In-Database Machine Learning
Using Gradient Descent and Tensor Algebra

Maximilian Schüle, Frédéric Simonis, Thomas Heyenbrock, Alfons Kemper, Stephan Günnemann, Thomas Neumann
{schuele, simonis, kemper, guennemann, neumann}@in.tum.de

HyPer + Tensors + Gradient Descent

Machine Learning: Data in tensors and a loss function

- Operator for gradient descent:
 - Gradient needed for gradient descent: automatic differentiation necessary for arbitrary loss functions
 - Integration in relational algebra
 - Representation of a loss function

\[\lambda(R,S)(R.a + S.x + R.b - S.y)^2 \]

- Tensors: datatype with algebra
- Optimisation problems solvable in the core of database systems

Materializing
- Allows any optimization method
 - Tuples need to be materialized

Pipelined
- No materialization required
 - Iterations must be precompiled
 - Little performance gains

Combined
- Precomputes weights in pipelines

Evaluation

- Linear Regression
- Multiple Linear Regression
- Logistic Regression
- k-Means