
ML2SQL
Compiling a Declarative Machine Learning Language to SQL and Python

Maximilian E. Schüle
schuele@in.tum.de

Matthias Bungeroth
bungeroth@in.tum.de

Dimitri Vorona
vorona@in.tum.de

Alfons Kemper
kemper@in.tum.de

Stephan Günnemann
guennemann@in.tum.de

Technical University of Munich

Thomas Neumann
neumann@in.tum.de

ABSTRACT
This demonstration presents amachine learning languageMLearn
that allows declarative programming of machine learning tasks
similarly to SQL. Our demonstrated machine learning language
is independent of the underlying platform and can be translated
into SQL and Python as target platforms. As modern hardware
allows database systems to perform more computational intense
tasks than just retrieving data, we introduce the ML2SQL com-
piler to translate machine learning tasks into stored procedures
intended to run inside database servers running PostgreSQL or
HyPer. We therefore extend both database systems by a gradient
descent optimiser and tensor algebra.

In our evaluation section, we illustrate the claim of running
machine learning tasks independently of the target platform by
comparing the run-time of three in MLearn specified tasks on
two different database systems as well as in Python. We infer
potentials for database systems on optimising tensor data types,
whereas database systems show competitive performance when
performing gradient descent.

1 INTRODUCTION
Database systems provide with SQL a declarative language that
allows data manipulation and data retrieving without caring
about optimisation details. With increasing hardware perfor-
mance, database systems will not fully exploit the servers’ hard-
ware potentials as long as they are used for data retrieval only.
To shift computation to the data stored in database systems, algo-
rithms can be specified in SQL—as it has been Turing complete
since providing recursive tables—or as user-defined functions.
The latter allow injecting code as stored procedures to be exe-
cuted inside the database system and make an additional data
manipulation layer on top obsolete. Even though the run-time
would decrease, user-defined functions are not fully established
as they form a mixture of declarative and procedural language
and are inconvenient to express for data scientists.

When dealing with data and minimisation problems, dedi-
cated tools as TensorFlow [1] or Pytorch form the status quo
for performing machine learning tasks with tensors and gradi-
ent descent. Another approach of formulating machine learning
tasks is using a declarative language as MLog [7], that com-
piles to code using TensorFlow, but, so far, it lacks support for
use together with database systems. For computations inside of
database systems, the support of linear algebra together with
matrices or tensors is essential. Different studies focus on the

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: The compilation process: the MLearn language
first gets preprocessed twice for handling includes, then
the language gets tokenised and parsed. For each target
platform, a generator allows to translate the abstract syn-
tax tree into the target language.

integration of linear algebra [8] and matrices inside of database
systems [5]. Going one step further, so called array database
systems replace relations by arrays as the native way of storing
attributes. To support machine learning, TensorDB [6] aims at
providing tensor calculus on top of array database systems. One
study even provide an own declarative language (BUDS) [2] on
top of a prototyped database system that supports matrix data
types. Comparable domain specific languages are Weld1 for data
driven workloads and IBM SystemML2 for creating flexible algo-
rithms, but both cannot be used inside of database systems. The
intermediate language Ferry [3] allows to translate from various
code (i.e. Ruby or Haskell) into SQL but is not designed for use
with array datatypes.

However, while linear algebra in database systems have been
integrated and declarative language concepts have been proposed,
there is no successful study on bringing a declarative language,
tensor calculus and gradient descent in database systems together.
We therefore develop a declarative machine learning language
aimed at optimising models for supervised machine learning
and data analysis. Our MLearn language allows specifying tasks
independently of the target language, changing the underlying
engine and makes it easy to compare run-times and results of
different underlying frameworks. This demonstration presents
the ML2SQL compiler in particular, which compiles code written
in MLearn to SQL (for PostgreSQL or HyPer [4]) or to Python
using the frameworks NumPy and TensorFlow (see Fig. 1).

This demonstration paper is structured as follows: First, we
introduce the MLearn language specifications and the details of
the corresponding compiler. We evaluate the run-time of the
generated code on the target platforms using the Chicaco taxi
1https://github.com/weld-project/weld
2https://systemml.apache.org

Demonstration

Series ISSN: 2367-2005 562 10.5441/002/edbt.2019.56

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.56

dataset as input data and linear regression as optimisation model
(optimised by gradient descent or as closed form solution). At the
end, we introduce the demonstration concept including our web
interface for online testing and conclude by improvements that
might increase database systems’ computation performance.

2 MLEARN AND THE ML2SQL COMPILER
The MLearn language is designed to define machine learning
tasks in a declarative manner to be compiled to SQL or Python.
We begin by introducing the language specification needed for
enjoying the demonstration as a visitor. We precede by listing
the prerequisites of the target platforms in order to run the in-
troduced tasks. Finally, we will give examples on how to use the
MLearn language during the demonstration later on.

2.1 Language Specification
All operations work on integers, floating point numbers, Boolean
values or strings as basic types, which can be composed to tensors.
On these types,MLearn provides the following features (s. Lst. 5):

• Reading CSV files as the fundamental operation to store
the data in variables or relations of the database system.

• Mathematical expressions as provided by NumPy or
SQL (as part of the projection operator).

• Tensors form the main part in our computations. Beside
mathematical operations we support accessing, slicing,
concatenation and transposition.

• Functions allow to structure the code and to reduce code
duplication. Also external functions imported from other
files or of a target language are allowed.

• Control blocks. In addition to our declarative statements,
we allow conditional expressions and loops.

• Distributions are used for data sampling when initializ-
ing tensors with random values.

• Preprocessor statements as known from C can be used
to include files and to allow the abstraction of different
functions to different files.

• k-fold cross validation as a predefined building block
splits up a data set into training and test sets to find the
best—so-called—hyper parameters.

• Gradient descent as a separate building block optimises
the weights for a given loss function on input data.

2.2 Target Language
We designed our machine learning language to compile to Python
code with the libraries that data scientists would use. To work
with SQL we picked out the disk-based database system Post-
greSQL and its main-memory counterpart, HyPer. We assume for
both systems an underlying script language, PL/pgSQL in Post-
greSQL and HyPerScript in HyPer, that combines declarative SQL
statements with procedural control blocks. The tensor operations
in Python are performed using NumPy library calls. HyPer has al-
ready implemented all basic tensor operations including addition,
(scalar) multiplication, power (including inverse for matrices on
negative exponents), transposition, initializing an identity matrix
and filling a matrix by a predefined value. As those operations do
not exist in PostgreSQL, we have implemented these operations
as C library function calls, also supporting parallelism. Further-
more, we make use of predefined array operations as slicing and
concatenation to divide the input dataset into training and testing

one. Also, we wrap a PostgreSQL library extension around our al-
ready presented gradient descent [9] library to allow in-database
gradient descent in PostgreSQL.

2.3 Example
Fig. 2 shows the exemplary usage of the MLearn language where
we specify linear regression as closed form solution:

®w = (X ′TX ′)−1X ′T ®y.

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see
that the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset3.

We tested the run-time of loading data from CSV (s. Fig. 3a),
the run-time of linear regression in closed form (s. Fig. 3b) and by
using gradient descent (s. Fig. 3c). For gradient descent, we used
a learning rate of 0.0000005 and varied the number of iterations
from 1 to 104, but we used a constant input size (the whole
dataset). The time measurements consider only the run-time
needed for the specific operations, the time for data loading and
array creation is measured separately.

The results show that data loading took in all three systems
about the same time, no system seems to dominate one another.
For the matrix operations used for closed form linear regression,
Python using NumPy still dominates the other systems (even
PostgreSQL does not support two dimensional array creation for
more than 107 tuples). Hence, the integration of matrix calcu-
lus in database systems still has to be improved. Whereas using
gradient descent, both database systems show competitive perfor-
mance. Even some performance benefits originate from the used
gradient descent optimiser, the results underline the possibility
of analyzing data where it is stored.

In summary, the evaluation underlines the claim that the
ML2SQL compiler makes it easy to compare different systems and
that database systems show competitive performance on certain
tasks.

4 DEMONSTRATION
For our demonstration scenario, we have created an interactive
web interface (see Fig. 4) that allows formulating tasks inMLearn,
compiling to the choosable target language and executing the
tasks. Switching between the different target platforms (Python,
HyPer, PostgreSQL) makes it possible to compare the results and
the run-times of each target language. Behind the web interface,
3https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew/data

563

A = [[1.1 ,0.98 ,87.3 ,3] ,[0.1 ,3.15 ,42.05 ,3.3] ,
[100.5 ,26.8 ,10.1 ,225.1] ,
[1097.5 ,23000 ,10.1 ,24850.1]]

X = A[: , 0:2]
y = A[: , 3]
bias[1,len(X,0)] : 1
X = (bias::X.T).T
Xt = X.T
w = (Xt*X)^(-1) * Xt * y
print '%' , w

Listing 1: The specification inMLearn.

import numpy as np
def main():

A = np.array([np.array ([1.1 ,0.98 ,87.3 ,3]),np.array ([0.1 ,3.15 ,42.05 ,3.3]) ,np.
array ([100.5 ,26.8 ,10.1 ,225.1]) ,np.array ([1097.5 ,23000 ,10.1 ,24850.1])])

X = DATA[:,0:2 +1]
y = DATA[:,3:3 +1]
bias = np.full((1,np.size(X ,0)), 1)
X = (np.append(bias ,X.T, axis =0)).T
Xt = X.T
w = np.dot(np.dot(np.linalg.matrix_power ((np.dot(Xt, X)), (-1)), Xt), y)
print('{}'.format(w))

if __name__ == "__main__": main()

Listing 2: The translated code for Python using NumPy.

CREATE OR REPLACE FUNCTION ML_main () AS $$
var A = array[array [1.1:: float ,0.98:: float ,87.3:: float ,3],array[

0.1:: float ,3.15:: float ,42.05:: float ,3.3:: float],array
[100.5:: float ,26.8:: float ,10.1:: float ,225.1:: float],array
[1097.5:: float ,23000 ,10.1:: float ,24850.1:: float]];

var X = array_resetlower(array_slice(A,1, array_length(A,1) ,(0+1)
::int ,(2+1) ::int));

var y = array_resetlower(array_slice(A,1, array_length(A,1) ,(3+1)
::int ,(3+1) ::int));

var bias = array_fill (1:: float , 1,array_length(X,0+1));
X = array_transpose ((array_cat(bias ,array_transpose(X))));
var Xt = array_transpose(X);
var w = power((Xt*X), (-1)::int)*Xt*y; debug_print('%',w);

$$ LANGUAGE 'hyperscript ' strict;
select ML_main (); DROP FUNCTION ML_main ();

Listing 3: As HyPerScript code for HyPer.

DO $$ declare
A float [][]; X float [][]; Xt float [][];
bias float [][]; w float [][]; y float [][];

begin
A := array[array [1.1:: float ,0.98:: float ,87.3:: float ,3],array

[0.1:: float ,3.15:: float ,42.05:: float ,3.3:: float],array
[100.5:: float ,26.8:: float ,10.1:: float ,225.1:: float],array
[1097.5:: float ,23000 ,10.1:: float ,24850.1:: float]]

X := A[:][0+1:2+1]; y := A[:][3+1:3+1];
bias := array_fill (1:: float , ARRAY[1, array_length(X,0+1)]);
X := matrix_transpose ((array_cat(bias ,matrix_transpose(X))));
Xt := matrix_transpose(X);
w := matrix_power ((Xt * X), (-1)::int) * Xt * y;
RAISE NOTICE '%',w;

END$$;

Listing 4: For PostgreSQL as PL/pgSQL procedure.

Figure 2: Closed form linear regression specified in MLearn and translated to Python and SQL: Lst. 1 shows the initial
specification, a matrix of fixed values is created, then the optimal weights are computed by solving an equation system;
Lst. 2 shows the translated code to Python using the NumPy matrix library calls. The other listings show the stored
procedures in HyPerScript for HyPer (Lst. 3) and in PL/pgSQL for PostgreSQL (Lst. 4).

expression: INJECT | 'print ' mathexplist | 'if' '(' mathexp ')' '{' explist '}' ['else' '{' explist '}'] | ('continue ' | 'break ')
| 'while ' '(' mathexp ')' '{' explist '}' | 'for' VARNAME ('from' mathexp 'to' mathexp | 'in' interval) '{' explist '}' | functions
| 'create ' 'tensor ' VARNAME 'from' VARNAME '(' varlist ')'
| 'save' 'tensor ' VARNAME 'to' (VARNAME|STRING) [':' STRING] '(' varlist ')'
| VARNAME '[' accessor (',' accessor)* ']' ('=' | ':') mathexp | VARNAME (',' VARNAME)* '=' VARNAME '(' [mathexp (',' mathexp)*] ')'
| VARNAME '[' accessor (',' accessor)* ']' '~' VARNAME '(' [mathexp (',' mathexp)*] ')' | 'import ' VARNAME
| VARNAME '=' (mathexp | 'distribution ' '(' VARNAME ',' VARNAME ')') | VARNAME '~' VARNAME '(' [mathexp (',' mathexp)*] ')'
| returnType* 'function ' VARNAME '(' [VARNAME (',' VARNAME)*] ')' '{' explist '}' | 'return ' mathexp (',' mathexp)*
| ('readcsv '|'writecsv ') '{' (('name:' VARNAME) | ('file:' STRING) | ('columns:' varlist) | ('replace␣empty␣entries:' mathexp)

|('delimiter:' STRING) | ('replace:' '{' (STRING ':' STRING)+ '}') | ('delete␣empty␣entries '))+ '}'
| 'gradientdescent ' '{' (('function:' STRING) | ('data:' varlist) | ('optimize:' [nameshape (',' nameshape)*])

| ('learningrate:' mathexp) | ('maxsteps:' mathexp) | ('batchsize:' mathexp) | ('threshold:' mathexp))+ '}'
| 'plot''{'(('xData:'mathexp) | ('yData:'mathexp) | ('xLabel:'STRING) | ('yLabel:'STRING) | ('type:'STRING) | ('filename:'STRING))+'}'
| 'crossvalidate ' '{' (('minfun ' ':' VARNAME '=' fun) | ('kernel ' ':' VARNAME ':' VARNAME ':' mathexp)

| ('data' ':' VARNAME (',' VARNAME)*) | ('n' ':' mathexp) | ('lossfun ' ':' fun)
| ('folds ' ':' mathexp) | ('test' '{' (VARNAME '=' interval)+ '}'))+ '}' ;

Listing 5: Grammar of the MLearn language: Predefined building blocks for gradient descent, cross validation, CSV file
handling as well as procedural control blocks, function calls and the declaration of variables are allowed as expressions.

we run a PostgreSQL and an HyPer database server fed with an
excerpt of the Chicago taxi dataset. The demonstration visitors
are invited to try out the introduced types of tensor algebra as
well as minimising arbitrary loss functions as, for example, linear
or logistic regression.

5 CONCLUSION
This demonstration presented the first declarative machine learn-
ing language MLearn, which allows describing machine learning
tasks independently of the target engine and whose compiler
allows running the code in the core of database systems. This
paper first introduced comparable approaches before it presented
the language specifications for performing linear regression and
gradient descent using any possible loss function. Then, we eval-
uated the run-time of the tasks on the different target platforms
PostgreSQL, HyPer and Python using NumPy and TensorFlow.
The results showed, that it was indeed feasible to run the tasks

as stored procedures inside of database systems showing compa-
rable run-time especially during matrix creation.

Overall we have shown the potential of a declarative machine
learning language of expressing tasks compactly and being in-
dependent of the underlying engine. As future work—to boost
the capabilities of database systems for array data—remains the
development of efficient array data types and the standardised
integration of optimisation methods such as gradient descent
inside of database systems.

ACKNOWLEDGEMENTS
This work is part of the TUM Living Lab Connected Mobil-
ity (TUM LLCM) project and has been funded by the Bavarian
Ministry of Economic Affairs, Energy and Technology (StMWi)
through the Centre Digitisation.Bavaria, an initiative of the Bavar-
ian State Government. Dimitri Vorona has been sponsored in
part by the German Federal Ministry of Education and Research

564

106 107 108

100

101

102

Number of Tuples

T
im

e
in

s

Python HyPer PSQL

(a) Loading data from CSV.

106 107 108

10−1

100

101

102

Number of Tuples
T
im

e
in

s

Python HyPer PSQL

(b) Closed form linear regression.

100 101 102 103 104

10−1

100

101

102

Number of Iterations

T
im

e
in

s

Python HyPer PSQL

(c) Linear regression with gradient descent.

Figure 3: Run-time of (a) data loading from CSV, (b) solving linear regression using equation systems or (c) by gradient
descent: For data loading and closed form linear regression, we varied the input size; for gradient descent we varied the
number of iterations. PostgreSQL did not support the needed array operations for more than 107 tuples.

Figure 4: Web interface for an interactive exploration of theMLearn language: Above left, the text editor allows to specify
tasks, which are translated into the selected target language (above right). The code will be executed in the terminal.

(BMBF), grant TUM: 01IS12057. This research has received fund-
ing from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme
(grant agreement No 725286).

REFERENCES
[1] M. Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. CoRR, abs/1603.04467, 2016.
[2] Z. J. Gao, S. Luo, L. L. Perez, and C. Jermaine. The BUDS language for distributed

bayesian machine learning. In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pages 961–976, 2017.

[3] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY: database-supported
program execution. In ACM SIGMOD, Providence, Rhode Island, USA, June 29 -
July 2, 2009, pages 1063–1066, 2009.

[4] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In ICDE 2011, April 11-16, 2011,

Hannover, Germany, pages 195–206, 2011.
[5] D. Kernert, F. Köhler, and W. Lehner. Bringing linear algebra objects to life in a

column-oriented in-memory database. In Proceedings of the 1st International
Workshop on In Memory Data Management and Analytics, IMDM 2013, Riva Del
Garda, Italy, August 26, 2013., pages 37–49, 2013.

[6] M. Kim and K. S. Candan. Tensordb: In-database tensor manipulation with
tensor-relational query plans. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
2014, Shanghai, China, November 3-7, 2014, pages 2039–2041, 2014.

[7] X. Li, B. Cui, Y. Chen, W. Wu, and C. Zhang. Mlog: Towards declarative in-
database machine learning. PVLDB, 10(12):1933–1936, 2017.

[8] S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine. Scalable linear
algebra on a relational database system. In 33rd IEEE International Conference
on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages
523–534, 2017.

[9] M. Schüle, F. Simonis, T. Heyenbrock, A. Kemper, S. Günneman, and T. Neu-
mann. In-database machine learning: Gradient descent and tensor algebra for
main memory database systems. In 18th symposium of "Database systems for
Business, Technology and Web" (BTW), in Rostock, Germany. Proceedings, 2019.

565

	ML2SQL - Compiling a Declarative Machine Learning Language to SQL and PythonMaximilian Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper, Stephan Günnemann, Thomas Neumann

