
One Buffer Manager to Rule Them All

Using Distributed Memory with Cache Coherence over RDMA

Magdalena Pröbstl
magdalena.proebstl@tum.de

Philipp Fent
philipp.fent@tum.de

Maximilian E. Schüle
m.schuele@tum.de

Moritz Sichert
moritz.sichert@tum.de

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

Alfons Kemper
kemper@in.tum.de

ABSTRACT
Remote direct memory access (RDMA) allows query pro-
cessing on distributed systems when data exceeds the size of
local memory on a single machine. Cache coherence proto-
cols generalize distributed memory as they abstract remote
data access and cache data locally. Unfortunately, existing
protocols are limited to main memory only.

In this work, we extend a recently presented cache-co-
herence protocol to deal with background storage as well.
With its memory input/output primitives, this protocol ser-
ves as basis for a distributed buffer manager that is capable
of pinning and evicting pages to frames of remote nodes.
Whereas locking is part of the cache coherence protocol, the
buffer manager is responsible for a distributed buffer pool.
This results in two-stage caching with almost no overhead,
due to the quickly converging performance characteristics of
SSDs and RDMA capable networks like InfiniBand to not
waste compute performance. Benchmarking the input/out-
put primitives results in a eviction strategy of fully utilizing
the distributed buffer pool before swapping out pages.

1. INTRODUCTION
Data sets are constantly growing, quickly reaching sizes of

multiple terabytes. While modern in-memory databases are
becoming popular, growth of main memory capacities has
slowed down significantly in recent years. Scaling-up fast
storage is also limited, since each additional NVMe solid
state disk (SSD) in use blocks PCIe lanes of the processor.
This results in a fundamental limit of storage capacity on a
single node system and poses a problem to both traditional
disk-oriented or a modern in-memory database systems and
makes it necessary to scale-out to multiple nodes.

Scale-out systems employ a distributed architecture for
multiple nodes [18]. Popular state-of-the-art systems use
remote direct memory access (RDMA) to directly expose

This work is licensed under the Creative Commons BY-NC-ND 4.0 Interna-
tional License and appears in ADMS 2021, 12th International Workshop on
Accelerating Analytics and Data Management Systems, August 16, 2021,
Copenhagen, Denmark.

Request Node Owner Node

Home NodeApplication

RDMA RDMA

RDMA

Distributed Buffer Manager

Figure 1: Sketch of a distributed buffer manager: The buffer
manager hides the memory layout from the application’s
perspective. It loads pages either from a home or remote
SSD first into frames of the home node. If frames run out,
frames of the remote node are taken and the page is cached
locally according to the cache coherence protocol.

local RAM to their scale-out cluster. RDMA allows low-
latency communication between nodes and memory access
to remote nodes that behaves similarly to local non-uniform
memory access (NUMA) [15]. RDMA has proven to be the
best technology for a distributed database system [9, 13, 23].
Various research systems enhance in-memory join process-
ing [2], build distributed index structures [19, 29] or have
decentralized lock management [28].

Performance advantages of RDMA stem largely from by-
passing the remote operating system and CPU by directly
accessing remote memory with hardware support of the net-
work interface card. Traditionally, RDMA was used to ac-
celerate specialized data structures but current research by
Cai et al. [3] generalizes distributed main memory using a
cache coherence protocol. For a complete storage scale-out,
distributed memory access is but one building block for a
distributed beyond main memory database system [8, 10,
20, 21, 22, 24]. One link to traditional systems is still miss-
ing: How to combine distributed memory with traditional
page caching in a buffer manager?

In our work, we answer this question with a design and
implementation of a distributed buffer manager (see Fig-
ure 1). It combines a canonical buffer pool [5, 4, 16] with
distributed memory access, resulting in two-stage caching
with almost no overhead, due to the quickly converging per-
formance characteristics of SSDs [17] and RDMA capable
networks like InfiniBand. With our study, we show that

1

it is possible to connect the traditional world of relational
database management systems to efficient distributed data
processing. The source code has been made available at
https://github.com/tum-db/cachecoherence.

This work’s contributions are as follows:

1. We introduce and evaluate the concept of distributed
memory management using a cache coherence proto-
col (Section 3).

2. We design an efficient implementation of a buffer man-
ager over distributed memory (Section 5).

3. We evaluate the performance of the buffer manager us-
ing microbenchmarks (Section 6).

This paper reports the concept and evaluation of an RDMA-
based distributed buffer manager. It therefore referes to re-
lated work on RDMA for operations of distributed database
systems and a framework for RDMA-based primitives. We
proceed by introducing a cache coherence protocol that covers—
unlike previous studies—operations on both main memory
and background storage. Hereby, it provides an abstrac-
tion of distributed main memory using caching that can be
accessed uniformly and allows global access to distributed
background storage without wasting compute performance
on remote servers. Finally, we introduce our distributed
buffer manager, which is based on an extension of a disk-
oriented database system prototype that uses the frame-
work’s memory abstraction for allocating buffer frames and
evicts pages to local and remote background storage. Our
evaluation shows that the buffer manager performs best
when fully utilizing the distributed buffer pool first before
swapping out pages locally.

2. RELATED WORK
For the underlying distributed data storage, we rely on

memory caching mechanisms of main memory as well as
of background storage. For main memory, the memory-
coherence protocol GAM [3] has been presented that man-
ages main memory of distributed machines connected via In-
finiBand. We build up on this idea by allowing flexibly sized
pages for main memory—later used by our buffer manager—
and extend the memory coherence protocol to manage back-
ground storage.

RDMA is not persistent memory aware. Other re-
cent developments for larger than memory databases include
the use of non-volatile main memory (NVM) [1, 6, 25, 26].
In general, remote access to non-volatile memory has many
synergizing effects [14]. However, RDMA does not directly
guarantee persistence in NVM due to NIC write caches [27,
11]. The currently proposed workarounds all induce high
overhead and NVM is both, much more expensive and much
more limited in capacity than state-of-the-art SSDs.

In-memory capabilities of RDMA. When the mem-
ory of a single machine is exceeded, RDMA helps to accel-
erate query processing of distributed database systems [7,
12]. Ziegler et. al. [29] build tree-based index structures for
network-attached-memory (NAM), where servers, providing
RDMA, either host the data or do the computations. In the
context of join processing, research has been conducted on
parallel in-memory hash joins over RDMA-based distributed
database systems [2] where remote data is directly mapped
using RDMA network primitives similar to our mapping.
When remote data is cached or pages are accessed, locking
mechanisms to avoid the reading of dirty data are essential.

DSLR [28] is an example of decentralized lock management
on RDMA-based networks to avoid starvation.

3. CACHE COHERENCE PROTOCOL
The distributed buffer manager relies on an efficient mem-

ory cache coherence protocol that offers an abstraction for
distributed memory. The basic idea is to create memory
primitives for RDMA-based distributed systems with each
entity called node. Although the system is split into multiple
nodes, a partitioned global address space (PGAS) provides
a logically unified view to identify memory. This simplifies
the development of multi threaded distributed applications.
We base our cache coherence model on GAM [3], but ex-
tend the protocol to manage persistent storage as well. In
the following, we will explain the architecture of the cache
coherence protocol for main memory as well as persistent
storage with its interfaces.

3.1 Node
Nodes form the entities of the distributed system and pro-

vide an interface for remote reads and writes. On every ma-
chine of the system, a node is initialized in the beginning.
Every node has its own individual identifier, which is used
to identify where data is stored, to lock data and to detect
which node is responsible for the data at a specific address.

3.2 Global Address
Each address, on main memory as well as on background

storage, is represented as a global address (see Listing 1).
Technically, this is a struct that identifies a global address
with the following information:

• the size that is stored at the address,

• the pointer to the node which hosts the data,

• its node ID,

• and a flag that indicates whether the data is stored on
main memory or in a file on background storage.

In the latter case, the global address defines the location
of a file and the pointer contains the filename instead of a
pointer.

struct __attribute__ ((packed)) GlobalAddress {
size_t size; char *ptr; uint16_t id; bool isFile; }

Listing 1: The struct GlobalAddress to identify distributed
main memory and files globally.

3.3 Distributed Main Memory
The cache coherence protocol manages distributed main

memory uniformly, therefore each node provides access to its
RAM and caches data of remote nodes. The cache coherence
protocol for main memory is similarly implemented to the
original proposal but allowing flexible page sizes. Each node
acts as a server to answer read and write requests. Every
task is bound to one server node, to which we will refer as the
home node. This node routes all data requests for the spe-
cific task . The protocol includes the four basic operations
malloc, free, read and write with additional locking mech-
anisms. For local accesses, the home node checks whether
the chosen access method is compatible with the lock of the
requested area. Requests for remote access are redirected to
a remote node and the result is cached locally.

2

https://github.com/tum-db/cachecoherence

Unshared

ExclusiveShared

local read/write

remote writelocal/remote read

remote write

local/remote read

remote write

local write

remote read

local write

Figure 2: Transition between the different cache states.

3.3.1 Cache
Even though the throughput of networks using RDMA is

comparably high and the latency is comparably low, remote
memory access is ten times slower compared to local memory
access [3]. This software cache aims to reduce the remote
memory accesses as it reduces calls to lower memory layers
and remote accesses. As a result, a cache coherence protocol
is used for better performance and minimizing the necessary
connections.

Depending on the data item, there are five roles a node
can be assigned with. The home node is the node the data
is physically stored on. All other nodes are remote nodes.
The request node is the node that requests shared (read) or
exclusive (write) access to the data. If this access is granted,
the request node will become the sharing node (read) or
exclusive node (write). In the beginning, the home node
is responsible for the data. When a request node requires
access to the data, which the home node grants, it becomes a
sharing or an exclusive node. There can be multiple sharing
nodes for one data item, but there at most one exclusive
node.

The state of a cache item can be unshared, shared or ex-
clusive (see Figure 2). Unshared means that the data resides
in the home node. The state is shared when one or more
nodes have read permission on that data. Exclusive means
that one remote node has write permission on that data.

3.3.2 Read
Read is used to access data that is stored in the distributed

system. The data’s address is defined in a global address
that is initially created when malloc is called. There are
two read scenarios depending on where the data is stored.
A read request that addresses data, which is stored in the
request node itself, is referred to as local read, whereas a
read request to a remote address is called a remote read.

Local Read. The data a local read wants to access can be
either unshared, shared or exclusive. In all three cases, the
data can be accessed right away. The status will remain the
same, since we do not change the sharing nodes.

Remote Read. In the scenario of a remote read, the re-
quest node differs from the node where the data is stored
on. If the cache of the request node already contains the re-
quired data, the cached copy will be simply returned without
further inter-node communication.

Otherwise, the request node sends a read request to the
associated remote node (see Figure 3a). In the case of the
data status being unshared, the requested data is accessed
on the remote node using the pointer stored in the global
address. The status is set to shared and the data is returned
to the initial request node. The request node stores the data
in its cache in case it is needed again.

Request/home
node nr

Owner node no

1. request 3. reply

2. read data

cache state = shared

sharing nodes += nr

4. add data to cache

(a) shared/unshared

Request node nr Home node nh

Owner node no

1. request

3. reply

2. read data
cache state = shared
sharing nodes += nr

sharing nodes += no

owner node = nh4. add data to cache

(b) exclusive

Figure 3: Remote reads request the data from another node.

Sharing node ns Sharing node ns

Request/home

node nrh

2.1. invalidate

3.2. ack3.1. ack

2.2. invalidate

1. read data
4. write new data
cache = unshared

(a) Local write (shared).

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

(b) Remote write (shared/exclusive).

Figure 4: Writing: The home node requests sharing nodes
to invalidate cached data.

If the status of the data is shared, the data will be just
returned to the request node. Other sharing nodes do not
need to interact and the status remains the same. If the sta-
tus is exclusive, the node will change the status to shared
(see Figure 3b). Then the data will be returned to the re-
quest node. The node saves the data in its cache to ease
further read requests.

3.3.3 Write
Write is used to save data to memory that was allocated

before or to alternate existing data. It writes to a predefined
address. Similar to read, there are two possible scenarios:
local write (if the memory to access is located at the request
node) and remote write (if the request node differs from the
node where the address is at).

Local Write. Local write means that the addressed mem-
ory space is in the request node. In this case, it is necessary
to check if the data is already cached by another node (see
Figure 4a). If not, we can simply write the data and return
the updated address. If other nodes have accessed the data
and saved them in their cache, it is necessary to invalidate
their cache. Therefore, the node sends invalidate requests to
all sharing nodes. The remote node removes the correspond-

3

ing cached item and sends an acknowledgment as response.
After all cached items are invalidated, the request node can
perform the write in its memory and alter the data.

Remote Write. In case of a remote write, the memory is
placed in a different node (see Figure 4b). There are three
scenarios depending on the cache state of the accessed data.
In all of the three, scenarios the request node connects to
the home node and sends a write request. Furthermore, the
new data is stored in the cache of the request node in case
it needs to access it soon. Again, we have to distinguish
between unshared, shared or exclusive.

In the unshared case, the request node sends a request to
the home node. It checks the state for information and rec-
ognizes it as unshared. The data is stored at the correspond-
ing address and the state is set to exclusive. Afterwards, the
request node also saves the data in its cache.

The shared case is similar to the unshared scenario. The
request node sends a request to the home node and checks
the state. Indicating it as shared, the next step is to send a
request to invalidate the cached item on each sharing node.
After receiving an acknowledgment from each sharing node,
the home node alters the data. It returns the updated global
address to the request node, which also stores the changed
data now as well in its cache.

In the third, exclusive, case, the data cannot be changed
and the request will be denied.

3.3.4 LRU-based Cache
We use a least recently used (LRU) policy to manage the

software cache, which caches data from remote nodes for
faster access. Each cacheline is stored in a hash-table in-
dexed by its global address. The size of a cacheline as well
as the overall size are limited and depend on the hardware
capabilities as not the whole main memory can be used for
caching. If the data is too large for the cache in general, no
data item will be removed from the cache and the data has
to be loaded from the remote node on each new access.

In case of a read request, the cache of the home node is
checked first. If the requested data is already stored, its
content will be returned. Otherwise, we perform a remote
read and store the returned data in the software cache. Also
on a write request, when the global address points to a
remote node, the data will be cached locally as well for future
read requests.

3.4 Interface
For remote read or write requests, our cache coherence

protocol provides an application interface (API) for data
access out of the six functions malloc, free, read, write,
freadf and fprintf (see Figure 5) and additional locking
mechanisms.

3.4.1 Malloc
Similarly to the function of the standard library, malloc

reserves memory and returns a global address as follows:
First the home node, on which the current program is

running, our access point, tries to allocate the requested
memory plus memory for caching and ownership on its own
local storage. On success, when enough memory is available,
we return the address of the allocated memory packed in a
global address. Otherwise, the node aims to reserve mem-
ory in the storage of a remote node. Therefore, it sends a

Request

Home Node

Remote Node

API

FWrite

FRead

Read

Write

Free

Malloc

RAM SSD

RAM SSD

Figure 5: The implemented memory input/output primi-
tives implemented by our cache coherence protocol.

request to another node with remaining memory capabili-
ties. This remote node allocates the requested memory plus
space for additional data. When the system does not have
any available memory in the requested size, an exception is
thrown, which has to be caught in a higher level application.

3.4.2 Free
This operation releases memory on a given global address,

either managed by the node itself or a remote node.
If the address belongs to the home node, the saved data

is examined to get information about the owner node and
the sharing nodes. If the owner node is not the current one
or sharing nodes exist, it is necessary to send invalidation
requests to the sharing nodes and/or the owner node. When
the invalidation is over, the initially sent pointer is freed.

If the given pointer is not located in the home node’s ad-
dress space, the remote node, where the addressed memory
resides, is identified. The home node requests the corre-
sponding remote node to release the corresponding memory
and to notify each sharing node to invalidate their cache
entry.

3.4.3 Locks
To avoid race conditions on parallel read or write requests,

the cache coherence protocol provides a distributed locking
mechanism as part of its application interface. A lock is
responsible for a hashed global address together with a state
(either shared, exclusive or unshared) and the node identifier
of the node holding the lock. One pre-defined lock node is
responsible for locks across the distributed systems.

In case of a read request, a shared lock is created, in case
of a write request, an exclusive lock. Multiple shared locks
are allowed, as they define read-only accesses and are not
compatible with an exclusive lock request. An exclusive lock
can only be held by one single thread, which has exclusive
rights to write on the locked data.

3.5 Distributed Persistent Storage
Additionally to the main memory, the project is expanded

by the usage of a SSD storage. If main memory exceeds, this
approach will allow to swap out pages to SSD.

3.5.1 FPrintF
The API function FPrintF is used to write data into a

file. The function is called with four parameters: the new
data, the global address, the size of the data and the offset
in the file. First, it is checked if the address is situated on

4

the access node. If this is the case, the corresponding file is
opened. If the size of the file is smaller than the size of the
new data, the file is resized and the size saved in the global
address is adjusted. The new data is written to the open
file. Afterwards, the global address is returned.

If the file is not in the file system of the access node, the
access node connects with the node storing the file and sends
the data. The remote node writes the data to the file and
returns the global address on success.

3.5.2 FReadF
The function FReadF is the second part of the implemen-

tation of the distributed file system. It enables to read a
file. The function expects the global address of the file, the
size of the data that should be read, the offset in the file
and the pointer to a return buffer where the data should be
stored, as parameters. Since the pointer of the return buffer
is given as a parameter, the function has no return type.

When the global address points to a file on the access
node, the data is read from the file and stored in the return
buffer. Otherwise, the access node needs to connect to the
associated remote node and send a request containing the
order to read from the specified file. The remote node reads
the file and copies the data into the send buffer. The access
node copies the received data into the return buffer.

4. DISTRIBUTED HASH TABLE
The first application is a simple key-value store. The de-

sign of a hash table was used for the implementation of this
storage. A hash table is a data structure that can map keys
to values. The data structure is split into a fixed amount
of buckets. It uses a hash function on the key to compute
an index used to identify the bucket in which the value is
stored. In contrast to the implementation of a distributed
hash table in GAM [3], which divided the key space and
assigned each part to a different node, this study uses the
provided API functions for allocation, storing and accessing
data in the distributed hash table implementation.

The entries are stored in a vector in the access node that
contains the global addresses of the values. If a new insert
is executed, the hash table calls Malloc and gets the global
address in return. This address is stored in the associated
bucket, which is determined by hashing the key. The value
is then written to the specified global address with the use of
Write. On look-ups the hashed key identifies the associated
global address and Read returns the data that is positioned
at the address. If an item should be erased, the function
Free releases the memory that is specified in the global ad-
dress.

5. DISTRIBUTED BUFFER MANAGER
The extended cache coherence protocol provides an ab-

straction to adapt higher-level applications such as a disk-
based database system for distributed systems. For disk-
based database systems, buffer management is essential to
evict pages to background storage and to load pages into
main memory. A buffer manager has a limited amount of
frames in main memory and the number of pages depends
on the size of background storage. When reading or writing
a page, the page has to be loaded necessarily to main mem-
ory, thus fixed into a frame, and can be written out to disk
when the amount of available frames is exceeded.

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

A C E B G F

A B C D E ...

G F

F G H I J ...

A C E B G F - -

A C E G B F -

(a) One local buffer manager per node.

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

A C E G B F

A B C D E ...

B F

F G H I J ...

A C E G B F -

(b) One global buffer manager.

Figure 6: Design decision between (a) one local buffer man-
ager per node and (b) one global buffer manager over two
nodes with up to four frames in each node: When using lo-
cal buffer managers, each node (un-)fixes pages locally. In
contrast with RDMA write, it is possible to directly map
remote background storage to local main memory.

When building a distributed buffer manager, traditionally,
every node provides a local buffer manager and evicts pages
to the local background storage (see Figure 6a). Hereby, the
global buffer manager corresponds to the amount of local
buffer managers.

As RDMA allows to bypass the CPU to access remote
memory directly, evicting and loading pages from remote
nodes is possible. So we have to decide between local buffer
management per node, which replaces frames locally, or to
implement a global buffer management. As our cache co-
herence provides an interface for abstractions of memory in-
put/output primitives over a distributed network, we adjust
a buffer manager to deal with frames on a distributed file
system. As a result, every node has access to files on remote
nodes and can load pages into local frames. Hereby, the
global buffer manager corresponds implicitly to the amount
of loaded frames (see Figure 6b), but no node has to manage
pages locally.

The basic operations of the buffer manager are:

5

• FIX(page number, shared) for loading the page and

• UNFIX(page number, dirty).

Pages can only be altered if they are fixed. One entity of
a page is represented by a buffer frame, which contains the
state of a specific page.

In this paper, the buffer is implemented in the form of a
hash table. The previously described distributed hash table
was used to enable a distributed buffer storage. A whole
buffer frame is saved as the value with its page number as
the key.

If the buffer is full, some pages need to be evicted to create
space for new pages. If a page is clean, it can be discarded
immediately. If it is dirty, the new data needs to be written
back before the page can be replaced. To decide which page
should be replaced first, different methods can be used. Two
strategies are combined, hence two queues are used: First-
In-First-Out (FIFO) and Least-Recently-Used (LRU). FIFO
is a simple replacement strategy that uses a linked list. New
items are added to the end and removal is done from the
head, hence old items are removed first. LRU is similar to
FIFO, but uses a double-linked list to store the items. The
items are also removed from the head, but when an item is
reused, it is moved to the end of the buffer.

The slots for buffer frames in the buffer manager are lim-
ited. As a result the buffer manager can become full and
pages need to be evicted before other pages are loaded. In
this implementation, a two queue replacement strategy is
used. The pages are stored in the FIFO queue. If another
reference to the page is made, the page is moved to the LRU
queue. When a page gets evicted and is dirty, it is necessary
to write the page’s data to an associated file. These files are
also stored in the distributed system. Therefore, the API
function FPrintF is used to write to local and remote files.
The same principle is used for loading pages: the function
FReadF reads the requested data from the file defined in the
global memory.

The locking, which enables multi-threading in the original
buffer manager, had to be adjusted. This paper provides
its own locking mechanism as described previously. This
mechanism is used in the API functions.

6. EVALUATION
This section evaluates and discusses the distributed sys-

tem. First, micro-benchmarks were performed on the dif-
ferent API functions. Afterwards, observations regarding
the implementation of the applications are described and
the performance is measured and discussed. For measuring,
PerfEvent1 was used, a C++ wrapper for Linux’ perfor-
mance events API. Two Ubuntu 18.04.03 LTS servers with
two sockets and twenty cores of Intel Xeon E5-2660 v2 pro-
cessors (supporting hyperthreading) were used. Each server
has 256GiB of main memory and 1TiB of SSD as background
storage, provides a Mellanox ConnectX–3 VPI NIC support-
ing FDR InfiniBand with 56 GBit/s, and is connected via a
Mellanox SX6005 switch.

6.1 Runtime Analysis
First, Malloc, Free, Read and Write as functions for main

memory are measured. Second, the functions FPrintF and
FReadF, which are handling the file system, are benchmarked.

1https://github.com/viktorleis/perfevent

Figure 7: Time of Malloc and Free with a log2 scale.

In this study, the time for each call is examined. The sent
data size in this benchmark is set to the maximum block size,
estimated during the implementation. For the main mem-
ory functions, three thousand calls were made. For the file
system functions, one thousand calls were made. The time
is measured in nanoseconds. Furthermore other measured
values, e.g. cache-misses, were used to explain peculiarities.
The tests were conducted on the side of the access node
(client side), since the remote node (server side) is not call-
ing the functions explicitly. The remote node only reacts to
the messages received from the access node.

6.1.1 Micro-benchmark of Allocation and Freeing
To measure the allocation without filling the complete

memory of the server, a limitation for the occupied memory
on each node was set. It is also good practice to limit the
available memory for the node in general, since the main
memory also includes the software cache. In this measure-
ment, the reason for the limitation is that the access node
should be forced to allocate memory on a remote node.

The time of a Malloc() and Free() is shown in Figure 7.
3000 times the maximum block size (912B) was allocated in
this benchmark. The duration of each allocation was mea-
sured. Afterwards, the three thousand addresses returned
by the allocation process were freed again. Every Free call
was measured as well.

Observing both graphs, there is a big jump shown at
around 1800 calls. Examining Malloc, the reason for this
jump is that the local memory is fully occupied. Hence,
memory on a remote node is allocated and remote requests
need to take place. Even though RDMA is used and the
data can be written directly into the remote node, the data
has to be transferred. In case of Free, the addresses previ-
ously allocated were partially on the access node and par-
tially on the remote node. As a result, the same amount
of remote requests as used in the allocation process need
to take place. Although RDMA is much faster than stan-
dard TCP/IP, since it works directly over the NIC, remote
accesses are still much slower than local accesses.

Furthermore, there are many peaks when looking at the
local accesses separately. The reason can be seen in Fig-
ure 8a and Figure 8b. There are peaks at the same positions
as in Figure 7. The calls that take significantly more time
produce cache misses. Figure 8a shows misses on cache level
one. Figure 8b shows the last level cache (LLC). In compar-
ison to Malloc, Free takes more time on remote requests,
but less time when it is called locally. This shows that Free

6

https://github.com/viktorleis/perfevent

(a) L1-Misses. (b) LLC-Misses.

Figure 8: Cache misses on Malloc and Free operations.

Figure 9: Time of Read.

has more irregularities when operating locally than Malloc.

6.1.2 Read
Similar to Malloc and Free, the function Read was bench-

marked. Three different types of read were measured: local
read, remote read and remote read with caching. The dif-
ferent results can be seen in Figure 9. The lock node was
set to the access node in all three measurements. The mean
and median of the three measurements are shown in Table
1 together with the maximum and minimum values. In ev-
ery Read operation, a locking of the address is done before
the memory look-up. Local read means that the address of
the requested data points to memory situated in the access
node. Remote read means the address points to a remote
node. All remote reads include locking, connecting to the
remote node, checking the data, sending back the data to
the request node, releasing the lock and returning the data.
In comparison, a remote read using the cache gets the data
on the first request from the remote node. In all other reads,
the access node already has cached the data. Therefore, it
can access the software cache on a read request.

It can be observed that the idea of the software cache
worked out. The Read using the software cache takes much
less time than the basic remote read. This is useful espe-
cially for applications that use more look-ups than updates.

Table 1: Measured values of the different Read operations.

Local Read Remote Read
no Cache with Cache

min 15µs 459µs 16µs
mean 16µs 783µs 16µs
median 16µs 833µs 16µs
max 46µs 1051µs 41µs

Figure 10: Time of Write.

Another remarkable observation is that local reads take less
time than reading from cache. One reason is that the re-
mote read needs at least one ”real” remote read, which adds
time to the average duration. Another reason might be the
implementation of the cache. In this study, a hash table,
containing the different cache items, was used. The calcula-
tion of the hash to look-up the item can be time consuming.

Overall, Read is fast when performed locally or with the
usage of a cache. In comparison, it would be much slower to
do a remote read on every call. Since new data is cached
when a remote write is performed, the remote reads can
be minimized. Another aspect is that normally, only the
access node is responsible for the data, since most applica-
tions run on one access node and do not share addresses
of their memory with other nodes. Hence, the probability
that the cache is often invalidated is low. A problem oc-
curs when the size of frequently accessed data exceeds the
cache. For example, if five items would fit into the cache
but six different items were accessed subsequently, then the
specific cache item would be replaced from the cache before
accessed again. LRU would remove each corresponding item
because of the oldest last-used timestamp and every data
item would have to be accessed via remote read instead of
using the cache. If this is the case in a desired application,
the size of the cache, the size of a cache line or the cache
replacement strategy have to be adjusted according to the
application requirements.

6.1.3 Write
The operation Write was benchmarked in the same way

as Read. Hence, local write and remote write were measured.
The third benchmark using the cache is unnecessary since
remote writes are always remote and the cache is only used
to store data for further reads. The impact is very small
and it is useful for Reads, so it was only measured with
cache inserts. The results of the two different measurements
are shown in Figure 10.

Similar to Read, the local write execution is much faster
than the remote write execution. Furthermore, the varia-
tion of the duration of remote writes is huge. The minimum,
maximum, mean and median values of the Write measure-
ments are shown in table 2. In every Write operation, the
address is locked first. Then the data is written. The mea-
sured local writes perform data changes on an address situ-
ated in the access node, whereas remote writes aim to write
data that is located on a remote node.

It can be observed that a remote write needs much more

7

Table 2: Measured values of the different Write operations.

Local Write Remote Write

min 14µs 495µs
mean 14µs 771µs
median 14µs 730µs
max 49µs 1229µs

Figure 11: Time of FReadF.

time to be executed than a local write. Furthermore, the re-
mote write has a bigger variety of duration. In comparison
to Read, the Write operation has a smaller mean and me-
dian. On local nodes, writes have a smaller minimum and
maximum duration than reads. Though on remote nodes,
writes in general need more time, which is reflected in larger
minimum and maximum values.

6.1.4 FReadF and FPrintF
In addition to the main memory functions, the methods

operating in the file system were measured as well. First,
the benchmark of FReadF is analyzed. A local and a remote
address are created and data is written to the specified files.
Second, the fixed block size is read from the two files and ev-
ery read is measured. The results of the FReadF benchmark
are shown in Figure 11.

In the benchmark of FPrintF, a local address and a re-
mote address are created as well. Then some data with the
maximum packet size is saved in the files. Each save oper-
ation is measured. The results of this measurement can be
seen in Figure 12.

The mean, median, minimum and maximum values of
both benchmarks are shown in Table 3. Similar to the main

Figure 12: Time of FPrintF with a log2 scale.

Figure 13: Duration of inserts and updates.

memory API functions, the duration for remote operations
is significantly larger than for the local ones. The duration
received in the FReadF are similar to the Read results. The
FReadF runtimes for the remote nodes are even slightly faster
than the remote reads. This is quite surprising since the file
is situated on a SSD and not in the RAM, which is normally
faster. A reason could be that the caching mechanism of a
remote read takes more time than just sending the data.
In the file system no second level of cache is implemented.
Hence, no further storing of the data, which has been re-
mote read, is needed. Furthermore, the OS normally buffers
the file I/O which leads to faster duration for the reading of
newly written data.

In comparison, FPrintF is 50 times slower compared to the
main memory Writes. As shown in Figure 12, the duration
of remote FPrintF is mostly around two different values.

Overall, it can be observed that the remote FReadF could
be a helpful add-on, whereas file data should be stored prefer-
ably in local storage. It makes sense to store data in a local
file that can be accessed from a remote node. The storing
of data in remote files is not recommended, since it takes a
lot more time. One possible solution to reduce the duration
of FPrintF could be to load data from a remote file and
write adjusted data to the remote main memory. Then the
remote node can write it back to the file. This results in a
local FPrintF on the remote node, much faster than writing
to a remote file.

6.2 Applications
Additionally to the measurements of the API functions,

the implemented applications were measured, analyzed and
discussed. First, the performance hash table is measured
and analyzed. Second, the performance of the buffer man-
ager is measured and discussed.

6.2.1 Hash Table
In this benchmark, thousand values were inserted into the

hash table. Afterwards, every value was updated. The result
of the insert and update operations are shown in Figure 13.
The graph shows similar characteristics as the test of Malloc
and Free in subsection 6.1.1. A big performance drop can
be observed. In case of the insert operation, the drop can
be explained by the fact that the predefined storage of the
access node is exceeded. Hence, the following inserts allocate
memory on a remote node and write to the specified address
on the remote node.
Update has the same jump, but with a smaller amplitude.

8

Table 3: Measured values of local (left) and remote (right) FReadF and FPrintF operations.

Local FReadF Remote FReadF Local FPrintF Remote FPrintF

min 21µs 459µs 70µs 27192µs
mean 22µs 495µs 114µs 34801µs
median 22µs 668µs 106µs 38531µs
max 47µs 922µs 198µs 55404µs

Figure 14: Duration of the buffer manager with a log2 scale.

The reason for this is that the insert function uses two
separate remote requests. First, the needed memory is al-
located by Malloc, then the value is written to the memory
using Write. In case of update, the global address associ-
ated with the key is saved in a local storage structure. Then
this address is used to simply write the new value to the
previously allocated memory on a remote node. As a result,
only one remote request is needed.

One aspect taking more time is that a queue pair is newly
connected for each API call. The reason for this is that if
the developed system contains more nodes than one, each
API call could point to another remote node. Every call
is directed by the global address, which is handed over by
the function call. This address can point to every node in
the system. Hence, every call pointing to a remote address
needs to establish a connected queue pair with the node that
is specified by the global address. Thus, the remote update

takes approximately half the time of the remote insert.
Although this is not so obvious, the duration of local

inserts is nearly two times the duration of local updates.
This is also caused by the previously described reason. Even
though local operations do not need to connect the queue
pair, the duration of the local inserts is longer than the du-
ration of the local updates. Furthermore, the amplitude of
the inserts is bigger than the amplitude of the updates.

6.2.2 Buffer manager
A test for persistent restart was performed for the buffer

manager. In this scenario, five segments with 60 pages (page
size 912B) each were fixed and unfixed. Afterwards, the
buffer manager gets destroyed and the five segments with
60 pages each were fixed and unfixed again. The time of
each fix and unfix was measured (see Figure 14).

Two significant peaks can be seen. They identify the re-
mote accesses in the hash table. The files where data is
written back are stored on the access node, so they are all
local. The size limits for local memory were set so that half
of the pages are stored in the remote node. As a result,

it can be observed that half of the 60 first pages, which are
fixed, are stored locally and the other half is stored remotely.

While each call of unfix page, except for the remote calls,
takes mainly the same time, the method fix page has differ-
ent stages. Fix page takes longer than unfix page, which
can be explained by the fact that unfix only sets two vari-
ables of the page and stores it. Fix page, however, loads the
page from file, evicts pages if needed or creates a new page.
It can be observed that fix page does not return to the ini-
tial time (calls one to 30) before storing remotely (calls 31
to 60). At this point, the main storage for loaded pages of
the buffer manager is completely occupied and pages need
to get evicted and written to file. Opening a file and writing
to it takes more time than simply creating a file or loading
data from main memory.

At 300 calls, the buffer manager is reset and all pages must
be reloaded from file. In this part, the data is loaded from
the files. As shown above, FReadF has a similar duration
as Read. Nevertheless, in the first run, the local creation of
the pages takes less time than when the buffer manager is
restarted. On eviction of the pages, the duration is smaller
than before the restart. The reason for this could be that
the files were already opened and the data in the file is only
updated and not created.

One interesting aspect is that only the first inserts in the
hash table initialize remote calls. This could be caused by
the eviction algorithm, which only replaces local pages.

7. CONCLUSION
This paper has implemented and analyzed a distributed

memory coherence protocol using RDMA. The developed
distributed system implemented a unified global address space.
The implementation includes an API that allows to operate
on distributed main memory and on a distributed file sys-
tem. The functions operating on main memory included al-
location and freeing of addresses in the global address space,
as well as a write and a read function. Furthermore, a func-
tion to write to files and a function to read from files are
provided. The unified memory model is obtained by an ab-
straction from the RDMA network. A second layer of cache
was added on top of the API. This aimed to reduce remote
requests by storing the data locally for further reads.

It has been shown that remote operations using RDMA
are slower than local operations. Hence, remote request
should be reduced to a minimum. The usage of a cache
reduced remote reads, which is a helpful step in reducing
latency. The unified global address space can be used in
the same way as normal local addresses. This is shown in
two developed applications. The first application was a dis-
tributed hash table. This hash table uses the provided API
functions to distribute the values in the system. The second
application was a buffer manager, which reused the previ-
ously implemented hash table and combined it with the im-
plemented API functions operating on the file system.

9

Acknowledgements
This research has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.

725286).

8. REFERENCES
[1] M. Banikazemi and B. Abali. Eucalyptus: Support for

effective use of persistent memory. In IPDPS
Workshops, pages 1152–1159. IEEE Computer Society,
2012.

[2] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.
Rack-scale in-memory join processing using RDMA. In
SIGMOD Conference, pages 1463–1475. ACM, 2015.

[3] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen,
B. C. Ooi, K. Tan, Y. M. Teo, and S. Wang. Efficient
distributed memory management with RDMA and
caching. PVLDB, 11(11):1604–1617, 2018.

[4] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and
B. Schiefer. Empirical evaluation of multi-level buffer
cache collaboration for storage systems. In
SIGMETRICS, pages 145–156. ACM, 2005.

[5] W. Effelsberg and T. Härder. Principles of database
buffer management. ACM Trans. Database Syst.,
9(4):560–595, 1984.

[6] A. F. Farahani, D. Roberts, and N. Jayasena.
Analytical study on bandwidth efficiency of
heterogeneous memory systems. In MEMSYS, pages
104–118. ACM, 2016.

[7] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann,
and A. Kemper. Low-latency communication for fast
DBMS using RDMA and shared memory. In ICDE,
pages 1477–1488. IEEE, 2020.

[8] N. Hubig, L. Passing, M. E. Schüle, D. Vorona,
A. Kemper, and T. Neumann. Hyperinsight: Data
exploration deep inside hyper. In CIKM, pages
2467–2470. ACM, 2017.

[9] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur-Rahman, N. S. Islam, X. Ouyang,
H. Wang, S. Sur, and D. K. Panda. Memcached design
on high performance RDMA capable interconnects. In
ICPP, pages 743–752. IEEE Computer Society, 2011.

[10] L. Karnowski, M. E. Schüle, A. Kemper, and
T. Neumann. Umbra as a time machine. In BTW,
volume P-311 of LNI, pages 123–132. Gesellschaft für
Informatik, Bonn, 2021.

[11] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H.
Liu, J. Padhye, S. Raindel, S. Swanson, V. Sekar, and
S. Seshan. Hyperloop: group-based nic-offloading to
accelerate replicated transactions in multi-tenant
storage systems. In SIGCOMM, pages 297–312. ACM,
2018.

[12] F. Li, S. Das, M. Syamala, and V. R. Narasayya.
Accelerating relational databases by leveraging remote
memory and RDMA. In SIGMOD Conference, pages
355–370. ACM, 2016.

[13] F. Liu, L. Yin, and S. Blanas. Design and evaluation
of an rdma-aware data shuffling operator for parallel
database systems. ACM Trans. Database Syst.,
44(4):17:1–17:45, 2019.

[14] X. Liu, Y. Hua, X. Li, and Q. Liu. Write-optimized
and consistent rdma-based NVM systems. CoRR,
abs/1906.08173, 2019.

[15] P. Memarzia, S. Ray, and V. C. Bhavsar. The art of
efficient in-memory query processing on NUMA
systems: a systematic approach. In ICDE, pages
781–792. IEEE, 2020.

[16] S. T. On, Y. Li, B. He, M. Wu, Q. Luo, and J. Xu.
Fd-buffer: a buffer manager for databases on flash
disks. In CIKM, pages 1297–1300. ACM, 2010.

[17] I. L. Picoli, N. Hedam, P. Bonnet, and P. Tözün.
Open-channel SSD (what is it good for). In CIDR.
www.cidrdb.org, 2020.

[18] D. Porobic, P. Tözün, R. Appuswamy, and
A. Ailamaki. More than a network: distributed OLTP
on clusters of hardware islands. In DaMoN, pages
6:1–6:8. ACM, 2016.

[19] J. Schmeißer, M. E. Schüle, V. Leis, T. Neumann, and
A. Kemper. B2-tree: Cache-friendly string indexing
within b-trees. In BTW, volume P-311 of LNI, pages
39–58. Gesellschaft für Informatik, Bonn, 2021.

[20] M. E. Schüle, M. Bungeroth, D. Vorona, A. Kemper,
S. Günnemann, and T. Neumann. ML2SQL -
compiling a declarative machine learning language to
SQL and python. In EDBT, pages 562–565.
OpenProceedings.org, 2019.

[21] M. E. Schüle, J. Huber, A. Kemper, and T. Neumann.
Freedom for the sql-lambda: Just-in-time-compiling
user-injected functions in postgresql. In SSDBM,
pages 6:1–6:12. ACM, 2020.

[22] M. E. Schüle, L. Karnowski, J. Schmeißer, B. Kleiner,
A. Kemper, and T. Neumann. Versioning in
main-memory database systems: From musaeusdb to
tardisdb. In SSDBM, pages 169–180. ACM, 2019.

[23] M. E. Schüle, P. Schliski, T. Hutzelmann,
T. Rosenberger, V. Leis, D. Vorona, A. Kemper, and
T. Neumann. Monopedia: Staying single is good
enough - the hyper way for web scale applications.
PVLDB, 10(12):1921–1924, 2017.

[24] M. E. Schüle, D. Vorona, L. Passing, H. Lang,
A. Kemper, S. Günnemann, and T. Neumann. The
power of SQL lambda functions. In EDBT, pages
534–537. OpenProceedings.org, 2019.

[25] A. van Renen, V. Leis, A. Kemper, T. Neumann,
T. Hashida, K. Oe, Y. Doi, L. Harada, and M. Sato.
Managing non-volatile memory in database systems.
In SIGMOD Conference, pages 1541–1555. ACM,
2018.

[26] A. van Renen, L. Vogel, V. Leis, T. Neumann, and
A. Kemper. Building blocks for persistent memory.
VLDB J., 29(6):1223–1241, 2020.

[27] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A
distributed file system for non-volatile main memory
and rdma-capable networks. In FAST, pages 221–234.
USENIX Association, 2019.

[28] D. Y. Yoon, M. Chowdhury, and B. Mozafari.
Distributed lock management with RDMA:
decentralization without starvation. In SIGMOD
Conference, pages 1571–1586. ACM, 2018.

[29] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and
T. Kraska. Designing distributed tree-based index
structures for fast rdma-capable networks. In
SIGMOD Conference, pages 741–758. ACM, 2019.

10

	Introduction
	Related Work
	Cache Coherence Protocol
	Node
	Global Address
	Distributed Main Memory
	Cache
	Read
	Write
	LRU-based Cache

	Interface
	Malloc
	Free
	Locks

	Distributed Persistent Storage
	FPrintF
	FReadF

	Distributed Hash Table
	Distributed Buffer Manager
	Evaluation
	Runtime Analysis
	Micro-benchmark of Allocation and Freeing
	Read
	Write
	FReadF and FPrintF

	Applications
	Hash Table
	Buffer manager

	Conclusion
	References

