented in the class stream-
globe.udf.Average, this external operator could be integrated into the FluX engine
using udf:streamglobe.udf.Average($p/price).

As in the stand-alone case, external operators need to handle sequences of ele-
ments, coming from the input streams. When the extraction of the data relevant
was done by parameters in the plan specification this job is done by specifying
the selection paths in the function call of the XQuery. The buffers or sequences
are sent by the FluX engine to the user-defined function.

As the handling of DTDs is done by the FluX query engine and the external
operators only need to handle the buffers or sequences which are returned from
the engine.

When the FluX Engine is capable of returning multi-valued results (e. g.,
Coordinate conversion ra, dec results in x, y, z) external operators could be
integrated in the query engine.

The class loader will load the operator class file before the query engine is
started. So the engine can just instantiate the class as if it was not dynamically
loaded.

30 Chapter 3. Mobile Operators

Chapter 4

Query Execution Plans

With ObjectGlobe [BKK+01], a system for distributed query processing for per-
sistent data on the Internet was introduced. ObjectGlobe integrates machines
which provide processing power (cycle providers), distributed data sources (data
providers), and repositories offering functionality which can be dynamically loaded
during query processing (function providers).

In distributed systems with data publication and data subscription a schema
is necessary to organize data. In the context of distributed databases a global –
not necessarily central – schema is designed, besides an allocation schema (where
and how data is distributed), and also a local schema which describes how data
is organized on a single installation [KE01].

In the StarGlobe data stream management system users can register streams
(induce the data into the architecture) and query those registered streams. The
StarGlobe infrastructure offers two interfaces to specify transformations on data
streams. The registerQuery interface enables optimization through the optimizer
and thus reuse of preexisting streams. If users have specific knowledge about the
application context, our system should enable them to use it by specifying query
execution plans on their own. This is possible with the registerPlan interface.

When a SQL query is send to a RDBMS the query optimizer composes the
best plan according to a specific cost model. For example, it decides which join
implementation is the best, or whether the table should be accessed via an index
or a full-table-scan.

When a subscription is injected into the StarGlobe system it must be deter-
mined where to install the operations (or operators) into the network to fulfill
the query in an efficient manner.

4.1 Query Execution Plan Requirements

The StarGlobe system provides two separated interfaces to subscribe data streams:
queries and query execution plans.

32 Chapter 4. Query Execution Plans

Queries are registered by sending the WXQuery from thin-peer to the con-
nected super-peer. The speaker-peer optimizes these according a specific cost
model and then creates a plan which is installed at the super-peer of the user.

Under certain circumstances users might prefer to layout the execution plan
on their own. For example, our support for user-defined functions is at first
depending on a manual injection.

Especially in the context of stream-widening with regards to multi-query op-
timization, operators running at one station can be moved from one machine
to another (if it is too selective to support a newly injected subscription) or be
removed totally.

On the other hand, the optimizer also should generate query execution plans
and install them into the network. Thus it becomes evident that using the same
format for the user-installed query execution plans as well as for plans generated
by the optimizer would decrease system complexity.

After this considerations we present some of the fundamental requirements
for the query execution plans.

One Plan for Each Query. Looking at the ordinary system, each calculation
of a plan is triggered by the injection of a query. Therefore each plan should
represent a single query. However one can integrate sub queries into a single plan
which implies to use a recursive structure for the representation.

Lightweight XML. At the early stage of the system, users must write their
plans manually until they are supported by a graphical editor or similar means.
Consequently a plain text format seems appropriate. Having a validation of the
plan can be helpful in two ways. It can support the user during the editing
process and it can track down syntax and maybe some semantical errors before
installing a plan in the system. These were the arguments for using XML as
description language and to validate the expected structure using XML Schema.

Displaying Dependencies. A plan should make dependencies clear. A plan
can depend on the availability of a certain operator, rely on a query already
running in the system, or a sub query defined in itself. Some of these dependencies
can be checked with the referential integrity mechanisms of XML Schema others
can only be validated during runtime.

Easy Subplan Extraction. When a plan is installed at a peer it contains
several information classes. We distinguish between local information (the op-
erators which need to be installed at the local peer) and external information
(subplans which must be installed on neighboring peers). To reduce message size
and make it transparent to the peers whether the plan was injected directly at
them by a user or by the optimizer at the speaker-peer, the extraction of the

4.2 Examples of Plans 33

Figure 4.1: The A-Star workflow.

relevant subparts should be straightforward and each plan should be more or less
self-contained.

4.2 Examples of Plans

Having shown the facets of our plan structure we look at two comprehensible
examples of the query plan. They present the proficiency of StarGlobe supporting
user-defined operations as well as how the plan serves the optimizer as means to
disseminate the operators across the network.

4.2.1 Executing an XQuery

The first plan is quite a simple one. Figure 4.1 again shows the first astrophysical
scenario, and now lets assume, that the catalog at Peer − 0 is at the MPE
and the catalog contains data from the ROSAT satellite mission, especially the
ROSAT All-Sky Survey (RASS). An astronomer from the MPE is interested in
the Vela Supernova Remnant, which can be found roughly in the area of the
right ascension being between 120 and 138 degrees and the declination between
-49 and -40 degrees. Why an astronomer could be interested in that particular
area, we cover in more detail in chapter 6.

So the query is installed at the same peer as the catalog resides and therefore
the plan for answering this query looks like listing 4.1.

34 Chapter 4. Query Execution Plans

<?xml version="1.0" encoding="UTF-8"?>
<plan atPeer="@Peer0-GSH@" id="query-1" xmlns="urn:streamglobe.in.

tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

<streamoperator id="query-0" name="query"
xsi:type="queryStreamoperatorType">
<dependencies>

<stream id="stream-0"/>
</dependencies>
<source><![CDATA[

for $p in stream("stream-0")/photon
where $p/coord/cel/ra >= 120.0
and $p/coord/cel/ra <= 138.0
and $p/coord/cel/dec >= -49.0
and $p/coord/cel/dec <= -40.0
return $p
]]></source>

</streamoperator>
</add>

</plan>

Listing 4.1: The query execution plan for the Vela-XQuery.

The query is dependent on stream-0 which is already available in the StarGlobe
system and the WXQuery declaration is embedded in the source element of the
query operator.

4.2.2 Executing the A-Star Workflow

Listing 4.2 shows the overall structure of the manually edited plan for the A-Star
workflow. The plan structure starts at Peer 3 and includes all plans for the other
peers.

Only relevant subparts of the plan are shown in this chapter, yet the whole
plan can be found in appendix C.

<?xml version="1.0" encoding="UTF-8"?>
<plan atPeer ="@Peer3-GSH@" id="stream-4" xmlns="urn:streamglobe.in.

tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

...
</ add>
<plan atPeer ="@Peer2-GSH@" id="stream-3"

xmlns="urn:streamglobe.in.tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

4.2 Examples of Plans 35

...
</ add>
<plan atPeer ="@Peer1-GSH@" id="stream-2"
xmlns="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<add>
...

</ add>
<plan id="stream-1" atPeer ="@Peer0-GSH@"
xmlns="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

...
</ add>

</ plan >
</ plan >

</ plan >
</ plan >

Listing 4.2: The A-Star query execution plan.

The complete workflow is executed on four peers and gets installed at Peer 3.
Each plan contains the directives to add operators to the local query engine and an
optional subplan. This optional subplan is extracted and send to the appropriate
neighbor. In this specific example Peer 3 extracts the subplan of Peer 2 and sends
the plan to this peer. Eventually, Peer 0 is reached and as its subplan does not
contain further subplans, it can instantiate the operators specified in the add part
of its plan.

...
<streamoperator id="transform" codebase="@GAVO_JAR@"

name="org.gavo.streamoperators.CoordinateStreamIterator"
xsi:type="externalStreamoperatorType">
<dependencies>

<stream id="stream-0"/>
</dependencies>
<authorizedby>Tobias Scholl</authorizedby>
<inputstreamdata id="stream-0">

<dtd>
<![CDATA[
<!ELEMENT photons (photon)*>
<!ELEMENT photon (coord, phc, en, det_time)>
<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>

36 Chapter 4. Query Execution Plans

<!ELEMENT en (#PCDATA)>
<!ELEMENT det_time (#PCDATA)>
]]>
</dtd>
<variable name="RA" select="./coord/cel/ra" type="Double

"/>
<variable name="DEC" select="./coord/cel/dec" type="

Double"/>
</inputstreamdata>
<outputstreamdata>

<dtd/>
<variable name="cartesianCoordinates[0]" select="./

cartesian/x"/>
<variable name="cartesianCoordinates[1]" select="./

cartesian/y"/>
<variable name="cartesianCoordinates[2]" select="./

cartesian/z"/>
</outputstreamdata>

</streamoperator>
...

Listing 4.3: The coordinate transformer of the A-Star query execution plan.

Listing 4.3 shows the stream operator part of the plan for Peer 0. It specifies
the necessary meta-data to install and run the stream iterator. The codebase
attribute specifies the archive for the operator. The inputstreamdata contains
the variables to retrieve the right ascension and declination as Double values.
The automata to retrieve parameters from the stream are generated from the
DTD in the inputstreamdata. The outputstreamdata contains the paths where the
Cartesian coordinates will be stored to.

The specifications of the external operators for cone search and Mahalanobis
distance are similar to the coordinate transformation. Listing 4.4 only shows
a short fragment of the configuration of the cone search operator. The Carte-
sian coordinates of A-Star (as calculated in 3.3.1) and the search radius from
section 2.1.2 are specified in key value pairs.

<parameter>
<key>CENTER_X</key>
<value>0.5589609245067093</value>

</parameter>
<parameter>

<key>CENTER_Y</key>
<value>-0.619582747878259</value>

</parameter>
<parameter>

<key>CENTER_Z</key>
<value>0.5510715955356713</value>

</parameter>
<parameter>

<key>SEARCH_RADIUS</key>

4.3 Plan Structure 37

<value>0.5</value>
</parameter>

Listing 4.4: The cone search of the A-Star query execution plan (fragment).

The last operator is the display operator at Peer 3. The configuration of this
built-in operator just contains the dependency on the plan executed at Peer 2.

Having described the plan structure at two examples, a more abstract defini-
tion follows.

4.3 Plan Structure

The valid structure of a query execution plan is described with XML Schema. The
only top-level element and thus the only valid root element of XML documents
validated against this XML Schema document is the plan Element. The structure
of this element and the other sub elements are described either as types or using
in-line definition.

The full XML Schema of the query execution plans can be found in ap-
pendix B.

4.3.1 Top-Level Plans

The plan element describes all the operations at one peer which are necessary
to process the query. Operators might be added or deleted at this peer and the
installed operators can depend on other subplans installed at other peers.

As attributes the plan element has atPeer, an xsd:string, which is the Grid
Service Handle of the Peer. The Grid Service Handle is the URL where the Grid
Service can be addressed. The id (type: String) attribute is an identifier of the
plan which should have either a stream identifier (stream-#) or a query identifier
(query-#).

Structure

A query execution plan should at least add operators to a peer or delete them
from a peer. Unfortunately XML Schema lacks the possibility to describe a
pattern like (a — b — ab) without violating the Unique Particle Attribution
constraint [TMM05]. As a consequence we needed to make the add and delete
Element both optional and check for the occurrence of at least one of them in
the implementation.

The structure of a plan element is a sequence of add (optional), delete (op-
tional), and zero or more plan elements. The current prototype implementation
does not implement operator removal, so currently the delete element is not pro-
cessed.

38 Chapter 4. Query Execution Plans

Identity constraints

XML Schema extends the preliminary support of identity-constraints of DTDs us-
ing ID and IDREF(S) attributes to a more sophisticated mechanism using xsd:key
and xsd:keyref elements.

In a plan there are several identity constraints, and by defining them in XML
Schema we can assume their validity in our application code.

The first identity constraint is the uniqueness of operator descriptors and plan
identifiers. Installed operators can refer to other operators or subplans executed
on neighboring peers. The most flexible way to reference to operators on other
machines would be an operator-level reference mechanism. To achieve this one
would need to make all operators installed at a single peer available using result
dispatchers. To find a trade-off between flexibility and reducing the number of
threads, we decided only to make the output of the top-most operator installed
at a peer reachable via the identifier of the plan.

To guarantee the successful resolution of references to either same-peer opera-
tors or subplans the identity constraint planIdOrOperatorId defines the valid range
for these attributes. The referential integrity is controlled with the validReference
constraint.

In the case operators are also deleted, the unique-constraint doNotDeleteNew-
Operators defines uniqueness on operator names in the whole plan. This avoids
deletion of operators which were just installed by this plan. Perhaps, this con-
straint is too restrictive, when only operators are added. Distinct operators with
same identifiers on different machines do not interfere.

4.3.2 Adding Operators

The structure of the add element is a sequence of one or more stream operators.
These operators will be installed at the peer whose Grid Service Handle is speci-
fied in the surrounding plan element. There are several kinds of stream operators
and they will be described in section 4.3.5. The XML description of the stream
operators must be a subtype of abstractStreamoperatorType.

4.3.3 Deleting Operators

Again, the content of deleteOperatorsAtPeerType, which describes the structure
of delete elements is related to addOperatorsAtPeerType. It is composed from a
sequence of one or more stream operators. The reason to distinguish between two
types is that to set up an operator more meta data is necessary than to delete it.
In the latter case only the id of the operator is sufficient to find it and stop its
execution.

To show the connection to the add element we use “streamoperator” as name
for the sequence elements but use different structures mirroring the different

4.3 Plan Structure 39

amounts of information needed for the complementing tasks.

4.3.4 Stream References

The input stream of stream operators can be twofold, namely a checked or
unchecked source. On the one hand it can be the output stream of an opera-
tor at the same peer or a stream which is generated by a plan executed on the
neighboring peer. These are the input sources that are validated with the in-
tegrity constraint defined in the plan Element (see 4.3.1). These references are
specified with the streamreferenceType.

Streams or subscriptions can be also referenced using an element of the stream-
Type, yet without the luxury of being checked valid using XML Schema tech-
niques. The reachability of the identifiers specified have to be verified by the user
(when injected manually) or the optimizer (when generating a query execution
plan). An error in this type of source can only be detected during run-time.

4.3.5 Stream Operators

The abstractStreamoperatorType can be used for two purposes. On the one hand
in the add element only this generalization is referenced and how the individ-
ual implementations are structured is not of importance in that context. On
the other hand, information about stream operators which is needed for every
implementation is extracted into this type.

Looking at stream operators from a high level of abstraction they need to
define an identifier (so that they can be referenced or deleted later on) and specify
all their dependencies.

Currently, the StarGlobe system only supports single dependencies (i. e., only
one input stream) resulting in a linear execution plan. The extension to support
multiple input streams from the “plan perspective” is obviously to set the maxOc-
curs attribute to unbounded. Implementing the real capability to handle multiple
input streams deserves – as being far from straightforward – is a master’s thesis
on its own right.

Built-In Operators

The basic built-in operators of the system have a very special feature that dis-
tinguishes them from other operators. First, they do not need any configuration
besides that for any operator: the dependency. The forward, display, and (mean-
while) obsolete null operators just forward the stream which is plugged into them.
They especially do not have notion about building blocks of a stream. The for-
ward operator makes streams at a peer accessible for neighbors. The display
operator is the last operator in an execution plan and displays the result at the

40 Chapter 4. Query Execution Plans

last super-peer which injected the subscription. How the display operator can be
replaced by the introduction of thin-peers is described in chapter 5.

Query Operators

The queryStreamoperatorType is the representation of a WXQuery injected into
the system. The source element contains the WXQuery, the optional elements
input-dtd and output-dtd specify the structure of the input and the output stream
respectively.

Whether the input-dtd is integrated into the plan is subject to trade-off consid-
erations. If it is integrated, super-peers do not need to contact the speaker-peer
in most cases to resolve the DTD. When integrated into the plan the overall num-
ber of messages during the query installation process decreases, yet the message
size increases (not considering the overhead of wrapping the messages into SOAP
envelopes).

Another option could be to enrich the plans in a recursive fashion as the
subplans get installed and subplans return their DTD to the next plan in the
hierarchy.

In general it would be possible to enhance a WXQuery with user-defined
functions as well. Parameters which are required are the code base (a repository
in the sense of a function provider) where an archive containing the compiled
Java classes can be retrieved from and the name of a class which implements the
user-defined function.

The ability of using user-defined functions in queries themselves depends on
the query engine and thus was not in the focus of this work. However, the design
of the interface and the integration of mobile operators is comparable to the
integration of external operators and is discussed in section 3.4.

External Stream Operators

The meta-data about external stream operators is defined in externalStreamop-
eratorType. From the variety of operator repositories, which provide the system
with user-defined special purpose implementations, we support local or web-based
repositories. We have chosen these two options for several reasons. Web-based
repositories enable users to share their implementations of operators throughout
the infrastructure in a convenient way. The compiled stream iterator can be
made available on a web server, e. g., by compressing all necessary classes into a
Jar archive. Additionally we support repositories situated at the local file sys-
tem. The name attribute specifies the Java Type whose Class file implements
the StreamIterator interface and can be loaded from its codebase. The restric-
tion on the http- and file-protocol is defined in codebaseType. The attribute
authorizedby is currently not used, yet can specify the distinguished name of the
certificate used to sign the jar-File.

4.4 Plan Implementation 41

As stated beforehand, we generally assume trusted and collaborative environ-
ment for the operators. Should the importance of security issues rise, we could
require the jar-files to be signed with the credentials provided by the security
services of the Globus-toolkit. When the authorizedby attribute adheres to the
DistinguishedName patterns described in RFC22531 it could be used by the CA
of the Globus instance to verify the signature.

Input stream and output stream specify a dtd element and also provide a
mechanism to select parts of the individual building blocks of the input stream
inputstreamdata and to write it back to the output stream outputstreamdata. An
external operator retrieves data from the input stream and can write data back
on the output stream. To map between stream content and local variables of
the user-defined function typedVariableMappings and untypedVariableMappings are
used.

The latter specify the path where new data calculated by the mobile operator
should be written back to the stream. Therefore the user does not need to specify
type information as the data is serialized into XML. When deserializing data from
XML into variables for the external functions type information is very useful and
therefore the user can specify these.

4.3.6 Extending the Operator Hierarchy

In retrospective, the name “built-in operators” has been misleading as its in-
tention is to subsume all operators that only need the stream identification for
their input stream. Built-in, meaning “provided by the infrastructure”, could be
another unintended interpretation.

When a new operator type is developed, having its own kind of configura-
tion, it is perfectly safe to create a new complexType which extends from the
abstractStreamoperatorType.

We also decided not to include any of the general extension features provided
by XML Schema as xs:anyAttribute or xs:anyElement. From our perception, gaps
between flexibility in the plan and realized implementation would lead to a blurred
conception of the real functionality by developers and people using the system.

4.4 Plan Implementation

The classes related to the representation of external operators in the overall plan
structure is shown in figure 4.2.

The ExternalOperator is a subclass of the generic OperatorElement which has an
operator identifier and dependencies. This class is basically the equivalent to the
abstractStreamoperatorType. untypedVariableMapping and typedVariableMapping
are realized with ParameterMapping and TypedParameterMapping respectively.

1http://rfc.net/rfc2253.html

42 Chapter 4. Query Execution Plans

Figure 4.2: Classes of external operators in plans.

4.4 Plan Implementation 43

registerQuery

Peer 1Peer 2

registerQuery

Peer 3 Peer 0 SpeakerPeer

SpeakerPeer and Peer 2
run on the same machine

installMahalanobis
serveContent

openSGTPConn()

serveContent

openSGTPConn()
serveContent

openSGTPConn()

calculateOperatorDistribution

installConversion

installConeSearch

Figure 4.3: Centralized Plan Execution forces the speaker-peer into the center of
communication.

4.4.1 Plan Distribution

For illustration we still consider the network of the A-Star workflow with the
four super-peers. At super-peer Peer0 we inject a query on stream s1, which is
installed at super-peer Peer3. Peer2 also takes over the part as speaker-peer.
How do we disseminate the workflow in the system?

We compare a centralized approach without a plan with a decentralized plan-
based technique.

The speaker-peer calculates what stream processors are necessary and invokes
their installation. As soon the operator is installed at a super-peer, it establishes
a SGTP connection to retrieve the necessary data stream.

When looking at the sequence diagram (figure 4.3) of that communication
process the speaker-peer is obviously in the center of communication. This has
the advantage that all the processing is at one place. Unfortunately this leaves
all the work at the speaker-peer which is also responsible for calculating the best
plan and also reduces the possibility to change or extend the installation process
at peers.2

The sequence diagram (figure 4.4) shows how individual peers interact when
the query plan is installed at the peer of the subscriber and this installs the
subplans at the according neighbors. When installing a query execution plan on
a peer two tasks have to be accomplished. The operators for this specific peer
(specified in the add element) as well as the descending subplan must be sent to
the according neighbor.

As the sequence diagrams show the interaction between the individual com-
ponents in the approach is more centralized than in the second. Martin Fowler
discusses the advantages and disadvantages of centralized control on a similar
example in UML Distilled [Fow03], which can also be applied on this example.

2Possible extensions include quality of service or accounting and billing.

44 Chapter 4. Query Execution Plans

registerQuery

Peer 1

registerQuery

SpeakerPeerPeer 0 Peer 2 Peer 3

calculatePlan

executePlan

executePlan

getSubPlan

executePlan

getSubPlan

executePlan

getSubPlan

installOperators

installOperators

serveContent

openSGTPConn()

installOperators

serveContent

openSGTPConn()

installOperators

serveContent

openSGTPConn()

Figure 4.4: Distributed Plan Dissemination

4.4 Plan Implementation 45

With centralized control all processing is done in one place (the speaker-peer). In
the distributed control we need to “chase around the objects” to follow the con-
trol flow. Distributed control uses polymorphism in favor to conditional logic. As
polymorphism results in more methods there are more plug points for overriding
and variation. In addition, effects of change are more localized.

The plan distribution processing can be done asynchronously or synchronously
and there are advantages and disadvantages for both sides.

4.4.2 Synchronous vs. Asynchronous Plan Distribution

A synchronous plan distribution does not need to take multi-threading issues into
account and therefore is implemented pretty straight-forward. The synchroniza-
tion of the plan and its dependencies is done by the control flow. So we would
install one subplan after another and finally all the local operators specified in
the plan.

Executing the plans in a complete asynchronous fashion merits in more paral-
lelism, could imitate the synchronized technique, and eventually in less temporal
coupling. As a concrete example all subplans and local operators are installed in
parallel.

We decided to implement a compromise between full flexibility and full syn-
chronization. In StarGlobe first the subplans are installed and the local operators
afterwards. As the local operators depend on the results of subplans, a failure
during the installation process propagates through the plan hierarchy.

This moderate synchronization is also useful in the context of multi-query
optimization. When a user registers a query, the subscription is forwarded to the
speaker-peer, as only the speaker-peer has an overview of the streams available
in its segment. Each installed query is taken into account to optimize the query
execution plan for the new query. Now the speaker-peer can take advantage
of the fact that its optimizer has calculated the plan. Whenever a super-peer
registers a new query, successful execution only is guaranteed, if the plan was
disseminated properly. Thereafter the optimizer is updated about the new query
for forthcoming optimizations.

In our current prototype, however, we sometimes need to contact the speaker-
peer to retrieve meta-data about the new plan and therefore the meta-data is
installed beforehand. Forthcoming developers are encouraged to put all the meta-
data into the plan so that optimization process and plan distribution get more
decoupled.

4.4.3 Defining XQuery Plans

In the current prototype, plan installation is triggered by manually written and
optimized plans. To free potentials for user-defined queries we consider provid-
ing the user with an extended WXQuery. StarGlobe could distinguish between

46 Chapter 4. Query Execution Plans

standard WXQuery-subscriptions and those using external operations. Then a
second optimizer could be developed to perform plan calculations. Listing 4.5
gives an outlook of a possible query defining a coordinate transformation.

<photons>{
for $x in stream("vela")/photons/photon
let $r := ext:transform($x/coord/cel/ra, $x/coord/cel/dec)
return

<transformed>
{$r/x}
{$r/y}
{$r/z}

</transformed>}
</photons>

Listing 4.5: Optimizable XQuery format of external queries.

Chapter 5

System Architecture

Thin-peers are an integral part of the StarGlobe architecture. These clients
provide data sources for P2P stream sharing and subscribe available data streams.

At the early stage of implementation however, they played a subordinate role
for StarGlobe – and so they did in the preceding chapters. What better time
than now to make a change.

5.1 Thin-Peers

For the optimization process they play a subordinate role. Their processing
capabilities and their reachability cannot be foreseen and thus should not be
considered by the speaker-peer when distributing the load on the network.

The speaker-peer is in charge of having an overview over the super-peer net-
work to provide the optimizer with the necessary information. As the thin-peers
are very volatile it is preferable not to burden the speaker-peer also with the
maintenance of thin-peers.

We consider it as adequate to put the super-peers in charge of maintaining
their thin-peers as speaker-peers are responsible for the optimization in their
assigned network segment. At first sight, thin-peers providing streams do not
differentiate much from thin-peers registering queries. In the complete context,
however, it is arguable that these two kinds of thin-peers should be realized
individually.

A thin-peer needs to register with a super-peer before it can send queries to the
StarGlobe system. These “rendevouz-points” are available through a directory
service or simply a web site. When it is registered, it can send subscriptions to
its registrator which initiates the query installation on behalf of the thin-peer.
The super-peer provides the thin-peer with a unique query-id and now the client
is able to decide whether to request the actual output of the query or not.

48 Chapter 5. System Architecture

5.1.1 Content Providers

When a stream is integrated into the system it is important for the optimizer
to collect statistics about this stream. Frequency and size of building blocks are
only a subset of the collected data. To support remote initialization for content
providers, they have been realized as Grid services [Fen05].

A content provider is critical for queries that depend on its stream. As soon
as a content provider leaves the network, queries on that data stream can no
longer be processed. A query can be cancelled quite easily, unless there are
different subscriptions that reuse its result stream. The system needs to assure,
that reused streams are not stopped, when original subscriber has lost its interest
in the query.

Only those stream operators which are running on super-peers between the
subscribing thin-peer and the first super-peer where the stream is reused, can
be stopped without side-effects. Depending on the overhead and load situation
at the executing peer, it might be better to mark the operators as removeable
instead of stopping them immediately.

5.1.2 Query Subscribers

During the implementation of thin-peers several constraints must be fulfilled.
First, a thin-peer can only connect to exactly one super-peer. We check this
constraint at creation time by providing only a constructor which has a super-
peer as argument.

A second constraint is, that a peer should not be able to change its super-
peer or connect to a second super-peer. By not providing access methods to
the reference of its super-peer, a thin-peer cannot change the super-peer it is
associated to. Finally, only thin-peers which are registered at a super-peer can
register queries at it. This constraint is realized by providing a connect and
disconnect interface for thin-peers at super-peers. Each time a new query is
registered, the thin-peer must also provide its id and if the super-peer has not
provided this id, the registration fails.

Class diagram 5.1 shows the relationship between thin-peers and the com-
ponents of the StarGlobe it depends on. The diagram concentrates on methods
and instance variables in Peer and PeerPort which are important for thin-peers.
PeerPort is the Grid service interface of super-peers and Peer is the provider of
this interface, thin-peers interact with.1

5.1.3 Query Results

When people register queries, they are most commonly interested in seeing the
result stream. Otherwise, in the context of monitoring and evaluating StarGlobe,

1Grid Service interfaces correspond to WSDL portTypes.

5.1 Thin-Peers 49

Figure 5.1: Thin-Peers and associated classes.

50 Chapter 5. System Architecture

Figure 5.2: Query registration through thin-peer.

there are cases where there is no interest in the result of the query but in the
impact on the overall infrastructure.

Therefore the optimization process has to be changed in a slight way. The
implicit display operator which is installed at the issuing super-peer (remember
that we used to register queries directly at super-peers) is now “pushed” to the
thin-peer.

How can this be achieved? Either the optimizer generates display operators
as well and the super peer then decides at which thin-peer the result should be
displayed. An alternative solution ignores display operators in the optimization
process in general. Displays are established from the thin-peer.

To display the result of a query or not can be decided dynamically.

In StarGlobe, streams are transmitted using the SGTP. When the user reg-
isters a query the system responses with the identifier of the query. Using this
identifier and the connection to its super-peer, the thin-peer connects to the
super-peer and displays the results.

The interaction between thin-peer and super-peer is again depicted in se-
quence diagram 5.2.

The implemented display used to write all data on the text console. With the
more flexible approach described in this section, we can direct the output of the
queries to files, to text areas in a graphical user interface or similar devices.

5.2 Generating Scenarios 51

5.2 Generating Scenarios

A StarGlobe scenario can be described by the following characteristics:

• number of super-peers,

• topology of the super-peer backbone network,

• setup of queries and streams, and

• the type of the scenario (local, distributed, hybrid).

Scenarios are described with an XML document and there are several exam-
ples in the appendix to the demonstration scenarios (appendix D).

Globus-Toolkit 3 runs as container-based hosting environment – as service
container – which is comparable to J2EE, .NET, and Sun One and provides
a common framework where Grid services can be instantiated and composed
[FKNT02]. Grid services can be defined as factories, meaning that several service
instances can run in the same service container and interact with each other.
PeerPort (the super-peer Grid service) is such a factory.

This offers a great flexibility in terms of how many super-peers run on a single
computer, in a single service container, or even in a combination of those.

In the local scenario all super-peer instances are run on a single computer and
in a single container. This setup is applicable during development or demonstra-
tions of the system. Peers are instantiated by the PeerFactory of the container
and reside in the same service container as the factory. So the whole network is
created on a single machine if all Peers are instantiated from the same factory.
To achieve a global identification (Grid Service Handle, GSH) for Grid service
instances, these are generated by appending the factory-GSH with a hash value.

Though this scenario is very useful for implementation and demonstrating
purposes, it is not very distributed. In a real distributed scenario, it is preferable
to have a single Peer per station. So how can we achieve this, without changing
the instantiation process? We only create one Peer from each factory.

It might be in the interest of the community if some participants run several
StarGlobe peers on a powerful computer, but maybe not all have this capacity and
can only one StarGlobe instance. If such a scenario is intended, we can specify a
mapping between super-peers and PeerFactories and thus physical nodes.

5.3 Plan Installation

To install execution plans into StarGlobe, we provide a command-line based pro-
gram, the streamglobe.client.p2p.PlanDemoClient. A example invocation for the
A-Star plan would be:
java streamglobe.client.p2p.PlanDemoClient -p generated-gsh.txt -i 3 astarworkflow.xml

52 Chapter 5. System Architecture

After starting the Globus Toolkit 3 service container, the scenario can be
set up with the streamglobe.client.p2p.GridServiceGenerator. As stated above the
GSHs of the individual peers change everytime, so it is important to run the
GridServiceGenerator with the -g option. This stores the generated GSHs in a
file.

If the plans passed to the PlanDemoClient contain the pattern @Peern-GSH@,
where n is a zero-based index, this pattern is replaced by the n-th line of the
handle-file. The option -i m configures the client to send the plan to m-th peer
(default, first GSH in the handle file).

5.4 Monitoring enabled

As our application is implemented in Java there are no platform-specific issues
as long as we do not leave the virtual machine. Unfortunately the monitoring
mechanisms of the Java Runtime Environment offer not very much support for
tasks such as measuring the CPU load of a machine or traffic on network links.
At the moment this limits us to monitor real data on Linux servers only.

On the other hand, the statistiX component gathers data about peers and the
network load. This data then influences the result of the cost function of the cost-
based optimization strategy. If the statistics show, that a network connection will
be overloaded, when a candidate-plan2 is installed, the optimizer will try to find
a better query evaluation plan [Fen05].

To keep the statistics up-to-date, the optimizer integrates Counter stream
processors in the plan, between each plan and the subplan it depends on. These
processors operate on the frequency and the average size of data items, a base-load
of operators and a performance-index of super-peers. Base-load and performance-
index are measures designed to differentiate between operators and the processing
capabilities of individual peers.

These statistics are not necessary for the other optimization strategies, as
these do not consider network traffic or peer load in their calculations and there-
fore just would squander resources.

However, this update-mechanism to collate the statistical information, would
suffice to monitor a simulated system regardless of optimization strategy. Addi-
tionally, other mechanisms (using the proc-file system, or a Java Native Interface)
may come short in providing such an accurate figure, especially if “network usage”
is concerned, as the Counter operators only operate on unbiased data.

By setting the boolean parameter (“monitored”) to true, the optimizer can
be configured to include these operators regardless of optimization strategy or
platform. This enables monitoring of every StarGlobe installation event those on
a single computer.

2A plan, the optimizer calculated to retrieve the best plan according to its cost function.

Chapter 6

Monitoring and Evaluating
StarGlobe

When subscribing to a data stream via submitting a query or a query plan to our
system the user is content when getting its results. From an (software-)architects
perspective this is not enough. As described above, the StarGlobe system has
a variety of configuration options and the effect of such configurations on the
overall performance is important.

At the moment, command-line based clients exist to install query evaluation
plans or register WXQuery subscriptions to the system. Franz Häuslschmid and
Bo Feng conducted various benchmarks which supported the contention that
using StarGlobe lead to a reduced load on the network and the individual peers.

Eventually, the successful application for a demonstration at the VLDB Con-
ference 2005, was an additional driving factor to develop an interface to monitor
and evaluate the StreamGlobe resp. StarGlobe infrastructure [KSKR05].

As soon as it comes to graphical user interfaces, there is an almost infinite
source of ideas and neither a less amount of personal preferences which can be
built into such. Therefore developing a GUI is cursed to be an “endless story” and
certainly is not finished by the submission of this thesis. In the following we use
the terms GUI or SGG1 as synonyms for the graphical user interface described
in this chapter.

6.1 General Requirements

Providing a single point of control is the key to monitor a distributed architecture.
The flexibility of how StarGlobe can be set up enforces a clear abstraction from
whether the monitored instance is running on the same or a different machine.

1Depending on the point of view either StreamGlobeGui or StarGlobeGui. In the implemen-
tation we used the class name StreamGlobeGui and therefore use it throughout the text as
well.

54 Chapter 6. Monitoring and Evaluating StarGlobe

People behind a SGG should be able to switch between instances during runtime
and get several details on the system and its components.

One first requirement is the visualization of the network topology. Without
SGG, the network topology only could be derived from the scenario file injected
by the GridServiceGenerator. The development of a separate layout engine was
not feasible due to resource constraints. However, the flexibility to use different
layout engines is beneficial if one engine offers a layout superior to that of an
other one.

An additional requirement is to display detailed information about system
components. Several data about the system including setup, super-peers, thin-
peers, connections, queries, and streams.

Setup-specific data is stored at the speaker-peer of each StarGlobe subnet and
reveals information about the strategy used by the optimizer, how many queries
were registered at the speaker-peer and how many of them reused preexisting
streams or were rejected. Statistics about the subnet supervised by the speaker-
peer (e. g., number of super-peers, number of queries) could also be displayed.

Users might be interested in the current CPU load, the upper limit of com-
putational resources, the installed stream processors on an individual super-peer
as well as which streams (or queries) are available.

Displaying the traffic for every single direction of a network link does not only
offer information about potentially overloaded edges but also demonstrates how
data disseminates throughout the network.

When dealing with queries, the structural information before and after pro-
cessing, and thereby involved peers (subscribing thin-peer and processing super-
peers) are in the interest of users and developers. These considerations map
equivalently on data streams.

6.2 Demonstration-Specific Conditions

The crucible by which a successful demonstration of an infrastructure prototype
will be judged is how it demonstrates benefits in an intuitive way and how it
fulfils the expectations raised by the proposal. And at best, all within less than
three minutes.

The main focus of the GUI clearly is the monitoring aspect and the visualiza-
tion of how the load on specific network links or peers in the network is reduced
by the optimization strategy.

This is achieved by showing several scenarios each setting the focus on different
characteristics of the system.

Bo Feng covers details and issues about generating query-batches for bench-
marks or exemplary scenarios, so we will not go into great detail on that topic
[Fen05]. We developed a generator, which uses several query templates for vari-
ous streams and builds scenario descriptions according to its parameters. These

6.3 The Vela-Scenario 55

scenarios vary in topology of the super-peer backbone network, in the number of
super-peers, and the setup of queries and streams.

Offering various scenarios or topologies shows the flexibility of our infrastruc-
ture and gives some options to the presenters to meet different needs of individ-
ual visitors.2 The main aspects to be delivered by the scenarios are optimizations
gained by using data stream sharing and prevention of overload situations as well
on overlay network links as on individual peers.

The demonstration setup should enable the presenter to compare different
strategies. The number of parallel running instances should be enough to compare
all available optimization strategies. In addition to that, several setups reduce
the time needed to start a new example, since one basic example can be up and
running in the background.

The Vela Scenario is used in other publications on the StreamGlobe system
[KSH+04, KSK05]. Consequently, some attendants of the demonstration might
know it. Besides being based on real (astrophysical) data from the ROSAT All
Sky Survey (RASS) catalog, it is a very concrete example and therefore the queries
can be referenced by names like “the Vela query” or “the RXJ query” instead
of “query-0” and “query-1” on the RASS catalog (instead of “on stream-0”). A
concrete example also might be easier to understand than a more abstract one.

Throughput measurements show the long-term benefits of P2P stream shar-
ing. A result like “x of n queries failed due to an overload situation” with the
traditional approach in contrast to a successful subscription of all queries in the
optimized case should convince the critics.

Additionally, the demonstration prototype should convey where data stream
processing takes place and how it actually works.

6.3 The Vela-Scenario

The Vela Supernova Remnant (shown in figure 6.1(a)) is visible remainder of a
between 12 000 and 30 000 years old supernova in the Vela3 constellation. The
RXJ0852.0-4622 supernova remnant has been discovered by observations of the
ROSAT satellite [Asc98].

The MPE has provided a subset of the ROSAT catalog, which is submitted
into the StarGlobe architecture. Each record of the data set resembles a photon
and the XML (structured as shown in listing 6.1. It contains information about
the celestial coordinates (ra, dec), information about the detection time and co-
ordinates (dx, dy, det-time, the detection pulse (phc) and the therefrom calculated
energy (en) of the photons.

<!ELEMENT photons (photon)* >
<!ELEMENT photon (coord, phc, en, det-time)>

2Presenters like a bit of variety, too.
3from Latin velum: sails [Wik05a]

56 Chapter 6. Monitoring and Evaluating StarGlobe

(a) The Vela Supernova Remnant. (b) The RXJ0852.0-4622 Supernova
Remnant (disc-shaped emission in the
lower left).

Figure 6.1: Two ROSAT X-ray images of the same sky region in the Vela con-
stellation taken at different energies (the second only shows photons
having an energy greater than 1.3 keV).

6.3 The Vela-Scenario 57

<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>
<!ELEMENT en (#PCDATA)>
<!ELEMENT det-time (#PCDATA)>

Listing 6.1: DTD of the Vela stream.

The Vela Query The first query selects photons from the area of the Vela
supernova remnant.

<photons>
{

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0
and $p/coord/cel/dec >= -49.0
and $p/coord/cel/dec <= -40.0

return
<vela_photon>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/phc} {$p/en} {$p/det-time}

</vela_photon>
}
</photons>

The RXJ Query The second query selects photons only with a high energy
impulse (greater than 1.3 keV) in the area of the RXJ0852.0-4622 supernova
remnant.

<photons>
{

for $p in stream("stream-0")/photons/photon
where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5
and $p/coord/cel/ra <= 135.5
and $p/coord/cel/dec >= -48.0
and $p/coord/cel/dec <= -45.0

return
<rxj_photon>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</rxj_photon>
}
</photons>

58 Chapter 6. Monitoring and Evaluating StarGlobe

Window-Based Aggregation RXJ Query I The third query performs a
window-based aggregation by calculating the average energy pulse from photons
in the RXJ area. The aggregate is calculated over 20 photons, and re-evaluated
after 10 new photons have arrived.

<photons>
{

for $w in stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]
| count 20 step 10 |

let $a := avg($w/photon/en)
return

<avg_en>
{$a}

</avg_en>
}
</photons>

Window-based Aggregation RXJ Query II The final query performs the
same aggregation as the previous query, however using a different window speci-
fication.

<photons>
{

for $w in stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]
| count 60 step 40 |

let $a := avg($w/photon/en)
return

<avg_en>
{$a}

</avg_en>
}
</photons>

The four queries are installed in the order as described into the system at
different peers. Some reader may already have recognized, that each of the RXJ
queries can reuse the previously installed queries (as RXJ is a sub area of Vela, and
non-aggregated RXJ is reusable for aggregation queries) to calculate its result.

More on the WXQuery specification and on the techniques StarGlobe uses
to solve the query-containment issues arising in this context can be found in a
technical report [KSK05].

6.4 Demonstration Data Set 59

Catalog Total Vela Query RXJ Query

RASS Fragment 25 617 873 2 268 074 (≈ 9.5%) 6 203 (≈ 0.02%)
Demonstration Data Set 30 000 12 000 (40.0%) 3 000 (10.0%)

Table 6.1: Selectivities of the Vela query (query 1) and RXJ query (query 2) in the
original RASS fragment and the data set generated for demonstrations.

6.4 Demonstration Data Set

The streams in the scenarios are generated from files. From the data sources
provided by MPE several subsets have been converted into XML. Thus several
data sets at different scales for development, demonstration, or benchmarks are
available. A very fast and to some extend reasonable approach is using the first
n rows of the original data. However, these turned out to be not appropriate to
supply useful data for all scenarios.

Especially the construction of the data set for the paper-scenario was quite
challenging on its own. The original subset (provided as CSV-file) of the ROSAT
All Sky Survey (RASS) catalog contains 25617873 entries. Well, how many qual-
ify for the Vela-query and the RXJ query? Knowing the selectivities, how are
they changed?

At this point, we decide to load the data into a database, as “select count(*)
from . . . ” queries on the one hand retrieve the selectivity of an individual
query quite fast and on the other hand the import and export capabilities of
the database are helpful in generating the final data set. Table 6.1 shows the se-
lectivities of the first both queries in the Vela-Scenario. In the original fragment
RXJ-photons make up 0.3% of those matched by the Vela query. Assuming, an
average visitor of the demo spends around 5 minutes in front of it, it becomes
evident that we have to modify these selectivities. Otherwise the results for the
RXJ query and the both aggregation queries would be hardly visible.

The final data set consisting of 30000 photons is generated by combining
database views, load- and export-commands of DB2 Universal Database V8.24

and the command-line tool sed, a streaming editor.5 3000 photons qualify for
the RXJ query and thus for the aggregates, additional 9000 photons are in the
Vela area yet not in the RXJ area, and the remainder is outside of the Vela. The
spherical coordinates of the demonstration data set are plotted in Figure 6.2 and
the three-dimensional plot of 6.3 shows the energy of the photons.

4http://www-306.ibm.com/software/data/db2/
5Since SQL does not guarantee any order on the result relation besides one specifies an order

by clause and there is no way in telling SQL to retrieve “every nth data item”, we combined
state-of-the-art database technology with “the Power of Command Shells” [HT99].

60 Chapter 6. Monitoring and Evaluating StarGlobe

Figure 6.2: The demonstration data set. The red rectangle in the left lower part
of the plot is the Vela supernova remnant. The red spot in the upper
right part of the data stream is 1RXSJ204813.3+332626 (alias A-
Star).

 0 50 100 150 200 250 300 350

-80
-60

-40
-20

 0
 20

 40
 60

 80

 0
 0.5

 1
 1.5

 2
 2.5

 3

EN (energy)

RA (right ascenation)
DEC (declination)

EN (energy)

Figure 6.3: Energy distribution of the demonstration data set.

6.5 SGG Design 61

Figure 6.4: Main components of the SGG. It contains three main areas: (1) a tree
view, (2) an area with detailed information, and (3) a visualization
of the network topology.

6.5 SGG Design

The SGG (as shown in figure 6.4) has three main components to address the
requirements presented in the previous sections. The tree view, shows the com-
ponents of the visualized network (peers, connections, queries, and streams). Tree
and network are in a general sense multiple views of the same data model.

The following data is shown in the tree view and the details area respectively:

Peer CPU load (measured in percent of the provided resources), URL (the GSH
of the super-peer).

Connection total traffic, traffic for each direction (all measured in bits-per-
second).

Query (W)XQuery source, query execution plan (both shown in details area)

Stream DTD (shown in details area)

62 Chapter 6. Monitoring and Evaluating StarGlobe

Figure 6.5: streamglobe.gui package overview

6.5 SGG Design 63

Details about the visualization of the network topology and color scheme is
described in section 6.6.

The general structure is realized as shown in figure 6.5. The application
class StreamGlobeGui interacts with several interfaces and abstract classes. A
LayoutEngine provides the functionality to layout a network according a graph
drawing algorithm, which and displayed in the DisplayPanel.

The GuiClient connects to the StarGlobe system and collects data from the
system. Which kind of connection strategies are available, an overview of the
both associated packages, and how connections are set up is described in the
next section.

The EventMapper interface provides methods to map selection events of the
tree view and the implementation of the network visualization. The components
of a network are subsumed in the streamglobe.gui.model package, where abstract
classes provide access to the concrete implementations via the Implementation
interface. That enables the event mapping mechanism to access concrete imple-
mentations, without the need for a more specific interface.

To keep the system independent from the layout engine and the display com-
ponent, we use the Abstract Factory design pattern [GRJV95]. The GuiFactory
provides the SGG with implementations of the interfaces described above.

GraphViz6 is our layout engine of choice, as the project provides a variety of
different layout algorithms. Additionally, Grappa7 is a Java library to display
such graphs embedded in Swing. GraphViz uses the Dot grammar to describe
graphs . To implement the basic interfaces SGG is depending on based on the
Grappa library , is the task for streamglobe.gui.grappa. Before we outlay the
structure of the streamglobe.gui.layout.graphviz module we cover how the actual
monitoring mechanism works.

6.5.1 StarGlobe Monitors

The StarGlobe system can be monitored from a graphical user interface or just a
command line tool. However, there are common needs of both components that
are extracted to the MonitoringClient class in the streamglobe.gui.monitoring pack-
age (see figure 6.6). When users are only interested in the topology it is appro-
priate only to get updates about topology changes as peer addition or removal.
This can be triggered with the collectsDetails flag. Moreover, if an interesting
snapshot is currently displayed in a visual tool (e. g., during a demonstration)
a mechanism to control the monitoring activity is necessary. As speaker peers
control the segments of the StarGlobe network, these are connected to get the
basic topology of their subnet. Thus access to the other super-peers in the subnet
is achieved. How the data exchange between monitor and system is driven can

6http://www.graphviz.org/
7http://www.research.att.com/ john/Grappa/

64 Chapter 6. Monitoring and Evaluating StarGlobe

Figure 6.6: Monitors for the StarGlobe system.

Figure 6.7: Connection strategies for monitors.

be addressed in various ways.

Communication method

StarGlobe provides Grid services especially designed for monitors to retrieve
statistics and data about the current state. Using these services keeps the system
in the paradigm and reuses already implemented modules. On the other hand this
approach does not scale for a large amount of peers due to the enormous overhead
using SOAP-Messages. Using a non-XML based format (e. g., Remote Method
Invocation) could reduce the message size. The pull-based approach is well-suited
for small scenarios yet reaches the border of its efficiency with increasing topology
size.

Another group of communication methods can be subsumed under push-based
connections. As the information displayed at the GUI is quite volatile it would

6.5 SGG Design 65

Figure 6.8: Sequence diagram of a (pull-based) connection setup between SGG
and StarGlobe.

be possible to use UDP datagram communication to send updates to SGG.
An appealing alternative could be to register the GUI as a thin-peer at the

speaker-peer which then multiplexes the information gathered from the super-
peers into an event-stream. At the GUI end of the communication these different
approaches are hidden behind an event-based interface.

The StreamGlobeConnecitonFactory is suitable for cases whenever the access
method of StarGlobe with a push-based or a pull-based approach respectively is
used without relying on a specific implementation.

Figure 6.7 sums up the different strategies and also indicates that for test-
ing purposes a SimulationConnection can be implemented as well. The current
prototype only implements the pull-based approach using Grid services.

Connection Setup

To connect to the running StarGlobe instance, the user specifies a Grid service
handle of the SpeakerPeer service. Then the GuiClient is started, which uses an
instance of ConnectionStrategy it was configured to use. The approach described
in figure 6.8 connects with a configurable frequency the StarGlobe system to re-
trieve the current network topology and further information about the monitored
components. The communication between MonitoringClient and SGG is event
driven.

6.5.2 Layout Engines

Having received such a network event, it must be annotated with positioning data
by the LayoutEngine. The only method in the interface converts a NetworkDTO
into an appropriate format, annotates it with the layout information and converts
it back to the Data Transfer Object (DTO) [Fow02]. In this particular example
it increases the flexibility of our GUI. At the moment DisplayPanel implementa-
tion and LayoutEngine implementation use the same graph representation. The
introduction of the DataTransferObject now enables us to use a GraphML based

66 Chapter 6. Monitoring and Evaluating StarGlobe

Figure 6.9: Overview diagram of the streamglobe.gui.layout.graphviz package.

LayoutEngine by simply adding a static NetworkDTO readGraphML(Element) and
a Element toGraphML() method to NetworkDTO and leaving the remaining system
unchanged.

Besides the classes involved into the layout process, figure 6.9 shows how the
different GraphViz layout algorithms are integrated. Dot draws graphs hierar-
chical, neato and fdp use variants of spring models, twopi uses radial layout, and
circo draws graphs in a circular layout.8

6.5.3 StarGlobe Data

To provide the optimizer with all the necessary data, the speaker peer gathers
information about streams and queries in ReuseStreamInfo and QueryInfo objects
in maps of the ReuseInfoManager.

As conceivable from the class names in figure 6.10 again the Data Transfer
Object pattern is used. Derived from the dependencies, the loose coupling be-
tween the transfer objects and the data sources in the StarGlobe system is a
valuable benefit. The locality of changes is very high, as refactorings in both
domains would in only propagate to the SpeakerInfoAssembler.

8see man-page for dot (http://www.graphviz.org/cgi-bin/man?dot).

6.5 SGG Design 67

Figure 6.10: streamglobe.services.management.dto package overview

68 Chapter 6. Monitoring and Evaluating StarGlobe

6.6 Running the Demo

The individual setups to compare different strategies, network-topologies or through-
put scenarios differ in some important features. Each service container (an in-
stance of Globus Toolkit) uses a different service-port for the grid services and an
individual setup for the discovery mechanism of StarGlobe. In addition to that,
its setup contains configuration parameters for content providing thin peers.

Since at least some of these parameters are materialized in the scenario de-
scription for a StarGlobe setup, it seems appropriate to generate all final scenarios
from a template using the individual setup characteristics. These characteristics
are stored in property-files to enable developers or presenters to adapt those fields
according to their computer.

In order to decouple the used strategy from the individual setup strategy-
specific parameters are stored in a separate property-file. Which strategy to run
at which installation can be decided at start-up time.

This flexibility is achieved by using Apache Ant, a Java-based build tool
[Fou05]. Especially the fact that no environment variables or classpaths need
to be specified (and we certainly would forget them on the next installation) is
another incentive.

Some scenarios are predefined in the Ant script. In general, Ant expects
runtime parameters defined as properties which might be not very convenient for
users non-familiar with Ant. We therefore provide Perl-script runDemo.pl, which
moreover enables us to present different setups than the predefined ones.

In the following, we present the course of events during the Vela scenario when
using the conventional strategy and the cost-based optimizer respectively.

6.6.1 Vela Walkthrough

Starting Point

Both strategies have the same starting point (figure 6.11), a hypercube topology
of eight super peers and the Vela data stream injected at Peer 7. The color
of the connections and the boxes around the super-peers visualizes the load of
the network component. Both can vary from green over orange to red. The
conventional approach is to install the queries operators at the super-peer where
the querying thin-peer has registered. Content-provider are depicted with small
satellites whereas thin-peers as laptop showing a shortened QueryID. If the color
of the query-id is red, either the query has been registered at the super-peer but
failed due to an overload situation or the plan is currently processed.

Vela Query

After the Vela Query has been installed, the traffic on the link between Peer 7
and Peer 3 in the conventional setup is higher than with the cost-based strategy

6.6 Running the Demo 69

Figure 6.11: Starting point of Vela scenario.

(figure 6.12). The conventional strategy transmits the Vela stream to Peer 3 and
processes it there, whereas the cost-based optimizer installs the query at Peer 7
and therefore only transmits data across the network that belongs to the Vela
query. This avoids superfluous transmissions which is shown as less network
traffic. Data transfer is visualized by dashed lines as well as by changing the line
width proportional to the transmitted data stream.

RXJ Query

The RXJ query is installed at Peer 6. As this query is completely contained in the
Vela query, the cost-based optimizer reuses the existing stream (figure 6.13). The
optimizer installs the RXJ filter at Peer 3 which only sends photons to its neighbor
if they are in the RXJ area and have a high energy pulse. The conventional
approach, instead, redundantly transmits the unfiltered ROSAT catalog to Peer 6.

Window-Based Aggregation RXJ Query I

With this query, the network link between Peer 7 and Peer 3 gets overloaded. This
reinforces that the cost-based approach is superior as it reduces the network load.
Besides stream sharing, the optimizer uses another optimization technique: late
re-structuring. Renaming of tags (like rxj photon) is done at the last super-peer
before the final thin-peer.

Window-Based Aggregation RXJ Query II

Eventually, the last query leads to the second overloaded connection in the con-
ventional case. Despite potentially longer installation times due to the optimiza-

70 Chapter 6. Monitoring and Evaluating StarGlobe

(a) Conventional. (b) Cost-based.

Figure 6.12: Network after installed Vela Query

tion process, the comparison of the network topology shows the benefits of the
optimized approach resulting in less peer load and less network traffic.

6.6.2 Throughput examples

At the same setup as in the Vela scenario (eight super-peers, hypercube topol-
ogy) a query batch of 25 queries is registered to show throughput measurements.
The traditional approach will fail in registering several queries due to overloaded
connections, the cost-based optimizer successfully installs all queries and even 19
queries can reuse pre-existing streams.

The query batch is generated with streamglobe.scenario.VelaQueryGenerator
which provides templates for two window-based aggregate queries and two selec-
tion templates (on energy and on coordinates). They are combined with one of
two available result templates.

Ten of these 25 queries select on the energy value, eleven queries contain a
constraint on the coordinates and the remaining four queries split equally across
the two window-aggregates.

6.6.3 Demonstration of Bypassing

Our cost function based optimizer can significantly reduce network traffic and
balance the processing load among several super-peers. However, there are situ-
ations where even this approach runs into problems which can be circumvented.
One of these occasions is an overloaded connection on a shortest path and is
demonstrated in the following scenario.

6.6 Running the Demo 71

(a) Conventional. (b) Cost-based.

Figure 6.13: Network after registration of RXJ Query.

At super-peer SP 2, two astrophysical catalogs are provided. A thin-peer
registered at super-peer SP 0 wants to display the first catalog. That burdens
a considerable amount of traffic onto the overlay connection and no other traffic
can be transmitted over this connection from now on.

When the next query gets installed at super-peer SP 3 the ordinary cost-based
optimizer fails, as the shortest-path between SP 3 and SP 2 via SP 0 cannot be
used due to the heavy load on the connection between the latter nodes. Stream-
reuse is not possible as two different streams are queried and the optimizer fails
to see the longer, yet available route along SP 1. Optimizers configured to bypass
overloaded connections and peers recognize this situations and remove overloaded
elements (edges or peers) from the optimization graph and thus would find the
route described above.

Unfortunately, this strategy was not realized until the conference, yet after
implementation, it can serve for forthcoming demonstrations and support the
robustness of our system.

Together with stream widening we anticipate to receive even better results.

72 Chapter 6. Monitoring and Evaluating StarGlobe

(a) Conventional. (b) Cost-based.

Figure 6.14: Network after injection of first aggregate query.

(a) Conventional. (b) Cost-based.

Figure 6.15: Network after injection of second aggregate query.

6.6 Running the Demo 73

Figure 6.16: The traditional Throughput scenario.

Figure 6.17: The plane cost-based optimizer would reject the selection-query due
to the heavy traffic caused by the full-display query installed first.
A bypassing optimizer recognizes this overload and finds a longer
yet practicable route.

74 Chapter 6. Monitoring and Evaluating StarGlobe

6.7 Evaluation Outlook

The graphical user interface visualizes the current state of our infrastructure.
However, it is not conceivable how the state has changed over a longer period.

Therefore an evaluation client was developed to collect the identical data as
the graphical user interface. It stores the events of peers and connections in
separate files. A peer event consists of a timestamp, the peer identifier, and the
current CPU load. The connection events are composed from a timestamp, both
peer identifiers, and finally the overall traffic.

The first evaluations were computed over a simulated setups and it is planned
to evaluate the scenarios on a real distributed setup to use the results for bench-
marks.

Three dimensions are envisioned: average load comparison, registration time,
and query success rate.

Figure 6.18 and figure 6.19 show the average load on the individual peers and
connections respectively in the Vela scenario and the throughput scenario.

On peers the load is measured in percent of the provided CPU share, and
the network traffic is plotted as bits-per-second. As expected, the traffic in the
conventional case is very high on all used edges due to redundant transmissions in
both scenarios. To make the results comparable, all measurements during query
registration have been neglected for the average calculations.

The results of the query installation times in both scenarios and the statistics
about installation and reuse in the throughput scenario are shown in the tables
on page 77.

6.7 Evaluation Outlook 75

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Peer-1 Peer-2 Peer-3 Peer-4 Peer-5 Peer-6 Peer-7

C
P

U
 lo

ad
 (

%
 o

f p
ro

vi
de

d
re

so
ur

ce
s)

Average CPU Load in Vela Scenario

Conventional Shortest-Path Cost-Based

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1-2 1-6 1-7 2-5 3-4 3-6 3-7 4-5 5-6

N
et

w
or

k
T

ra
ffi

c
(b

ps
)

Connections

Average Network Traffic in Vela Scenario

Conventional Shortest-Path Cost-Based

Figure 6.18: Average Load in simulated Vela Scenario.

76 Chapter 6. Monitoring and Evaluating StarGlobe

 0

 10

 20

 30

 40

 50

 60

 70

 80

Peer-0 Peer-1 Peer-2 Peer-3 Peer-4 Peer-5 Peer-6 Peer-7

C
P

U
 lo

ad
 (

%
 o

f p
ro

vi
de

d
re

so
ur

ce
s)

Average CPU Load in Throughput Scenario

Conventional Shortest-Path Cost-Based

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

0-2 0-4 0-7 1-2 1-6 1-7 2-5 3-4 4-5 5-6

N
et

w
or

k
T

ra
ffi

c
(b

ps
)

Connections

Average Network Traffic in Throughput Scenario

Conventional Shortest-Path Cost-Based

Figure 6.19: Average Load in simulated Throughput Scenario.

6.7 Evaluation Outlook 77

Registration Time (ms) conventional shortest-path cost-based

Average 2599 2417 2122
Minimum 1867 1448 1685
Maximum 3855 3759 3330

Table 6.2: Query registration time comparison (Vela scenario).

Registration Time (ms) conventional shortest-path cost-based

Average 1209 953 1982
Minimum 284 287 774
Maximum 2444 2372 3839

Table 6.3: Query registration time comparison (Throughput scenario).

conventional shortest-path cost-based

Installed 14 (56%) 25 (100%) 25 (100%)
with stream reuse 0 0 19 (76%)

rejected 11 (44%) 0 0

Table 6.4: Query success rates and overview (Throughput scenario).

78 Chapter 6. Monitoring and Evaluating StarGlobe

Chapter 7

Related Work

At the beginning of this thesis its integral technologies are presented . Browsing
through the proceedings of various conferences of the database or communica-
tion networks communities substantiates that “Grid Computing”, “Peer-To-Peer
Networks”, and “Data Streams” are subjects of ongoing research at various in-
stitutions.

We cannot treat them all exhaustively and thereby choose only a selection
of related research projects and differentiate them to StarGlobe. We elaborate
common grounds, the focus of the related publications and what of their ideas
could be interesting for adaption.

To begin with, concepts and techniques of the ObjectGlobe project have had
a great influence on this thesis. As we have discussed at the beginning and in
chapters 3 and 4, this thesis applies technologies of ObjectGlobe in the context
of data streams [BKK+01].

7.1 Grid Computing

As StarGlobe originates from StreamGlobe it also builds on the Globus Toolkit,
the reference implementation the Open Grid Services Architecture (OGSA) and
augments it with data stream processing capabilities. This section introduces
systems that have also aspects of grid computing on their agenda.

Another system based on the Globus Toolkit is GATES (Grid-based Adap-
Tive Execution on Streams) [CRA04]. Liang Chen et al. also motivate their
research by the increasing importance of data stream management systems in
the context of increasing data volumes at distributed sites and applications like
data processing from scientific instruments, computer vision based surveillance,
or online network intrusion detection. They pursue four main goals with their
architecture: to use existing services provided by OGSA as much as possible,
support distributed processing of several data streams, enable adjustment with
regards to real-time constraints, and easy deployment of applications.

80 Chapter 7. Related Work

This alternative approach lays its focus on adaptive queuing techniques, data
stream analysis and quality-of-service aspects in data stream dissemination. As
in StarGlobe users can specify XML query evaluation plans, Gates users specify
configuration information of applications in XML which then can be used by
others to launch the application. The idea of function repositories (where users
share functionality among each other) which could be compared with this as well,
lays more emphasis on the dynamic aspects and the interface for user-defined
operations.

PlanetLab [Pla05] is a platform for deploying, evaluating, and accessing glob-
ally distributed network services and support research in innovative network in-
frastructures.1 PlanetLab decouples the operating system from the several dis-
tributed network services as a Virtual Machine Monitor (VMM)2 using the prin-
ciple of distributed virtualization. Each service gets its individual VM (called
slice) on several peers.

PlanetLab cannot be compared to the StarGlobe system itself, yet it seems
like an interesting testbed for the StarGlobe infrastructure.

As a last example of related work in the field of Grid Computing serves
Jalapeno, developed by Niklas Therning and Lars Bengtsson [TB05].

The Jalapeno framework aims at providing decentralized grid computing
based on a P2P infrastructure to solve “embarrassingly parallel problems”. With
respect to a submitted task bundle peers are either a task submitter, managers
which distribute the individual tasks among their subordinated workers. When
several tasks arrive at a manager it submits some to its workers and routes the
remainder to other connected managers. Undelivered tasks are returned to the
task submitter and sent to a new (randomly chosen) manager.

Jalapeno focuses on grid computing as a means for solving problems too hard
for a single computer by connecting the idle resources of interconnected comput-
ers. So one could see it in the tradition of the projects as SETI@home [SET05]
or distributed.net [dis05]. However, it increases fault-tolerance by work steal-
ing (i. e., tasks are retransmitted into the network after a timeout if no results
are returned) and, as implemented in Java, provides heterogeneity and security
(through platform independence and sandbox principle) and anonymity which is
provided by the JXTA P2P framework.3

The concept of workers and managers is kind-of similar to the speaker-peer
and super-peer ideas realized in the StarGlobe system, as managers subdivide task
among their workers and speaker-peers optimize the data stream with regards to
query reuse. So this project could provide interesting concepts how to organize

1This paragraph is adapted from an article by Anderson et al. [APST05] where PlanetLab
is used as a virtual testbed for applications.

2a program running on a computer and virtualizing the resources so that individual services
can use them.

3The JXTA framework [JXT05] provides a generic form of communication and services to
the application programmers set atop of concepts like distributed hash tables.

7.2 Peer-To-Peer Networks 81

the subnet structure and decide how large such subnets should be.
Leaving the context of Grid Computing, Jalapeno is actually not the only

infrastructure to use the JXTA framework as we will see, when we proceed to the
next section.

7.2 Peer-To-Peer Networks

The stunning success of P2P file sharing applications and the increasing share of
Internet traffic which originates from these networks has led to intense research
on this topic.

Various research projects have investigated in overcoming the deficiencies of
unstructured P2P networks like Napster (connection setup over a centralized
index) and Gnutella (message flooding) to more sophisticated alternatives using
technologies like distributed hash tables. The most prominent implementations
of these technique are CAN (Ratnasamy et al.), CHORD (Stoica et al.), Pastry
(Rowstron et al.), and getting a increasing share BitTorrent (Cohen) [RFH+01,
SMK+01, RD01, Coh03].

Another project conducted at the group of Alfons Kemper focussing on dis-
tributed query processing is QueryFlow. It focuses on optimization of distributed
queries and uses a super-peer backbone network as well. QueryFlow also distin-
guishes between highly-available (super-)peers and peers having an intermittent
connection. The routing of queries in the infrastructure is done with a set of
distributed indices (SP/SP-indices, SP/P-indices) and queries are installed as
abstract query plans, which then are expanded on-the-fly by the processing super-
peers. The decision to delegate the maintenance of thin-peers to the super-peers
(although in a different context) was also influenced by the idea of distributed
indices. For more details on the query dispersion in QueryFlow we refer the
interested reader to the references [KW05, DKNW04, KW01].

Besides the super-peer structure, StarGlobe also shares the hierarchical differ-
entiation between thin-peers and super-peers with QueryFlow. The transparency
of the individual small peers connected to a super-peer for other super-peers re-
duces the amount of information an individual peer has to cope with. To reduce
the messaging overhead super-peers are arranged in so-called hypercubes using
the HyperCuP-Protocol [SSDN02] and Alfons Kemper and Christian Wiesner
cooperated with Ingo Brunkhorst et al. of the University of Hannover on the in-
fluences schema-based information retrieval has on query processing [BDK+03].

In several co-publications, the discussion is focused on schema-based P2P
topologies to store, access, and update distributed knowledge about data distri-
bution. They further address how this knowledge can support the distribution
and expansion of abstract query plans in the topology and thus be more efficient
in the usage of distributed computing resources.

For more information on the challenges and design issues of schema-based

82 Chapter 7. Related Work

P2P architectures the interested readers are referred to Wolfgang Nejdl et al.
[NSS03], which gives an overview on the experience the authors gained from the
research on the Edutella framework.

To round up the discussion on related P2P system we choose the work of Gert
Brettlecker et al. from the University for Health Science, Medical Informatics and
Technology (UMIT) [BSS04].

They see the incentive of P2P technologies together with data stream manage-
ment systems predominantly in health care applications and focus on flexibility
and reliability of distributed process management and distributed stream man-
agement.

Hyperdatabases, which address the composition of user-defined processes over
existing services and provide an infrastructure for process execution, are aug-
mented with streaming processes.

An apparent difference to StarGlobe is the explicit sequencing of stream el-
ements and the request for redistribution if some of the packets are lost during
transmission.

Especially their work on operator migration and backup concepts for the in-
ternal state of operators (which is necessary when operators are relaunched at
a different site) are well-founded. Besides the options discussed in the imple-
mentation section of the plan distribution, the proposed techniques are another
alternative to realize transactionality in data stream processing.

7.3 Data Streams

Data production at increasing speed faces us with the necessity to process data
before we store it persistently. Then applications evolve which consider long or
infinitively lasting queries and thus provide incentives to research on Continuous
Queries (CQ).

TelegraphCQ focuses on challenges which arise from processing continuous
queries in networks with uncertainties [CCD+03]. Sirish Chandrasekaran et al.
consider as uncertainties on the one hand the high volatility of network envi-
ronments (e. g., sensor networks) and on the other hand interacting users can
change their queries due to results they have seen so for. Such modifications are
gracefully adapted by their system.

The ONYX prototype architecture as presented by Yanlei Diao et al. aims at
content-based data dissemination [DRF04]. Information is delivered to users by
matching the content against profiles containing the users’ interests. These pro-
files are also described with an XQuery fragment, however to achieve the content-
driven routing, query processing is done using two planes. The first monitors the
data flow (data plane), whereas the second captures flow and changes of queries.

Wee Siong Ng et al. propose CQ-Buddy and approach the problem of data
stream optimization from the data providers perspective [NST03]. If all query

7.3 Data Streams 83

processing is done independently the response time of the system decreases and
eventually data providers are the bottle neck of the infrastructure. After provid-
ing a model for similar queries they allow query sharing on a single node as well
as between nodes. In CQ-Buddy overloaded data providers can ask neighbors
“for help” to act as proxies by selecting them using an adaptive strategy based
on lottery scheduling techniques. In comparison, the optimization strategy of
StarGlobe, is more proactive as it optimizes every query according to network-
traffic and peer-load. Both systems have a notion of “weak” and “strong” peers
and balancing the processing load across the network. Interesting for networks
having a higher disconnectivity is the support for pervasive continuous queries
which are long-running queries that are calculated on behalf of the registering
peer (which meanwhile might have gone offline) and whose results are stored at
the calculating peer for later retrieval of the original subscriber.

84 Chapter 7. Related Work

Chapter 8

Looking Downstream

The StarGlobe system is designed for distributed, highly adaptive in-network
query processing on XML streams in P2P networks. Regardless of its computa-
tional power, every client is able to register a subscription (a query) on streams in
the network. A query optimizer positions the operators (user-defined functions,
selections, projections, etc.) in the network in a cost-effective way (e. g., consid-
ering network traffic). With reference to the needs of the virtual observatories
described in this thesis and the results achieved so far, it is worth putting effort
in further interdisciplinary cooperations.

Using StarGlobe to process the different catalogs in a distributed and parallel
fashion and to compute results within the network leads to several benefits for
the astrophysicist:
Nowadays huge catalogs have to be copied via FTP, DVD or other media to
each researcher individually which immediately leads to data duplication. By
streaming the data into a subscription-capable network the duplication is removed
on common paths in the network. By providing mobile operators (user-defined
functions), StarGlobe can be extended to process streams for special purposes.

Distributed data processing, manually-optimized query execution plans with
dynamically loaded user-defined operations, and a graphical user interface to
monitor and evaluate the infrastructure are the contributions by this thesis to
the StarGlobe system.

Data stream management systems provide several benefits in various research
communities as we described with two exemplary applications in the field of
astrophysics.

This contention is supported by the results of our small prototypical scenario
and the feedback provided by our cooperation partners and attendees at our
demonstration at the VLDB 2005.

Support for multiple input streams and an implementation of fuzzy joins is
certainly one of the next challenges we need to solve. Then current applications
of the scientist can be compared with our infrastructure. When users install
their plans, details must be provided by themselves. Whether some parts of the

86 Chapter 8. Looking Downstream

plans such as the DTDs for operators can be derived automatically during plan
installation or by a preprocessor is worth being considered in future work. This
would alleviate users and would lower the barrier to use our infrastructure.

During the development phase mainly persistent data like files were used to
simulate data streams. How modern features of database systems can be exploited
for astrophysical applications and data residing in databases is extracted as XML
stream in a generic fashion would complete the integration of data streams and
persistent data and well deserves separate treatment.

When the ideas sketched in section 4.4.3 are realized and plans are also de-
scribed in a declarative fashion, we can optimize query execution plans with
user-defined operations. If research on what kinds of optimization, cost models,
and statistics can be provided for user-defined execution plans heralds promising
techniques, these will be integrated in StarGlobe.

Distributed processing of data streams in P2P networks will offer many ben-
efits and will invite many research communities to participate in distributed col-
laboration.

Appendix A

Installing the Grid on Blades

The Globus-Toolkit 3.2.1 is installed on the blade server at the Chair for Infor-
matics III - Database Systems of the Technische Universität München (TUM).

A.1 Installation Issues

When looking at the installation process of Globus Toolkit, there are significant
differences between installing Globus on a blade server or on ordinary server farms
or distributed computers.

Blades bring with them one or several CPU(s), a network interface card, and
a local hard drive, yet share power supply, network, fans, and a Network Attached
Storage (NAS). The latter is storage shared among all blades. Assuming a service
is running on a blade and this blade crashes, the service can boot on a different
blade, and all request are re-routed to this new blade. The service however does
not need to be copied when it resides on the NAS.

In the context of Grid Computing a blade server can play several roles. On the
one hand, the owning institution can be part of a global federation and shares the
blade with other cooperative institutions. On the other, the blade architecture
might be used to simulate a federation of institutions.

The requirements for the administration are twofold. First, the administration
should be as easy as possible. The workload when installing updates or new
services should be kept at an minimum, yet provide a reasonable amount of
flexibility. Second, as several people are working in the project in parallel and
all should be able to use the blade server architecture for testing purposes, the
installation process should not afford too much (if any) administrative rights on
the blade server.

Taking all these requirements into account, one could either install the Globus
Toolkit on each blade individually or install it on the NAS. The Stream- and
StarGlobe systems use the Web Service architecture (the Grid Services) that was
introduced with the Globus Toolkit 3 (GT3). The GT3 can be installed including

88 Chapter A. Installing the Grid on Blades

the services before Web Services were integrated (pre-WS services) or or only the
Web Service Core (WS Core) which is implemented in Java.

These options and the consequences resulting from a specific choice are dis-
cussed in more detail in the following section.

A.1.1 Installation location

Before we focus on the individual Globus installation options let us concentrate
on the choice where the Toolkit should be installed.

The first option would be to install the Globus Toolkit on every blade indi-
vidually. This means, the administrator installs the GT3 on the local hard drive
of the blade. This installation process resembles the approach when traditional
servers are used and does not take much advantage of the blade architecture.

It certainly offers the greatest flexibility. Each blade can be configured indi-
vidually. Unfortunately, the price for this flexibility is very high with respect to
administration. Updates must be installed on every single blade. What happens
when you installed a certain service only on a single blade and its local hard drive
crashes? The service must be installed on a different blade.

To install the Globus Toolkit on the NAS virtually leads to “install once, run
everywhere”. As every blade accesses the same installation, updates can be done
for all blades simultaneously.

This comes in handy for the fundamental services but might be surplus effort
when services are needed only once in a network.

A.1.2 Package Options

Globus Toolkit offers several distributions. We are interested in the full distribu-
tion and the core distribution and describe which suits best the requirements of
the different scenarios.

The Globus-Toolkit-3-Full-Installer is a large installation and contains a lot of
services which are important, if the services are used in a productive environment
but are of less importance for the development of the Grid Services themselves.

One of these components only available in the full-installer is a Certificate
Authority (CA) that generates all the host-certificates and user-certificates used
in the security layer of OGSA. This imposes quite a workload on the individual
developer when planning to run StarGlobe on several blade servers.

The pre-WS services have to be compiled (takes a few hours), the CA and
the individual host certificates must be installed.

The core distribution contains the basic APIs of OGSA implemented in Java
and is denoted as Web Service Core (WS Core).

The installation process of the WS Core consists of extracting the archive,
running the installation script and setting up environmental variables.

A.1 Installation Issues 89

The current StarGlobe implementation only makes use of these basic APIs.
Therefore developers can install the core distribution if only the StarGlobe system
is under test and not necessarily the full distribution.

A.1.3 CA Installation

During the trail of the options from above issues originating from host-specific
components as security and logging mechanisms were solved.

The security infrastructure is provided by a subcomponent below the GT3-
Core and thus is necessary to be installed separately.

In some C header files there are references to the /etc/grid-security/ folder
which should contain the mapping from users to certificates and the host-certificate
of the machine. In general you can specify parameters to retrieve the credentials
from different locations yet some components have wired the path to this direc-
tory and it seems quite an effort to replace all occurrences in the configuration
files.

A.1.4 Directory Structure

The full Globus Toolkit 3 is installed on the blade system under the user account
globus. Its home directory (/home/globus) has the following structure:

instance contains the globus installation.

packages contains the archives and scripts for installing Globus, CA, host-
certificates, . . .

packages/install-globus.sh script for installing globus.

install-ca.sh script for installing the CA, which is necessary only once per in-
stallation.

packages/install-hostcert.sh script for installing host-certificates which is nec-
essary each time a new host is added to the Grid.

To install the Java-WS Core Globus Toolkit 3, decompress the downloaded
archive, set the GLOBUS LOCATION environment variable on the directory where
the archive was decompressed to. Then run ant setup to generate the platform-
specific scripts.

To start the globus instance, bin/globus-start-container.sh needs to be executed
from GLOBUS LOCATION.

90 Chapter A. Installing the Grid on Blades

A.2 Changing the Globus - Migration Issues to

Globus Toolkit 4

In April 2005 the Globus Alliance has published the Globus Toolkit 4 (GT4).
What would be the impact on the StarGlobe and the StreamGlobe system re-
spectively, when we would switch to Globus Toolkit 4? We give a short summary
according to the Migration Guide from the Globus web site.1

With the new version, the Globus Toolkit uses the Web Service Resource
Framework (WSRF) and thus no longer specifies its services in the “home grown”
GWSDL but in standard WSDL.

The change in PortTypes is also quite significant. The GridService port type
implemented some basic OGSI functionality and so every Grid service either was
a subclass of GridService or delegated this method calls accordingly. Another
central feature in the OGSA framework was the ability to specify service fac-
tories to create several service instances on demand during runtime. Our Peer
GridService is implemented in that fashion. Unfortunately, from Globus Toolkit
4 this is no longer supported.

Whereas in GT3 business logic and state handling of a GridService was highly
coupled together into one class, these two concepts are decoupled in GT4. Busi-
ness logic is written in a stateless service class and all state handling is imple-
mented in a stateful resource class.

The separation of state and logic also results in the extraction of the state-
handling from the deployment descriptor server-config.wsdd into a second con-
figuration file (jndi-config.xml).

Whether these changes are significant to StreamGlobe and StarGlobe respec-
tively remains to be seen.

1http://www.globus.org/toolkit/docs/4.0/migration guide gt3.html

Appendix B

Execution Plan XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id: plan-schema.xsd,v 1.1.2.10 2005/09/15 13:22:56 hubers Exp

$ -->
<xs:schema xmlns:pdc="urn:streamglobe.in.tum.de/pdc" xmlns:xs="http

://www.w3.org/2001/XMLSchema" targetNamespace="urn:streamglobe.in
.tum.de/pdc" elementFormDefault="qualified">

<xs:annotation>
<xs:documentation xml:lang="en">

This schema defines the XML Schema for a plan distributed by the
PlanDistributionComponent.

</xs:documentation>
</xs:annotation>
<xs:element name="plan">

<xs:annotation>
<xs:documentation xml:lang="en">

The root element of a query plan.
</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:annotation>

<xs:documentation xml:lang="en">
At each Peer operators can be added in the add-Element or
deleted in the delete-Element. The sub-plans the operators are

depending on
are specified in the following plan elements.

</xs:documentation>
</xs:annotation>
<xs:element name="add" type="pdc:addOperatorsAtPeerType"

minOccurs="0"/>
<xs:element name="delete" type="pdc:deleteOperatorsAtPeerType"

minOccurs="0"/>
<xs:element ref="pdc:plan" minOccurs="0" maxOccurs="unbounded

"/>
</xs:sequence>
<xs:attribute name="atPeer" type="xs:string" use="required"/>

92 Chapter B. Execution Plan XML Schema

<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:key name="planIdOrOperatorId">

<xs:selector xpath="./pdc:add/pdc:streamoperator|./pdc:plan"/>
<xs:field xpath="@id"/>

</xs:key>
<xs:keyref name="validReferences" refer="pdc:planIdOrOperatorId">

<xs:selector xpath="./pdc:add/pdc:streamoperator/pdc:
dependencies/pdc:streamreference"/>

<xs:field xpath="@id"/>
</xs:keyref>
<xs:unique name="doNotDeleteNewOperators">

<xs:selector xpath=".//pdc:streamoperator"/>
<xs:field xpath="@id"/>

</xs:unique>
</xs:element>
<xs:complexType name="addOperatorsAtPeerType">

<xs:sequence>
<xs:element name="streamoperator" type="pdc:

abstractStreamoperatorType" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="deleteOperatorsAtPeerType">

<xs:sequence>
<xs:element name="streamoperator" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="parameterType">

<xs:sequence>
<xs:element name="key" type="xs:string"/>
<xs:element name="value" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="abstractStreamoperatorType" abstract="true">

<xs:annotation>
<xs:documentation xml:lang="en">

generalization of a streamoperator
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="dependencies">
<xs:annotation>

<xs:documentation xml:lang="en">
declares the streams this operator depends on.

</xs:documentation>
</xs:annotation>
<xs:complexType>

93

<xs:choice maxOccurs="unbounded">
<xs:element name="streamreference" type="pdc:

streamreferenceType">
<xs:annotation>

<xs:documentation xml:lang="en">
define this element, if you reference a stream from a
different operator or plan.
when supported by StreamGlobe, multiple input streams are
allowed with setting maxOccurs to a higher level as 1.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="stream" type="pdc:streamType">

<xs:annotation>
<xs:documentation xml:lang="en">

define this element, if you want to introduce a new
stream into the plan.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="streamreferenceType">

<xs:attribute name="id" type="xs:string" use="required">
<xs:annotation>

<xs:documentation xml:lang="en">
this attribute defines which stream is referenced by this

operator.
You can reference either a different operator (for pipelining)

,
or a different incoming stream.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>
<xs:complexType name="streamType">

<xs:attribute name="id" type="xs:string" use="required">
<xs:annotation>

<xs:documentation xml:lang="en">
if you want to use a stream not yet defined in the plan,
define the id in this attribute.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>
<xs:complexType name="queryStreamoperatorType">

<xs:annotation>

94 Chapter B. Execution Plan XML Schema

<xs:documentation xml:lang="en">
definition for an XQuery-operator.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="pdc:abstractStreamoperatorType">
<xs:sequence>

<xs:element name="source" type="xs:string"/>
<xs:element name="input-dtd" type="xs:string" minOccurs="0"/>
<xs:element name="output-dtd" type="xs:string" minOccurs

="0"/>
<xs:element name="userdefinedfunction" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required
"/>

<xs:attribute name="codebase" type="pdc:codebaseType" use
="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" default="query"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="builtInStreamoperatorType">

<xs:annotation>
<xs:documentation xml:lang="en">

builtIn operators. This element has to be extended
whenever new built-in operators are created.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="pdc:abstractStreamoperatorType">
<xs:attribute name="name" use="required">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="forward"/>
<xs:enumeration value="display"/>
<xs:enumeration value="statistic"/>
<xs:enumeration value="counter"/>
<xs:enumeration value="null"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="hopStreamoperatorType">

<xs:annotation>
<xs:documentation xml:lang="en">

95

Used as preprocessor for removing redundant aggregation results
before reusing. It selects bulding blocks in certain distance,
like hopping, and forwards these blocks, so the name.
</xs:documentation>

</xs:annotation>
<xs:complexContent>

<xs:extension base="pdc:abstractStreamoperatorType">
<xs:sequence>

<xs:element name="blocktag" type="xs:string"/>
<xs:element name="step" type="xs:int"/>

</xs:sequence>
<xs:attribute name="name" default="hop"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="externalStreamoperatorType">

<xs:complexContent>
<xs:extension base="pdc:abstractStreamoperatorType">

<xs:sequence>
<xs:annotation>

<xs:documentation xml:lang="en">
At the moment inputStreamData is mandatory. When the

handling
class is more sophisticated and retrieves the dtd for the

input
streams from e.g., the SpeakerPeer and thus leaverages the

user
from tedious work it will be optional.
When the system can build the output dtd on its own, the
"outputstreamdata" element can be optional, too.

</xs:documentation>
</xs:annotation>
<xs:element name="authorizedby" type="xs:string">

<xs:annotation>
<xs:documentation xml:lang="en">

The authorizedby-attribute should adhere to the
DistinguishedName patterns as described in RFC2253.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="inputstreamdata" type="pdc:

inputStreamDataType" maxOccurs="unbounded"/>
<xs:element name="outputstreamdata" type="pdc:

outputStreamDataType"/>
<xs:element name="parameter" type="pdc:parameterType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="codebase" type="pdc:codebaseType" use="

required"/>
<xs:attribute name="dependencyToEnrich" type="xs:string" use="

96 Chapter B. Execution Plan XML Schema

optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="streamDataType">

<xs:annotation>
<xs:documentation xml:lang="en">

Information specified for an external operator.
When an empty dtd is specified the StarGlobe-System
tries to resolve it.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="dtd" type="xs:string" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="inputStreamDataType">

<xs:annotation>
<xs:documentation xml:lang="en">

each instance has to reference a certain stream
and can optional specify typed mappings to retrieve
data and pass it to the specified StreamIterator.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="pdc:streamDataType">
<xs:sequence>

<xs:element name="variable" type="pdc:typedVariableMapping"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="outputStreamDataType">

<xs:complexContent>
<xs:extension base="pdc:streamDataType">

<xs:sequence>
<xs:element name="variable" type="pdc:untypedVariableMapping"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="untypedVariableMapping">

<xs:attribute name="name" use="required"/>
<xs:attribute name="select" type="pdc:mappingPathType" use="

required"/>
<xs:attribute name="position" use="optional">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

97

<xs:enumeration value="FIRST"/>
<xs:enumeration value="LAST"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<xs:complexType name="typedVariableMapping">

<xs:complexContent>
<xs:extension base="pdc:untypedVariableMapping">

<xs:attribute name="type" use="required"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:simpleType name="mappingPathType">

<xs:annotation>
<xs:documentation xml:lang="en">

only mappingpaths starting with a "./" are supported.
</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:string">

<xs:pattern value="\./.*"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="codebaseType">

<xs:annotation>
<xs:documentation xml:lang="en">

Only URIs using the file- or the http-protocol are supported.
</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:anyURI">

<xs:pattern value="http://.*"/>
<xs:pattern value="file:///.*"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

98 Chapter B. Execution Plan XML Schema

Appendix C

A-Star Workflow

The scenario (plan1scenario.xml) and the query execution plan (astarworkflow.xml)
for the A-Star workflow are located in docs/usecases/scenario/ of the plandistri-
bution branch of the streamglobe/grid-service module in the Streamglobe CVS
repository.

C.1 Scenario

<?xml version="1.0" ?>
<scenario name="sample" xmlns="http://streamglobe.net/scenario">

<!-- Resources defining the input streams -->
<graph>

<vertex vid="0" label="Peer0"/>
<vertex vid="1" label="Peer1"/>
<vertex vid="2" label="Peer2"/>
<vertex vid="3" label="Peer3"/>
<edge source="0" target="1"/>
<edge source="1" target="2"/>
<edge source="2" target="3"/>

</graph>
<streams>

<kindDefinition>
<kind name="file" class="streamglobe.client.p2p.

FileContentServer"/>
</kindDefinition>
<stream sid="Stream-0" type="file">

<dtd filename="@DTD_PATH@"/>
<param name="stream.filename">

@FILE_PATH@
</param>
<param name="stream.server.port">9009</param>
<param name="stream.sleep.time">2000</param>

</stream>
</streams>
<injectorMapping>

100 Chapter C. A-Star Workflow

<mapping peer="0" stream="Stream-0"/>
</injectorMapping>

</scenario>

C.2 XML Execution Plan

<?xml version="1.0" encoding="UTF-8"?>
<plan atPeer="@Peer3-GSH@" id="stream-4" xmlns="urn:streamglobe.in.

tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

<streamoperator id="result-display"
xsi:type="builtInStreamoperatorType" name="display">
<dependencies>

<streamreference id="stream-3"/>
</dependencies>

</streamoperator>
</add>

<plan atPeer="@Peer2-GSH@" id="stream-3"
xmlns="urn:streamglobe.in.tum.de/pdc"
xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

<streamoperator id="mahalanobis" codebase="@GAVO_JAR@"
name="org.gavo.streamoperators.

SimpleMahalanobisDistanceIterator"
xsi:type="externalStreamoperatorType">
<dependencies>

<stream id="stream-2"/>
</dependencies>
<authorizedby>Tobias Scholl</authorizedby>
<inputstreamdata id="stream-2">

<dtd>
<![CDATA[
<!ELEMENT photons (photon)*>
<!ELEMENT photon (coord, phc, en, det_time, cartesian)>
<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>
<!ELEMENT en (#PCDATA)>
<!ELEMENT det_time (#PCDATA)>
<!ELEMENT cartesian (x, y, z)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>

C.2 XML Execution Plan 101

]]>
</dtd>
<variable name="POINT[0]" select="./cartesian/x" type="

Double"/>
<variable name="POINT[1]" select="./cartesian/y" type="

Double"/>
<variable name="POINT[2]" select="./cartesian/z" type="

Double"/>
<variable name="SPHERIC[0]" select="./coord/cel/ra"

type="Double"/>
<variable name="SPHERIC[1]" select="./coord/cel/dec"

type="Double"/>
</inputstreamdata>
<outputstreamdata>

<dtd/>
<variable name="DISTANCE" select="./dist/mahalanobis"/>
<variable name="POS_ANGLE" select="./dist/pd"/>

</outputstreamdata>
<parameter>

<key>REF_X</key>
<value>0.5589609245067093</value>

</parameter>
<parameter>

<key>REF_Y</key>
<value>-0.619582747878259</value>

</parameter>
<parameter>

<key>REF_Z</key>
<value>0.5510715955356713</value>

</parameter>
<parameter>

<key>SIGMA</key>
<value>0.05</value>

</parameter>
</streamoperator>

</add>
<plan atPeer="@Peer1-GSH@" id="stream-2"
xmlns="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<add>
<streamoperator id="cone" codebase="@GAVO_JAR@"

name="org.gavo.streamoperators.
SimpleConeSearchStreamIterator"

xsi:type="externalStreamoperatorType">
<dependencies>

<streamreference id="stream-1"/>
</dependencies>
<authorizedby>Tobias Scholl</authorizedby>
<inputstreamdata id="stream-1">

<dtd>
<![CDATA[

102 Chapter C. A-Star Workflow

<!ELEMENT photons (photon)*>
<!ELEMENT photon (coord, phc, en, det_time, cartesian)>
<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>
<!ELEMENT en (#PCDATA)>
<!ELEMENT det_time (#PCDATA)>
<!ELEMENT cartesian (x, y, z)>
<!ELEMENT x (#PCDATA)>
<!ELEMENT y (#PCDATA)>
<!ELEMENT z (#PCDATA)>
]]>
</dtd>
<variable name="POINT_X" select="./cartesian/x" type="

Double"/>
<variable name="POINT_Y" select="./cartesian/y" type="

Double"/>
<variable name="POINT_Z" select="./cartesian/z" type="

Double"/>
</inputstreamdata>
<outputstreamdata>

<dtd/>
</outputstreamdata>
<parameter>

<key>CENTER_X</key>
<value>0.5589609245067093</value>

</parameter>
<parameter>

<key>CENTER_Y</key>
<value>-0.619582747878259</value>

</parameter>
<parameter>

<key>CENTER_Z</key>
<value>0.5510715955356713</value>

</parameter>
<parameter>

<key>SEARCH_RADIUS</key>
<value>0.5</value>

</parameter>
</streamoperator>

</add>
<plan id="stream-1" atPeer="@Peer0-GSH@"
xmlns="urn:streamglobe.in.tum.de/pdc"

xmlns:pdc="urn:streamglobe.in.tum.de/pdc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<add>

C.3 User-Defined Operators 103

<streamoperator id="transform" codebase="@GAVO_JAR@"
name="org.gavo.streamoperators.CoordinateStreamIterator

"
xsi:type="externalStreamoperatorType">
<dependencies>

<stream id="stream-0"/>
</dependencies>
<authorizedby>Tobias Scholl</authorizedby>
<inputstreamdata id="stream-0">

<dtd>
<![CDATA[
<!ELEMENT photons (photon)*>
<!ELEMENT photon (coord, phc, en, det_time)>
<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>
<!ELEMENT en (#PCDATA)>
<!ELEMENT det_time (#PCDATA)>
]]>
</dtd>
<variable name="RA" select="./coord/cel/ra" type="

Double"/>
<variable name="DEC" select="./coord/cel/dec" type="

Double"/>
</inputstreamdata>
<outputstreamdata>

<dtd/>
<variable name="cartesianCoordinates[0]" select="./

cartesian/x"/>
<variable name="cartesianCoordinates[1]" select="./

cartesian/y"/>
<variable name="cartesianCoordinates[2]" select="./

cartesian/z"/>
</outputstreamdata>

</streamoperator>
</add>

</plan>
</plan>

</plan>
</plan>

C.3 User-Defined Operators

C.3.1 Coordinate Transformation

104 Chapter C. A-Star Workflow

package org.gavo.streamoperators;
import org.apache.commons.beanutils.DynaBean;
import org.gavo.util.math.CoordinateTransformation;

public class CoordinateStreamIterator implements StreamIterator {
public static final String RA = ”RA”;
public static final String DEC = ”DEC”;
public static final String CARTESIAN = ”cartesianCoordinates”;
private StreamWriter writer;

public void open(DynaBean config, StreamWriter writer) {
this.writer = writer;

}

public synchronized void next(StreamIteratorEvent nextItem) {
DynaBean params = nextItem.getParameters();
Double ra = (Double) params.get(RA);
Double dec = (Double) params.get(DEC);

double[] cartesian = CoordinateTransformation.toCartesian(
ra.doubleValue(), dec.doubleValue());

for (int i = 0; i < cartesian.length; i++) {
params.set(CARTESIAN, i, String.valueOf(cartesian[i]));

}
writer.write(nextItem);

}

public synchronized void close(String StreamId) {
}

}

C.3.2 Simple Cone Search

package org.gavo.streamoperators;

import org.apache.commons.beanutils.DynaBean;
import org.gavo.util.math.SphericalTrigonometry;
import org.gavo.util.math.Trigonometry;

import streamglobe.services.p2p.engine.operator.starglobe.StreamIterator;
import streamglobe.services.p2p.engine.operator.starglobe.

StreamIteratorEvent;

C.3 User-Defined Operators 105

import streamglobe.services.p2p.engine.operator.starglobe.StreamWriter;

/∗∗
∗ Calculates a simple cone search around a point with given radius.
∗ Parameters are expected to be in cartesian coordinates, the radius in arc.
∗
∗ For this purpose the arcDistance between the Cone−Center and a point from

the
∗ stream is calculated. If it is greater than the the maximal distance, it will
∗ be returned to the output stream. Otherwise not.
∗/

public class SimpleConeSearchStreamIterator implements StreamIterator {

// input parameters
public static final String POINT X = ”POINT X”;
public static final String POINT Y = ”POINT Y”;
public static final String POINT Z = ”POINT Z”;

// config parameters
public static final String CENTER X = ”CENTER X”;
public static final String CENTER Y = ”CENTER Y”;
public static final String CENTER Z = ”CENTER Z”;
public static final String SEARCH RADIUS = ”SEARCH RADIUS”;

private double[] center = new double[3];
private double maxDistance;

private StreamWriter writer;

public void open(DynaBean config, StreamWriter writer) {
center[0] = Double.parseDouble((String) config.get(CENTER X));
center[1] = Double.parseDouble((String) config.get(CENTER Y));
center[2] = Double.parseDouble((String) config.get(CENTER Z));
Double radius = Double.valueOf((String) config.get(SEARCH RADIUS

));

maxDistance = Math.cos(radius.doubleValue());
this.writer = writer;

}

public void next(StreamIteratorEvent nextItem) {
DynaBean parameters = nextItem.getParameters();
Double pointX = (Double) parameters.get(POINT X);

106 Chapter C. A-Star Workflow

Double pointY = (Double) parameters.get(POINT Y);
Double pointZ = (Double) parameters.get(POINT Z);

double[] point = new double[3];
point[0] = pointX.doubleValue();
point[1] = pointY.doubleValue();
point[2] = pointZ.doubleValue();

double angle = SphericalTrigonometry.arcDistance(center, point);

if (Trigonometry.cos(angle) > maxDistance) {
writer.write(nextItem);

}
}

public void close(String streamId) {
}

}

C.3.3 Mahalanobis Distance

package org.gavo.streamoperators;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.beanutils.DynaBean;
import org.gavo.util.math.CoordinateTransformation;
import org.gavo.util.math.SphericalTrigonometry;

import streamglobe.services.p2p.engine.operator.starglobe.StreamIterator;
import streamglobe.services.p2p.engine.operator.starglobe.

StreamIteratorEvent;
import streamglobe.services.p2p.engine.operator.starglobe.StreamWriter;

/∗∗
∗ Calculates the MahalanobisDistance and the polar angle between a point

given
∗ at initialisation time and one point from the stream.
∗
∗ It is assumed that only one sigma for a stream is specified. If none is
∗ specified the Eukledian distance is calculated.
∗

C.3 User-Defined Operators 107

∗/
public class SimpleMahalanobisDistanceIterator implements StreamIterator

{

// config parameters
public static final String REF X = ”REF X”;
public static final String REF Y = ”REF Y”;
public static final String REF Z = ”REF Z”;
public static final String SIGMA = ”SIGMA”;

// input parameters

// cartesian coordinates
public static final String POINT = ”POINT”;

// spherical coordinates
public static final String SPHERIC = ”SPHERIC”;

// output parameters
public static final String DISTANCE = ”DISTANCE”;
public static final String POS ANGLE = ”POS ANGLE”;

private double[] refPointCartesian;
private double[] refPointSpheric;
private double sigma = 1.0;
private StreamWriter writer;

public void open(DynaBean config, StreamWriter writer) {
List referencePoint = new ArrayList();
referencePoint.add(Double.valueOf((String) config.get(REF X)));
referencePoint.add(Double.valueOf((String) config.get(REF Y)));
referencePoint.add(Double.valueOf((String) config.get(REF Z)));

refPointCartesian = getDoubleArray(referencePoint);
refPointSpheric = CoordinateTransformation.toSpherical(

refPointCartesian);

if (config.get(SIGMA) != null) {
sigma = Double.parseDouble((String) config.get(SIGMA));

}
this.writer = writer;

}

108 Chapter C. A-Star Workflow

/∗∗
∗ returns a double array from the List containing Double objects.
∗ @param doubleList
∗/

private double[] getDoubleArray(List doubleList) {
double[] result = new double[doubleList.size()];
for (int i = 0; i < doubleList.size(); i++) {

result[i] = ((Double) doubleList.get(i)).doubleValue();
}
return result;

}

public void next(StreamIteratorEvent nextItem) {
DynaBean parameters = nextItem.getParameters();

double[] cartesian;
double[] spherical;
List pointCartesian = (List) parameters.get(POINT);
cartesian = getDoubleArray(pointCartesian);

List sphericalCoords = (List) parameters.get(SPHERIC);
spherical = getDoubleArray(sphericalCoords);

double arcDistance = SphericalTrigonometry.arcDistance(
refPointCartesian, cartesian);

double mahalanobis = arcDistance / sigma;
double polarAngle = SphericalTrigonometry.positionAngle(

refPointSpheric, spherical);

parameters.set(DISTANCE, String.valueOf(mahalanobis));
parameters.set(POS ANGLE, String.valueOf(polarAngle));

writer.write(nextItem);
}

public void close(String StreamId) {
}

}

Appendix D

VLDB 2005 Scenarios

The following scenarios are provided in the etc/vldb2005/templates folder of the
streamglobe/gui module in the StreamGlobe CVS repository.

D.1 Vela Scenario

Filename poster-scenario.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="010" />
<vertex vid="1" label="100" />
<vertex vid="2" label="110" />
<vertex vid="3" label="001" />
<vertex vid="4" label="011" />
<vertex vid="5" label="111" />
<vertex vid="6" label="101" />
<vertex vid="7" label="000" />
<edge source="4" target="0" />
<edge source="5" target="2" />
<edge source="6" target="3" />
<edge source="1" target="7" />
<edge source="0" target="7" />
<edge source="5" target="4" />
<edge source="2" target="0" />
<edge source="2" target="1" />
<edge source="4" target="3" />
<edge source="5" target="6" />
<edge source="6" target="1" />

110 Chapter D. VLDB 2005 Scenarios

<edge source="3" target="7" />
</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">100</param>

</stream>
</streams>

<queries>
<query qid="1">

<![CDATA[
<photons>
{

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0
and $p/coord/cel/dec >= -49.0
and $p/coord/cel/dec <= -40.0

return
<vela_photon>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/phc} {$p/en} {$p/det-time}

</vela_photon>
}
</photons>

]]>
</query>

<query qid="2">
<![CDATA[

<photons>
{

for $p in stream("stream-0")/photons/photon
where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5
and $p/coord/cel/ra <= 135.5
and $p/coord/cel/dec >= -48.0
and $p/coord/cel/dec <= -45.0

return
<rxj_photon>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</rxj_photon>

D.1 Vela Scenario 111

}
</photons>

]]>
</query>

<query qid="3">
<![CDATA[

<photons>
{

for $w in stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]
| count 20 step 10 |

let $a := avg($w/photon/en)
return

<avg_en>
{$a}

</avg_en>
}
</photons>

]]>
</query>

<query qid="4">
<![CDATA[

<photons>
{

for $w in stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]
| count 60 step 40 |

let $a := avg($w/photon/en)
return

<avg_en>
{$a}

</avg_en>
}
</photons>

]]>
</query>

</queries>

<injectorMapping>
<mapping peer="4" stream="stream-0" />

112 Chapter D. VLDB 2005 Scenarios

</injectorMapping>

<queryMapping>
<mapping peer="0" query="1" />
<mapping peer="2" query="2" />
<mapping peer="1" query="3" />
<mapping peer="6" query="4" />

</queryMapping>

</scenario>

D.2 Throughput Scenario

Filename throughput.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="010" />
<vertex vid="1" label="100" />
<vertex vid="2" label="110" />
<vertex vid="3" label="001" />
<vertex vid="4" label="011" />
<vertex vid="5" label="111" />
<vertex vid="6" label="101" />
<vertex vid="7" label="000" />
<edge source="4" target="0" />
<edge source="5" target="2" />
<edge source="6" target="3" />
<edge source="1" target="7" />
<edge source="0" target="7" />
<edge source="5" target="4" />
<edge source="2" target="0" />
<edge source="2" target="1" />
<edge source="4" target="3" />
<edge source="5" target="6" />
<edge source="6" target="1" />
<edge source="3" target="7" />

</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>

D.2 Throughput Scenario 113

<stream sid="stream-0" type="file">
<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.cycle.mode">true</param>

</stream>
</streams>

<queries>
<query qid="0">

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="1">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="2">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="3">

114 Chapter D. VLDB 2005 Scenarios

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="4">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="5">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="6">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="7">

D.2 Throughput Scenario 115

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="8">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="9">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="10">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="11">

116 Chapter D. VLDB 2005 Scenarios

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="12">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="13">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 4 step 2|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="14">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

D.2 Throughput Scenario 117

</query>

<query qid="15">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 4 step 2|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="16">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="17">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="18">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>

118 Chapter D. VLDB 2005 Scenarios

</query>

<query qid="19">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="20">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 260

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="21">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="22">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

D.2 Throughput Scenario 119

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="23">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="24">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

</queries>

<injectorMapping>
<mapping peer="0" stream="stream-0" />

</injectorMapping>

<queryMapping>
<mapping peer="0" query="0" install_interval="0" />
<mapping peer="1" query="1" install_interval="0" />
<mapping peer="4" query="2" install_interval="0" />
<mapping peer="2" query="3" install_interval="0" />
<mapping peer="0" query="4" install_interval="0" />
<mapping peer="7" query="5" install_interval="0" />
<mapping peer="4" query="6" install_interval="0" />
<mapping peer="4" query="7" install_interval="0" />
<mapping peer="1" query="8" install_interval="0" />

120 Chapter D. VLDB 2005 Scenarios

<mapping peer="5" query="9" install_interval="0" />
<mapping peer="0" query="10" install_interval="0" />
<mapping peer="4" query="11" install_interval="0" />
<mapping peer="3" query="12" install_interval="0" />
<mapping peer="5" query="13" install_interval="0" />
<mapping peer="4" query="14" install_interval="0" />
<mapping peer="2" query="15" install_interval="0" />
<mapping peer="7" query="16" install_interval="0" />
<mapping peer="1" query="17" install_interval="0" />
<mapping peer="1" query="18" install_interval="0" />
<mapping peer="6" query="19" install_interval="0" />
<mapping peer="6" query="20" install_interval="0" />
<mapping peer="5" query="21" install_interval="0" />
<mapping peer="1" query="22" install_interval="0" />
<mapping peer="6" query="23" install_interval="0" />
<mapping peer="1" query="24" install_interval="0" />

</queryMapping>

</scenario>

D.3 Grid Scenario

Filename grid.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="(1, 0)" />
<vertex vid="1" label="(0, 0)" />
<vertex vid="2" label="(0, 2)" />
<vertex vid="3" label="(2, 0)" />
<vertex vid="4" label="(1, 1)" />
<vertex vid="5" label="(2, 2)" />
<vertex vid="6" label="(1, 2)" />
<vertex vid="7" label="(0, 1)" />
<vertex vid="8" label="(2, 1)" />
<edge source="7" target="1" />
<edge source="3" target="0" />
<edge source="4" target="0" />
<edge source="0" target="1" />
<edge source="5" target="6" />
<edge source="8" target="3" />
<edge source="6" target="4" />
<edge source="6" target="2" />

D.3 Grid Scenario 121

<edge source="2" target="7" />
<edge source="5" target="8" />
<edge source="8" target="4" />
<edge source="4" target="7" />

</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.cycle.mode">true</param>

</stream>
</streams>

<queries>
<query qid="0">

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="1">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="2">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon

122 Chapter D. VLDB 2005 Scenarios

[coord/cel/ra >= 30.0
and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="3">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="4">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="5">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="6">
<![CDATA[

for $p in stream("stream-0")/photons/photon

D.3 Grid Scenario 123

where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="7">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="8">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="9">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="10">
<![CDATA[

for $p in stream("stream-0")/photons/photon

124 Chapter D. VLDB 2005 Scenarios

where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="11">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="12">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 0

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="13">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 4 step 2|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="14">
<![CDATA[

for $p in stream("stream-0")/photons/photon

D.3 Grid Scenario 125

where $p/coord/cel/ra >= 0
and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="15">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 4 step 2|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="16">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="17">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

126 Chapter D. VLDB 2005 Scenarios

<query qid="18">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

<query qid="19">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="20">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 260

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="21">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>

D.3 Grid Scenario 127

]]>
</query>

<query qid="22">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="23">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="24">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 30

and $p/coord/cel/ra <= 260
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

</queries>

<injectorMapping>
<mapping peer="0" stream="stream-0" />

</injectorMapping>

128 Chapter D. VLDB 2005 Scenarios

<queryMapping>
<mapping peer="0" query="0" install_interval="0" />
<mapping peer="1" query="1" install_interval="0" />
<mapping peer="4" query="2" install_interval="0" />
<mapping peer="2" query="3" install_interval="0" />
<mapping peer="0" query="4" install_interval="0" />
<mapping peer="7" query="5" install_interval="0" />
<mapping peer="4" query="6" install_interval="0" />
<mapping peer="4" query="7" install_interval="0" />
<mapping peer="1" query="8" install_interval="0" />
<mapping peer="5" query="9" install_interval="0" />
<mapping peer="0" query="10" install_interval="0" />
<mapping peer="4" query="11" install_interval="0" />
<mapping peer="3" query="12" install_interval="0" />
<mapping peer="5" query="13" install_interval="0" />
<mapping peer="4" query="14" install_interval="0" />
<mapping peer="2" query="15" install_interval="0" />
<mapping peer="7" query="16" install_interval="0" />
<mapping peer="1" query="17" install_interval="0" />
<mapping peer="1" query="18" install_interval="0" />
<mapping peer="6" query="19" install_interval="0" />
<mapping peer="6" query="20" install_interval="0" />
<mapping peer="5" query="21" install_interval="0" />
<mapping peer="1" query="22" install_interval="0" />
<mapping peer="6" query="23" install_interval="0" />
<mapping peer="1" query="24" install_interval="0" />

</queryMapping>

</scenario>

D.4 Linear Scenario

Filename linear.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="(1)" />
<vertex vid="1" label="(3)" />
<vertex vid="2" label="(2)" />
<vertex vid="3" label="(0)" />
<edge source="0" target="3" />
<edge source="1" target="2" />
<edge source="2" target="0" />

D.4 Linear Scenario 129

</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.cycle.mode">true</param>

</stream>
<stream sid="stream-1" type="file">

<dtd filename="etc/schemas/FIRST.dtd" />
<param name="stream.filename">@FILE_DIR@/first/first-10MB.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_1@</param>
<param name="stream.sleep.time">100</param>
<param name="stream.cycle.mode">true</param>

</stream>
</streams>

<queries>
<query qid="0">

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/en >= 0.8
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

<query qid="1">
<![CDATA[

let $s := avg(stream("stream-1")/first/source
[pos/coords/ra >= 1.0

and pos/coords/ra <= 140.0
and pos/coords/dec >= -15.0
and pos/coords/dec <= 20.0]/rms
|count 8 step 2|)

return <avg_rms>{$s}</avg_rms>
]]>

</query>

<query qid="2">
<![CDATA[

130 Chapter D. VLDB 2005 Scenarios

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 260

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en}

</vela>
]]>

</query>

<query qid="3">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="4">
<![CDATA[

let $s := avg(stream("stream-1")/first/source
[pos/coords/ra >= 1.0

and pos/coords/ra <= 140.0
and pos/coords/dec >= -15.0
and pos/coords/dec <= 20.0]/rms
|count 16 step 2|)

return <avg_rms>{$s}</avg_rms>
]]>

</query>
</queries>

<injectorMapping>
<mapping peer="3" stream="stream-0" />
<mapping peer="1" stream="stream-1" />

</injectorMapping>

<queryMapping>
<mapping peer="3" query="0" install_interval="0" />
<mapping peer="0" query="1" install_interval="0" />
<mapping peer="2" query="2" install_interval="0" />
<mapping peer="3" query="3" install_interval="0" />
<mapping peer="2" query="4" install_interval="0" />

</queryMapping>

D.5 Random Scenario 131

</scenario>

D.5 Random Scenario

Filename random.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="(1, 0, 0)" />
<vertex vid="1" label="(1, 0, 1)" />
<vertex vid="2" label="(0, 1, 1)" />
<vertex vid="3" label="(0, 0, 1)" />
<edge source="0" target="1" />
<edge source="2" target="1" />
<edge source="2" target="0" />
<edge source="3" target="1" />

</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.injection.mode">automatic</param>
<param name="stream.cycle.mode">true</param>

</stream>
</streams>

<queries>
<query qid="1">

<![CDATA[
for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 120

and $p/coord/cel/ra <= 138
and $p/coord/cel/dec >= -49
and $p/coord/cel/dec <= -40

return
<vela_photon>

132 Chapter D. VLDB 2005 Scenarios

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/phc} {$p/en} {$p/det-time}

</vela_photon>
]]>

</query>

<query qid="2">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5
and $p/coord/cel/ra <= 135.5
and $p/coord/cel/dec >= -48.0
and $p/coord/cel/dec <= -45.0

return
<rxj_photon>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</rxj_photon>
]]>

</query>

<query qid="3">
<![CDATA[

let $a := avg(stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]/en
| count 20 step 10 |)

return
<avg_en>

{$a}
</avg_en>
]]>

</query>

<query qid="4">
<![CDATA[

let $a := avg(stream("stream-0")/photons/photon
[en >= 1.3
and coord/cel/ra >= 130.5
and coord/cel/ra <= 135.5
and coord/cel/dec >= -48.0
and coord/cel/dec <= -45.0]/en
| count 60 step 40 |)

return
<avg_en>

{$a}
</avg_en>

D.6 Full-Demo Scenario 133

]]>
</query>

</queries>

<injectorMapping>
<mapping peer="0" stream="stream-0" />

</injectorMapping>

<queryMapping>
<mapping peer="2" query="1" />
<mapping peer="0" query="2" />
<mapping peer="1" query="3" />
<mapping peer="3" query="4" />

</queryMapping>

</scenario>

D.6 Full-Demo Scenario

Filename full-demo.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="(2, 2, 1)" />
<vertex vid="1" label="(1, 0, 1)" />
<vertex vid="2" label="(3, 2, 1)" />
<vertex vid="3" label="(2, 3, 1)" />
<vertex vid="4" label="(0, 1, 1)" />
<vertex vid="5" label="(0, 2, 1)" />
<vertex vid="6" label="(2, 0, 1)" />
<vertex vid="7" label="(1, 1, 1)" />
<vertex vid="8" label="(3, 0, 1)" />
<vertex vid="9" label="(3, 3, 1)" />
<vertex vid="10" label="(2, 1, 1)" />
<vertex vid="11" label="(1, 2, 1)" />
<vertex vid="12" label="(0, 3, 1)" />
<vertex vid="13" label="(0, 0, 1)" />
<vertex vid="14" label="(3, 1, 1)" />
<vertex vid="15" label="(1, 3, 1)" />
<edge source="3" target="0" />
<edge source="0" target="11" />
<edge source="10" target="6" />

134 Chapter D. VLDB 2005 Scenarios

<edge source="9" target="2" />
<edge source="2" target="0" />
<edge source="7" target="4" />
<edge source="15" target="11" />
<edge source="11" target="5" />
<edge source="0" target="10" />
<edge source="6" target="1" />
<edge source="14" target="10" />
<edge source="9" target="3" />
<edge source="2" target="14" />
<edge source="3" target="15" />
<edge source="14" target="8" />
<edge source="12" target="5" />
<edge source="7" target="1" />
<edge source="10" target="7" />
<edge source="4" target="13" />
<edge source="15" target="12" />
<edge source="8" target="6" />
<edge source="1" target="13" />
<edge source="11" target="7" />
<edge source="5" target="4" />

</graph>

<streams>
<kindDefinition>

<kind name="file" class="streamglobe.client.p2p.FileContentServer
" />

</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela-100MBa.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>

</stream>
<stream sid="stream-1" type="file">

<dtd filename="etc/schemas/FIRST.dtd" />
<param name="stream.filename">@FILE_DIR@/first/first-10MB.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_1@</param>
<param name="stream.sleep.time">10</param>

</stream>
<stream sid="stream-2" type="file">

<dtd filename="etc/schemas/sdss.dtd" />
<param name="stream.filename">@FILE_DIR@/sdss/sdss-10MB.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_2@</param>
<param name="stream.sleep.time">100</param>

</stream>
</streams>

D.6 Full-Demo Scenario 135

<queries>
<query qid="0">

<![CDATA[
for $s in stream("stream-2")/sdss/source
where $s/coord/ra >= 236

and $s/coord/ra <= 240
and $s/coord/dec >= -1.1
and $s/coord/dec <= -0.8

return
<result>{$s/objID} {$s/coord/ra} {$s/coord/dec} {$s/type}</result>

]]>
</query>

<query qid="1">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 260

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78
and $p/coord/cel/dec <= 20

return
<vela>

{$p/coord/cel/ra} {$p/coord/cel/dec}
{$p/en} {$p/det-time}

</vela>
]]>

</query>

<query qid="2">
<![CDATA[

let $p := avg(stream("stream-0")/photons/photon
[coord/cel/ra >= 30.0

and coord/cel/ra <= 350.0
and coord/cel/dec >= -78.0
and coord/cel/dec <= 69.0]/en
|count 2 step 1|)

return <avg_en>{$p}</avg_en>
]]>

</query>

<query qid="3">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/en >= 0.1
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det-time}
</vela>

]]>
</query>

136 Chapter D. VLDB 2005 Scenarios

<query qid="4">
<![CDATA[

let $s := avg(stream("stream-1")/first/source
[pos/coords/ra >= 0.0

and pos/coords/ra <= 140.0
and pos/coords/dec >= -15.0
and pos/coords/dec <= 20.0]/rms
|count 8 step 4|)

return <avg_rms>{$s}</avg_rms>
]]>

</query>

</queries>

<injectorMapping>
<mapping peer="4" stream="stream-0" />
<mapping peer="1" stream="stream-1" />
<mapping peer="3" stream="stream-2" />

</injectorMapping>

<queryMapping>
<mapping peer="2" query="0" install_interval="0" />
<mapping peer="6" query="1" install_interval="0" />
<mapping peer="1" query="2" install_interval="0" />
<mapping peer="2" query="3" install_interval="0" />
<mapping peer="12" query="4" install_interval="0" />

</queryMapping>

</scenario>

D.7 Bypassing Scenario

Filename bypassing.xml

<?xml version="1.0" ?>
<scenario name="GeneratedBenchmark" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
xmlns="http://streamglobe.net/scenario">

<statistix dbPath="${user.home}/statistiX" reportType="file" />

<graph>
<vertex vid="0" label="(1)" />
<vertex vid="1" label="(3)" />
<vertex vid="2" label="(2)" />
<vertex vid="3" label="(0)" />
<edge source="0" target="3" />
<edge source="1" target="2" />

D.7 Bypassing Scenario 137

<edge source="2" target="0" />
<edge source="1" target="0" />

</graph>

<streams>
<kindDefinition>

<kind name="file" class="@CONTENT_SERVER_CLASS@" />
</kindDefinition>
<stream sid="stream-0" type="file">

<dtd filename="etc/schemas/vela_nested.dtd" />
<param name="stream.filename">@FILE_DIR@/vela/vela_demo.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_0@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.cycle.mode">true</param>

</stream>
<stream sid="stream-1" type="file">

<dtd filename="etc/schemas/FIRST.dtd" />
<param name="stream.filename">@FILE_DIR@/first/first-10MB.xml</

param>
<param name="stream.server.port">@STREAM_SERVER_PORT_1@</param>
<param name="stream.sleep.time">10</param>
<param name="stream.cycle.mode">true</param>

</stream>
</streams>

<queries>
<query qid="0">

<![CDATA[
display(stream("stream-1"))
]]>

</query>

<query qid="1">
<![CDATA[

let $s := avg(stream("stream-1")/first/source
[pos/coords/ra >= 1.0

and pos/coords/ra <= 140.0
and pos/coords/dec >= -15.0
and pos/coords/dec <= 20.0]/rms
|count 8 step 2|)

return <avg_rms>{$s}</avg_rms>
]]>

</query>

<query qid="2">
<![CDATA[

for $p in stream("stream-0")/photons/photon
where $p/coord/cel/ra >= 260

and $p/coord/cel/ra <= 350
and $p/coord/cel/dec >= -78

138 Chapter D. VLDB 2005 Scenarios

and $p/coord/cel/dec <= 20
return

<vela>
{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en}
</vela>

]]>
</query>

</queries>

<injectorMapping>
<mapping peer="2" stream="stream-0" />
<mapping peer="2" stream="stream-1" />

</injectorMapping>

<queryMapping>
<mapping peer="0" query="0" install_interval="0" />
<mapping peer="0" query="1" install_interval="0" />
<mapping peer="3" query="2" install_interval="10" />

</queryMapping>

</scenario>

Acronyms

AGN active galactic nucleus.

CRM Customer Relationship Management.

DEC declination.

DSMS Data Stream Management System.

DTD Document Type Definition.

ERP Enterprise Resource Planning.

GAVO German Astrophysical Virtual Observatory.

GRB Gamma-ray burst.

GSH Grid Service Handle.

GUI graphical user interface.

LOI luminary of interest.

MPE Max Planck Institute for Extraterrestrial Physics.

OGSA Open Grid Services Architecture.

P2P Peer-To-Peer.

RA right ascension.

RFID Radio Frequency Identifier.

SED spectral energy distribution.

SGG StreamGlobeGui.

SGTP StreamGlobe Transfer Protocol.

XML Extended Markup Language.

Bibliography

[AKL+04] H.-M. Adorf, F. Kerber, G. Lemson, R. Mignani, A. Micol, T. Rauch,
and W. Voges. Assembly and classification of spectral energy distri-
butions - a new vo web service. In Conf. on Astronomical Data Anal-
ysis Software and Systems, Pasadena, CA, USA, November 2004.

[APST05] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan
Turner. Overcoming the Internet impasse through virtualization.
IEEE Computer, 38(4):34–41, April 2005.

[Asc98] B. Aschenbach. Discovery of a young nearby supernova remnant.
Nature, 396(6707):141–142, November 1998.

[ATE05] The astronomers’s telegram. http://www.astronomerstelegram.org,
September 2005.

[BDK+03] Ingo Brunkhorst, Hadhami Dharaief, Alfons Kemper, Wolfgang Ne-
jdl, and Christian Wiesner. Distributed queryies and query opti-
mization in schema-based p2p-systems. In International Workshop
on Databases, Information Systems and Peer-to-Peer Computing,
Berlin, Germany, September 2003.

[BKK+01] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz,
S. Seltzsam, and K. Stocker. Objectglobe: Ubiquitous query pro-
cessing on the internet. The VLDB Journal, 10(1):48–71, August
2001.

[BSS04] Gert Brettlecker, Heiko Schuldt, and Raimund Schatz. Hyper-
databases for peer-to-peer data stream processing. In ICWS, pages
358–, 2004.

[CBA05] Central bureau for astronomical telegrams. http://cfa-
www.harvard.edu/iau/cbat.html, September 2005.

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,

142 Bibliography

F. Reiss, and M. A. Shah. Telegraphcq: Continuous dataflow pro-
cessing for an uncertain world. In Proc. of the Conf. on Innovative
Data Systems Research, Asilomar, CA, USA, January 2003.

[Coh03] Bram Cohen. Incentives build robustness in BitTorrent.
http://www.bittorrent.com/bittorrentecon.pdf, May 2003.

[CRA04] Liang Chen, Kolagatla Reddy, and Gagan Agrawal. Gates: A grid-
based middleware for processing distributed data streams. In HPDC,
pages 192–201, 2004.

[dis05] distributed.net: Project RC5. http://www.distributed.net/rc5/,
September 2005.

[DKNW04] Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl, and Christian
Wiesner. Processing and optimization of complex queries in schema-
based p2p-networks. In DBISP2P, pages 31–45, 2004.

[DRF04] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an
internet-scale xml dissemination service. In Proc. of the Intl. Conf.
on Very Large Data Bases [vld04], pages 612–623.

[Fen05] Bo Feng. Optimierung und Bewertung der Anfrageauswertung auf
Datenströmen in P2P Netzwerken. Master’s thesis, Technische Uni-
versität München, Germany, 2005.

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven
Tuecke. The physiology of the grid: An open grid ser-
vices architecture for distributed systems integration, June 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. 15(3):200–222, August 2001.

[Fos02] Ian Foster. What is the grid? a three point checklist. GRIDToday,
July 2002.

[Fou05] The Apache Software Foundation. Apache Ant 1.6.7.
http://ant.apache.org, September 2005.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

Bibliography 143

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, third edition, 2003.

[GAV05] German Astrophysical Virtual Observatory. http://g-vo.org,
September 2005.

[GCN05] The gamma-ray burst coordinates network. http://gcn.gsfc.nasa.gov,
September 2005.

[GRJV95] Erich Gamma, Helm Richard, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GSF+04] Jim Gray, Alexander S. Szalay, Gyorgy Fekete, William O’Mullane,
Maria A. Nieto Santisteban, Aniruddha R. Thakar, Gerd Heber, and
Arnold H. Rots. There goes the neighborhood: Relational algebra for
spatial data search. Technical Report MSR-TR-2004-32, Microsoft
Research, Microsoft Cooperation, Redmond, WA, USA, April 2004.

[HT99] Andrew Hunt and David Thomas. The pragmatic programmer: from
journeyman to master. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[Häu05] Franz Häuslschmid. Infrastrukturen und verfahren zur adaptiven
anfragebearbeitung und optimierung in datenstrom-management-
systemen. Master’s thesis, Universität Passau, Germany, 2005.

[Ill79] Valierie Illingworth, editor. The Macmillan Dictionary of Astron-
omy. MacMillan Refernce Books, 1979.

[JXT05] Project JXTA. http://www.jxta.org, September 2005.

[KE01] Alfons Kemper and André Eickler. Datenbanksysteme - Eine
Einführung, 4. Auflage. Oldenbourg, 2001.

[KSH+04] R. Kuntschke, B. Stegmaier, F. Häuslschmid, A. Reiser, A. Kemper,
H.-M. Adorf, H. Enke, G. Lemson, and W. Voges. Datenstrom-
Management für e-Science mit StreamGlobe. Datenbank-Spektrum,
4(11):14–22, November 2004.

[KSK05] Richard Kuntschke, Bernhard Stegmaier, and Alfons Kemper. Data
stream sharing. Technical Report TUM-I0504, Technische Univer-
sität München, 2005. to be published.

144 Bibliography

[KSKR05] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser. Stream-
globe: Processing and sharing data streams in grid-based p2p in-
frastructures. In Proc. of the Intl. Conf. on Very Large Data Bases,
pages 1259–1262, Trondheim, Norway, August 2005.

[KSSS04] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-
based scheduling of event processors and buffer minimization on
structured data streams. In Proc. of the Intl. Conf. on Very Large
Data Bases [vld04], pages 228–239.

[KW01] Alfons Kemper and Christian Wiesner. Hyperqueries: Dynamic dis-
tributed query processing on the internet. In VLDB, pages 551–560,
2001.

[KW05] Alfons Kemper and Christian Wiesner. Building scalable electronic
market places using hyperquery-based distributed query processing.
World Wide Web, 8(1):27–60, 2005.

[NSS03] Wolfgang Nejdl, Wolf Siberski, and Michael Sintek. Design issues and
challenges for rdf- and schema-based peer-to-peer systems. SIGMOD
Record, 32(3):41–46, 2003.

[NST03] Wee Siong Ng, Yanfeng Shu, and Wee Hyong Tok. Efficient dis-
tributed continous query processing using peers. Technical Report
NUS-CS01-03, National Universtity of Singapore, 2003.

[Pla05] PlanetLab. http://planet-lab.org, September 2005.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-to-peer
systems. In Rachid Guerraoui, editor, Middleware, volume 2218 of
Lecture Notes in Computer Science, pages 329–350. Springer, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp,
and Scott Shenker. A scalable content-addressable network. In SIG-
COMM, pages 161–172, 2001.

[SET05] SETI@home. http://setiathome.ssl.berkeley.edu, September 2005.

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In SIGCOMM, pages 149–160, 2001.

[SSDN02] Mario T. Schlosser, Michael Sintek, Stefan Decker, and Wolfgang
Nejdl. Hypercup - hypercubes, ontologies, and efficient search on
peer-to-peer networks. In AP2PC, pages 112–124, 2002.

Bibliography 145

[Sun05] Sun Microsystems Inc. JavaTM 2 Platform Standard Edition 5.0.
http://java.sun.com/j2se/1.5.0/, September 2005.

[SWA+05] Rob Seaman, Roy Williams, Alasdair Allan, Scott Barthelmy,
Joshua Bloom, Frederic hessman, Szabolcs Marka, Arnold Rots,
Kate Scholberg, Chris Stoughton, Tom Bestrand, Robert White,
and Przemyslaw Wozniak. Sky event reporting metadata (VOEvent.
http://www.ivoa.net/internal/IVOA/IvoaVOEvent/VOEvent-
v1.0.html, September 2005.

[TB05] Niklas Therning and Lars Bengtsson. Jalapeno: secentralized grid
computing using peer-to-peer technology. In CF ’05: Proceedings of
the 2nd conference on Computing frontiers, pages 59–65, New York,
NY, USA, 2005. ACM Press.

[TMM05] Henry S. Thompson, Murray Maloney, and Noah Mendel-
sohn. Xml schema part 1: Structures second edition.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/,
September 2005.

[VAB+99] W. Voges, B. Aschenbach, Th. Boller, H. Bräuninger, U. Briel,
W. Burkert, K. Bennerl, J. Englhauser, R. Gruber, F. Haberl,
G. Hartner, G. Hasinger, M. Kürster, E. Pfeffermann, W. Pietsch,
P. Predehl, C. Rosso, J.H.M.M. Schmitt, J. Trümper, and H.U. Zim-
mermann. The rosat all-sky survey bright source catalogue. Astron-
omy and Astrophysics, 349(2):389–405, July 1999.

[vld04] Proc. of the Intl. Conf. on Very Large Data Bases, Toronto, Canada,
August 2004.

[Wik05a] Wikipedia, the free encyclopedia. http://en.www.wikipedia.org,
September 2005.

[Wik05b] Wikipedia. Stellar classification.
http://en.wikipedia.org/wiki/Stellar classification, September
2005.

Acknowledgements

At the end of my thesis, I would like to take the opportunity to thank everyone
who made this work possible.

Especially, Richard Kuntschke for great guidance during my thesis, for keep-
ing me focused and giving insightful comments. Thanks to Angelika Reiser for
her helpful advice to bring this “raw diamond” into shape and many fruitful
discussions.

I am grateful to Prof. Alfons Kemper, for giving me the opportunity “to reach
for the stars” and for encouraging me to commit myself to this topic.

For opening the world of astrophysics, I would like thank the people at the
MPE, especially Wolfgang Voges,Gerard Lemson, and Hans-Martin Adorf. They
provided the astrophysical catalogs, astrophysical images, Java libraries, and pa-
tience to explain some of the essentials several times.

Working in a team on StreamGlobe or StarGlobe together with Franz Häusl-
schmid, Bo Feng, and Sebastian Huber has been a great experience, especially
during some of those surrealistic white board sessions.

Thanks to my proofreaders, Tobias Brandl, Thomas Harrer, Christian Schnei-
der, Stefan Schöffmann, and Marcus Simon for their help and constructive criti-
cism.

Finally, I warmly thank my parents Elisabeth and Hartmut Scholl and Nina
Hentschel for their ideas, patience, encouragements, advice, and love during all
stages of this thesis and my studies.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich diese Diplomarbeit selbständig ange-
fertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe. Alle wörtlich oder sinngemäß übernommenen Ausführungen wurden als
solche gekennzeichnet. Weiterhin erkläre ich, dass ich diese Arbeit in gleicher
oder ähnlicher Form nicht bereits einer anderen Prüfungsbehörde vorgelegt habe.

Passau, den 19. September 2005 .
Tobias Scholl

