
One Buffer Manager to Rule Them All: Using Distributed
Memory with Cache Coherence over RDMA

Chair III: Database Systems
Chair XXV: Data Science and Engineering
Department of Informatics
Technical University of Munich

Magdalena Pröbstl, Philipp Fent, Maximilian E. Schüle,
Moritz Sichert, Thomas Neumann, Alfons Kemper
Copenhagen, Denmark, August 16, 2021



Distributed Buffer Manager

• Goal: combine traditional database
management systems to efficient distributed
data processing

• Solution: combine a canonical buffer pool
with distributed memory access

Request Node Owner Node

Home NodeApplication

RDMA RDMA

RDMA

Distributed Buffer Manager

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 2



Related Work: DBMS and RDMA

Database Systems and RDMA (Remote Direct Memory Access)
• in-memory join processing (Barthels et al., SIGMOD 2015)
• distributed index structures (Zieger et al., SIGMOD 2019)
• decentralized lock management (Yoon et al., SIGMOD 2018)

GAM (VLDB 2018)
• Cache coherence protocol over RDMA
• Unified memory model over multiple nodes
• Interface abstracts lock management
• Limited to main memory only

This work
• Extension of cache coherence to background storage

(converging performance characteristics of SSDs and RDMA)
• Distributed buffer manager to abstract the memory layout

from the application’s perspective

Efficient Distributed Memory Management with RDMA and
Caching

Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal†, Gang Chen‡
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, Sheng Wang

National University of Singapore, †University of California at Santa Barbara, ‡Zhejiang University
{caiqc,wentian,zhangh,ooibc,tankl,teoym,wangsh}@comp.nus.edu.sg

†agrawal@cs.ucsb.edu, ‡cg@zju.edu.cn

ABSTRACT
Recent advancements in high-performance networking intercon-
nect significantly narrow the performance gap between intra-node
and inter-node communications, and open up opportunities for dis-
tributed memory platforms to enforce cache coherency among dis-
tributed nodes. To this end, we propose GAM, an efficient dis-
tributed in-memory platform that provides a directory-based cache
coherence protocol over remote direct memory access (RDMA).
GAM manages the free memory distributed among multiple nodes
to provide a unified memory model, and supports a set of user-
friendly APIs for memory operations. To remove writes from crit-
ical execution paths, GAM allows a write to be reordered with the
following reads and writes, and hence enforces partial store or-
der (PSO) memory consistency. A light-weight logging scheme
is designed to provide fault tolerance in GAM. We further build a
transaction engine and a distributed hash table (DHT) atop GAM
to show the ease-of-use and applicability of the provided APIs. Fi-
nally, we conduct an extensive micro benchmark to evaluate the
read/write/lock performance of GAM under various workloads, and
a macro benchmark against the transaction engine and DHT. The
results show the superior performance of GAM over existing dis-
tributed memory platforms.

PVLDB Reference Format:
Qingchao Cai, Wentian Guo, Hao Zhang, Gang Chen, Beng Chin Ooi,
Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. Efficient Distributed
Memory Management with RDMA and Caching. PVLDB, 11 (11): 1604-
1617, 2018.
DOI: https://doi.org/10.14778/3236187.3236209

1. INTRODUCTION
Shared-nothing programming model has been widely used in

distributed computing for its scalability. One popular example is
distributed key-value store [6, 21, 33, 36, 44], which uses key-value
APIs (e.g., Put and Get) to access remote data. In compari-
son, the shared-memory model that is able to accss remote data
via memory semantics renders a unified global memory abstraction
very attractive for distributed computing, since it not only uni-
fies global data access, but also, more importantly, enables users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236209

to view distributed computing nodes as a powerful server with a
single unified memory space and hence develop distributed appli-
cations in the same way as they do multi-threaded programming. In
addition, the skewness in data access, which can cause overloaded
nodes to be bottleneck in shared-nothing systems, can be gracefully
handled in such a unified model by transparently redirecting access
requests to less loaded nodes.

There have been many DSM (Distributed Shared Memory) sys-
tems [4, 7, 26, 40] proposed to combine physically distributed mem-
ory together to enforce a unified global memory model. These sys-
tems typically employ a cache to buffer remote memory accesses.
To maintain a consistent view on cached data, they use synchro-
nization primitives to propagate dirty writes and clear cached read,
which incurs a significant overhead at synchronization points. In
addition, requiring programmers to manually call the synchroniza-
tion primitives to ensure data consistency makes it difficult to pro-
gram and debug with the memory model.

The emergence of RDMA (Remote Direct Memory Access) fur-
ther strengthens the attraction of a unified memory model by en-
abling network I/O as remote memory access. As shown in Table 1,
the throughput of current InfiniBand RDMA technology (e.g., 200
Gb/s Mellanox ConnectX@-6 EN Adapter [31]) is almost approach-
ing that of local memory access, and can be even better than NUMA
(Non-Uniform Memory Access) inter-node communication chan-
nels (e.g., QPI [34]). Thus, several RDMA-based systems [14,
24, 30, 35] have been proposed to leverage RDMA to enable a
unified memory abstraction from physically distributed memory
nodes. However, they still require users to manually call synchro-
nization primitives for cache consistency, and hence suffer from the
same problems as the traditional DSM systems [4, 7, 26, 40].

A natural way to avoid the above problems is to simply abandon
the cache such that each operation (e.g., Read/Write) is routed
to the node where the requested data resides. However, even with
RDMA, fine-grained remote memory access still incurs a prohibitively
high latency. As shown in Table 1, while the throughput of recent
RDMA technology is approaching that of local memory access, its
latency still lags farther behind.

This paper presents GAM, which adopts an alternative approach
to the unified global memory model by reserving the cache to ex-
ploit locality in data accesses and leveraging RDMA to employ an
efficient cache coherence protocol to guarantee data consistence
and hence facilitate programming and debugging. The contribu-
tions made in this paper are summarized below:

• We propose a distributed in-memory computing platform –
GAM, based on RDMA. GAM manages the distributed mem-
ory to provide a unified global memory model, and provides
a set of APIs for global memory operation. GAM employs
PSO memory consistency by adopting a programming model

1604

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 3



Structure

How to combine distributed memory with traditional page caching in a buffer manager?

CC BY-SA 4.0 Dmitry Nosachev

Cache Coherence Protocol
Interface for I/O primitives

Transition states

Distributed Buffer Manager
Traditional Approach
Global Buffer Pool

Evaluation
Micro-Benchmarks

Hash Table and Buffer Manager

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 4



Cache Coherence Protocol

CC BY-SA 4.0 Dmitry Nosachev

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 5



Cache Coherence Protocol: Interface

• hide the memory layout from the application’s perspective
• each entity: node
− interface for remote reads and writes
− node ID: for location, locks and responsibilities for data

• partitioned global address space (PGAS): unified view
− size,
− the pointer to the node (hosts the data),
− node ID,
− flag: main memory/background storage.

Request

Home Node

Remote Node

API

FWrite
FRead

Read
Write
Free

Malloc

RAM SSD

RAM SSD

Listing 1: The struct GlobalAddress to identify distributed main
memory and files globally.
struct __attribute__ ((packed)) GlobalAddress {
size_t size; char *ptr; uint16_t id; bool isFile; }

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 6



Cache Coherence Protocol: Cache
• remote memory access: 10x times slower (vs. local

memory) access
• LRU (least recently used) software cache aims to reduce

the remote memory accesses
• hash-table indexed by its global address
• 5 roles for a node
− home node: where data is stored
− remote nodes: want data (other nodes)
− request node: requests shared/exclusive access to data
− sharing node: request node with shared access to data
− owner node: request node with exclusive access

• 3 states for data
− unshared : data resides in the home node
− shared : one or more nodes have read permission
− exclusive: only one node

Unshared

ExclusiveShared

local read/write

remote writelocal/remote read

remote write

local/remote read

remote write

local write

remote read

local write

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 7



Cache Coherence Protocol: Read

• Local Read: data can be accessed right away. The status
remains unchanged (no additional sharing node).

• Remote Read: request to the associated remote node,
status set to shared, data gets cached

Request/home
node nr

Owner node no

1. request

3. reply

2. read data
cache state = shared
sharing nodes += nr

4. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 8



Cache Coherence Protocol: Read

• Local Read: data can be accessed right away. The status
remains unchanged (no additional sharing node).

• Remote Read: request to the associated remote node,
status set to shared, data gets cached

Request/home
node nr

Owner node no

1. request

3. reply

2. read data
cache state = shared
sharing nodes += nr

4. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 8



Cache Coherence Protocol: Read

• Local Read: data can be accessed right away. The status
remains unchanged (no additional sharing node).

• Remote Read: request to the associated remote node,
status set to shared, data gets cached

Request/home
node nr

Owner node no

1. request 3. reply

2. read data
cache state = shared
sharing nodes += nr

4. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 8



Cache Coherence Protocol: Read

• Local Read: data can be accessed right away. The status
remains unchanged (no additional sharing node).

• Remote Read: request to the associated remote node,
status set to shared, data gets cached

Request/home
node nr

Owner node no

1. request 3. reply

2. read data
cache state = shared
sharing nodes += nr

4. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 8



Cache Coherence Protocol: Local Write

• memory is placed locally
• check if the data is already cached by another node
• send invalidate requests to all sharing nodes

Sharing node ns Sharing node ns

Request/home
node nrh

2.1. invalidate

3.2. ack3.1. ack

2.2. invalidate

1. read data

4. write new data
cache = unshared

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 9



Cache Coherence Protocol: Local Write

• memory is placed locally
• check if the data is already cached by another node
• send invalidate requests to all sharing nodes

Sharing node ns Sharing node ns

Request/home
node nrh

2.1. invalidate

3.2. ack3.1. ack

2.2. invalidate

1. read data

4. write new data
cache = unshared

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 9



Cache Coherence Protocol: Local Write

• memory is placed locally
• check if the data is already cached by another node
• send invalidate requests to all sharing nodes

Sharing node ns Sharing node ns

Request/home
node nrh

2.1. invalidate

3.2. ack3.1. ack

2.2. invalidate

1. read data
4. write new data

cache = unshared

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 9



Cache Coherence Protocol: Remote Write

• memory is placed in a different node
• request node connects to the home node and

sends a write request
• 3 cases
− unshared : data is stored; state set to

exclusive
− shared : invalidate cached item on each

sharing node
− exclusive: the data cannot be changed; the

request will be denied

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 10



Cache Coherence Protocol: Remote Write

• memory is placed in a different node
• request node connects to the home node and

sends a write request
• 3 cases
− unshared : data is stored; state set to

exclusive
− shared : invalidate cached item on each

sharing node
− exclusive: the data cannot be changed; the

request will be denied

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 10



Cache Coherence Protocol: Remote Write

• memory is placed in a different node
• request node connects to the home node and

sends a write request
• 3 cases
− unshared : data is stored; state set to

exclusive
− shared : invalidate cached item on each

sharing node
− exclusive: the data cannot be changed; the

request will be denied

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 10



Cache Coherence Protocol: Remote Write

• memory is placed in a different node
• request node connects to the home node and

sends a write request
• 3 cases
− unshared : data is stored; state set to

exclusive
− shared : invalidate cached item on each

sharing node
− exclusive: the data cannot be changed; the

request will be denied

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 10



Cache Coherence Protocol: Remote Write

• memory is placed in a different node
• request node connects to the home node and

sends a write request
• 3 cases
− unshared : data is stored; state set to

exclusive
− shared : invalidate cached item on each

sharing node
− exclusive: the data cannot be changed; the

request will be denied

Request node nr Home node nh

Sharing/Owner
node ns/no

6. reply

1. request

3. invalidate 4. ack

2. read data: sharing nodes = {ns},
owner node = nh/no

5. write new data
cache = exclusive
Owner node = nr
Sharing nodes ={ }

7. add data to cache

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 10



Distributed Buffer Manager

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 11



Distributed Buffer Manager: Traditional Approach

• every node provides a local buffer manager
• evicts pages to the local background storage
• global buffer manager = amount of local buffer managers

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

- - - -

A C E B

- -

G F

A B C D E ...

- -

G F

_ _ _ _

F G H I J ...

- - - -

A C E B

- -

G F

- -

- - -

A C E

-

G

-

B

-

F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 12



Distributed Buffer Manager: Traditional Approach

• every node provides a local buffer manager
• evicts pages to the local background storage
• global buffer manager = amount of local buffer managers

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

- - - -A C E

B

- -

G F

A B C D E ...

- -

G F

_ _ _ _

F G H I J ...

- - - -A C E

B

- -

G F

- -

- - -A C E -

G

-

B

-

F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 12



Distributed Buffer Manager: Traditional Approach

• every node provides a local buffer manager
• evicts pages to the local background storage
• global buffer manager = amount of local buffer managers

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

- - - -A C E

B

- -G

F

A B C D E ...

- -G

F

_ _ _ _

F G H I J ...

- - - -A C E

B

- -G

F

- -

- - -A C E -G -

B

-

F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 12



Distributed Buffer Manager: Traditional Approach

• every node provides a local buffer manager
• evicts pages to the local background storage
• global buffer manager = amount of local buffer managers

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

- - - -A C E B - -G

F

A B C D E ...

- -G

F

_ _ _ _

F G H I J ...

- - - -A C E B - -G

F

- -

- - -A C E -G -B -

F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 12



Distributed Buffer Manager: Traditional Approach

• every node provides a local buffer manager
• evicts pages to the local background storage
• global buffer manager = amount of local buffer managers

Distributed Buffer Manager

FIFO

Home Node

Home Buffer Manager

Frames Cache

SSD

Remote Node

Remote Buffer Manager

Frames Cache

SSD

- - - -A C E B - -G F

A B C D E ...

- -G F _ _ _ _

F G H I J ...

- - - -A C E B - -G F - -

- - -A C E -G -B -F -

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 12



Distributed Buffer Manager: Global Buffer Pool

• RDMA: bypass CPU to access remote memory
• load pages either from a home or remote SSD first into

frames of the home node
• If frames run out, frames of the remote node are taken and

the page is cached locally according to the cache
coherence protocol.

• global buffer manager = amount of loaded frames
• two queue eviction strategy (FIFO and LRU)
• strategy: fully utilizing the distributed buffer pool before

swapping out pages
• coherence protocol responsible for caching and locking

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

- - - -

A C E G

- -

B F

A B C D E ...

- -

B F

_ _ _ _

F G H I J ...

- - - - - -

A C E G B F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 13



Distributed Buffer Manager: Global Buffer Pool

• RDMA: bypass CPU to access remote memory
• load pages either from a home or remote SSD first into

frames of the home node
• If frames run out, frames of the remote node are taken and

the page is cached locally according to the cache
coherence protocol.

• global buffer manager = amount of loaded frames
• two queue eviction strategy (FIFO and LRU)
• strategy: fully utilizing the distributed buffer pool before

swapping out pages
• coherence protocol responsible for caching and locking

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

- - - -A C E

G

- -

B F

A B C D E ...

- -

B F

_ _ _ _

F G H I J ...

- - - - - -A C E

G B F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 13



Distributed Buffer Manager: Global Buffer Pool

• RDMA: bypass CPU to access remote memory
• load pages either from a home or remote SSD first into

frames of the home node
• If frames run out, frames of the remote node are taken and

the page is cached locally according to the cache
coherence protocol.

• global buffer manager = amount of loaded frames
• two queue eviction strategy (FIFO and LRU)
• strategy: fully utilizing the distributed buffer pool before

swapping out pages
• coherence protocol responsible for caching and locking

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

- - - -A C E G - -

B F

A B C D E ...

- -

B F

_ _ _ _

F G H I J ...

- - - - - -A C E G

B F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 13



Distributed Buffer Manager: Global Buffer Pool

• RDMA: bypass CPU to access remote memory
• load pages either from a home or remote SSD first into

frames of the home node
• If frames run out, frames of the remote node are taken and

the page is cached locally according to the cache
coherence protocol.

• global buffer manager = amount of loaded frames
• two queue eviction strategy (FIFO and LRU)
• strategy: fully utilizing the distributed buffer pool before

swapping out pages
• coherence protocol responsible for caching and locking

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

- - - -A C E G - -B

F

A B C D E ...

- -B

F

_ _ _ _

F G H I J ...

- - - - - -A C E G B

F

-

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 13



Distributed Buffer Manager: Global Buffer Pool

• RDMA: bypass CPU to access remote memory
• load pages either from a home or remote SSD first into

frames of the home node
• If frames run out, frames of the remote node are taken and

the page is cached locally according to the cache
coherence protocol.

• global buffer manager = amount of loaded frames
• two queue eviction strategy (FIFO and LRU)
• strategy: fully utilizing the distributed buffer pool before

swapping out pages
• coherence protocol responsible for caching and locking

Distributed Buffer Manager

FIFO

Home Node

Frames Cache

SSD

Remote Node

Frames Cache

SSD

- - - -A C E G - -B F

A B C D E ...

- -B F _ _ _ _

F G H I J ...

- - - - - -A C E G B F -

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 13



Evaluation

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 14



Evaluation: Set-Up
• System: Two Ubuntu 18.04.03 LTS servers, 2x20 Intel Xeon E5-2660 v2 processors (supporting hyperthreading)

• Memory: 256 GiB main memory and 1TiB of SSD as background storage

• Network Card: Mellanox ConnectX–3 VPI NIC supporting FDR InfiniBand with 56 GBit/s, Mellanox SX6005 switch

• Experiments: micro-benchmarks on the different API functions, distributed hash table, buffer manager

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 15



Evaluation: Micro-Benchmarks read/write

• remote read 30x slower than local read

• remote write 30x slower than local write

• remote read with caching nearly as fast as local read

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 16



Evaluation: Micro-Benchmarks fread/fprint

• remote file read as fast as remote read

• remote file read 20x slower than local file read

• remote file write 300x slower than local file write

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 17



Evaluation: Hash Table and Buffer Manager

Distributed Hash Table
• insert/update 1000 key-values-pairs
• performance drop when storage of home node exceeded
• insert needs twice the time of update
• two calls for insert: memory allocation and writing

Buffer Manager
• 30 frames on each node (page size 912B), 300x fix/unfix
• peak after 30 pages: pages are fixed on the remote node
• after 60 calls: pages get swapped out locally
• after hard reset (300 calls): same observation

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 18



Conclusion
• extended cache-coherence protocol: background storage

• distributed buffer manager, distributed buffer pool: pinning and evicting pages to frames of remote nodes

• two-stage caching with almost no overhead due to the quickly converging performance characteristics of SSDs and RDMA
capable networks like InfiniBand

• eviction strategy: fully utilizing the distributed buffer pool before swapping out pages
• Future work:
− benchmark TPC-C
− implement load balancer for distributed buffer pool

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 19



Thank you for your attention!

https://github.com/tum-db/cachecoherence

Maximilian E. Schüle (TUM) | One Buffer Manager to Rule Them All: Using Distributed Memory with Cache Coherence over RDMA 20

https://github.com/tum-db/cachecoherence

