Chair Ill: Database Systems

Chair XXV: Data Science and Engineering
Department of Informatics

Technical University of Munich

In-Database Machine Learning with SQL on GPUs

Maximilian E. Schiile, Harald Lang, Maximilian Springer,

Alfons Kemper, Thomas Neumann, Stephan Glnnemann 1_.
Tampa, Florida, USA, July 6-7, 2021 ..)]
3

o — ——— o - -

Tor VerowArurm

TUTI

In-Database Machine Learning: Problem

xked.org #2054 CC BY-NC 2.5

CHECK ITOUT—T MADE A | | 15 IT A GIANT HOUSE OF CARDS IT.... MIGHT NOT GE.
FULLY AUTOMATED DATA | | BUILT FROM RANDOM SCRIPTS)
PIPELINE THAT COLLECTS | | THAT WILL ALL COMPLETELY T GUESS THATS SOMETH
AND PROCESSES ALL THE | | COLLAPSE THE MOMENT ANY JHOOPS, JUST
INFORMATION UE NEED. | | INPUT DOES ANYTHING \JEIRD? COLLAPSED. HANG

ON, I CAN PAT(H IT.

CTNRTT | ® [BTX

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

In-Database Machine Learning: Solution

é
<

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

In-Database Machine Learning

* SQL sufficient for machine learning (ML)
Database System — Turing-complete with recursive tables

\—// — Streams for continuous learning
— Sample operator for stochastic gradient descent
Optimal Weights GPU 1 e Idea
. T — Data preprocessing using SQL
Gradient Descent] — No need for data extraction out of a database system
;r GPU 2 — Continuously train models using operators for
0 gradient descent with GPU support
c] — Label data within the database system using SQL
|
Table Scan | | |

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

Structure

by

SUMBRA

Y

w

ML in SQL-92 ML Operators
Gradient descent with recursive tables Automatic Differentiation
Machine learning pipeline in SQL Gradient Descent Operator

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

GPU support
GPU co-processing
Evaluation

ML in SQL-92

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

ML in SQL-92: Gradient Descent with Recursive SQL

A loss function Ix ,(W) measures the deviation (residual) be-
tween all approximated values my(X) and the given labels Y,
for example, mean squared error:

ly(a,b) = (a-x+b—y) (1)
_(dl/da\ [(2(ax+b—y)-x

Vhey(a.0) = <8//8b) - (2axtb-y)) @

To minimise Ix , (W), gradient descent updates the weights per it-

eration by subtracting the loss function’s gradient times the learn-
ing rate 7.

Wiy1 = W —YVix 5 (W), 3)
Weo = lim W. (4)
f—oo0

create table data (x float, y float);
insert into data ...

with recursive gd (id, a, b) as (

select 0,1::float,1::float

UNION ALL

select id+1,
a-0.05%avg (2*x* (a*x+b-y)),
b-0.05%avg (2% (a*x+b-y))

(select * from data)

where id<b group by id,a,b)

from gd,

select * from gd order by id;

Listing 1: Gradient descent (batch).

Five iterations, loss function with two weights (8). First, the
weights get initialised, then each iteration updates the weights
(3) based on manually derived gradients (2) and v = 0.05.

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 7

ML in SQL-92: Gradient Descent with Recursive SQL

A loss function Ix (W) measures the deviation (residual) be-
tween all approximated values my(X) and the given labels Y,
for example, mean squared error:

ly(a,b) = (a-x+b—y) (1)
_(dl/da\ [(2(ax+b—y)-x

Vhey(a.0) = (8//8b) - (2axtb-y)) @

To minimise Ix , (W), gradient descent updates the weights per it-

eration by subtracting the loss function’s gradient times the learn-
ing rate 7.

Wiy1 = W —YVix 5 (W), 3)
Weo = lim W. (4)
f—oo0

create table data (x float, y float);
insert into data ...

with recursive gd (id, a, b) as (
select 0,1::float,1::float
UNION ALL
select id+1,
a-0.05%avg (2*x* (a*x+b-y)),
b-0.05%avg (2% (a*x+b-y))
from gd, (select * from data tablesample reservoir(1))
where id<b group by id,a,b)
select * from gd order by id;

Listing 2: Gradient descent (stochastic).

Five iterations, loss function with two weights (8). First, the
weights get initialised, then each iteration updates the weights
(3) based on manually derived gradients (2) and v = 0.05.

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 7

ML in SQL-92: Gradient Descent with Recursive SQL

A loss function Ix (W) measures the deviation (residual) be-
tween all approximated values my(X) and the given labels Y,
for example, mean squared error:

ly(a,b) = (a-x+b—y) (1)
_(dl/da\ [(2(ax+b—y)-x

Vhey(a.0) = (8//8b) - (2axtb-y)) @

To minimise Ix , (W), gradient descent updates the weights per it-

eration by subtracting the loss function’s gradient times the learn-
ing rate 7.

Wiy1 = W —YVix 5 (W), 3)
Weo = lim W. (4)
f—oo0

create table data (x float, y float);
insert into data ...

with recursive gd (id, a, b) as (
select 0,1::float,1::float
UNION ALL
select id+1,
a-0.05%avg (2*x* (a*x+b-y)),
b-0.05%avg (2% (a*x+b-y))
from gd, (select * from data tablesample reservoir(8))
where id<b group by id,a,b)
select * from gd order by id;

Listing 3: Gradient descent (mini-batch).

Five iterations, loss function with two weights (8). First, the
weights get initialised, then each iteration updates the weights
(3) based on manually derived gradients (2) and v = 0.05.

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 7

TUT
ML in SQL-92: Components of a Machine Learning Pipeline

Machine learning pipeline proposed by Der-
akhshan et. al. (EDBT’19)

! Optimal Weights ! * Scheduler manages gradient descent
GD lterations GPU.CPU i CPU.GPU iterations until the weights converge.
Wipq =W —Vixy(w) Scheduler — Wt = W Vixy(We) . standard Scaler scales all attributes in

T T

the range [0, 1] to equal each attribute’s

Gradient Evaluation impact on the model.

Summation
Model Update * Anomaly Detector deletes tuples on

anomalies. An anomaly occurs when at
least one attribute in a tuple passes over
or under a predefined threshold.

¢ Feature Extractor: extracts features
from data chunks.

* Input Parser: parses input CSV files
and stores the data in chunks.

Gradient Evaluation Standard Scaler
Summation

Model Update Anomaly Detector

Feature Extractor

Input Parser

T
Input

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 8

TUT
ML in SQL-92: Machine Learning Pipeline in Relational Algebra

i W{[i, v]} iOptimaI Weights

Gradient Descent e Standard Scaler: projection and
Y I nested subqueries to extract the
ma;l’(d)7ma)f(l(h)7magr€’\;av),maf(eg£ar) i Standard Scaler attribute’s extrema (view normalised).
e R * Anomaly Detector: user-defined limits
in a selection (view normalised).
* Feature Extractor: a simple projection
in SQL, day and hour from timestamps,

distance metrics from given
Nested Subquer . .
ubquery / - x _ Feature Extractor coordinates (V|eW pI‘OCGSSGd).

Ymax(d),max(h),max(hav),max(bear) Td,h,hav(Xiat Xiong:Yiat-Yiong)-b€ar (Xiat Xiong Viat-Yiong) | ® Input Parser: a simple table scan or a

\ S tIoIIITTTIIIToATIIIIIIIIIIIIIoes foreign table as input for continuous
views (table taxidata).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! Table Scan
R{[d, h, Xiat, Xlong> Ylat, Yiong t]}

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 9

ML in SQL-92: Machine Learning Pipeline in SQL

create foreign table taxidata(id int, pickup_datetime date, dropoff_datetime date,
passengers float, pickup_longitude float, pickup_latitude float, dropoff_longitude float,
dropoff_latitude float, duration float) server stream;
copy taxidata from delimiter ;
create view processed as (select hour,day,duration,ACOS(SIN(plat)*SIN(dlat)+COS(plat)*COS(dlat)[...]
create view normalised(hour, day, distance, bearing, duration) as (
select cast(hour as float)/(select max(hour)+1 from processed), [...]
from processed where distance < 1000);

with recursive gd (id, al, a2, a3, a4, b) as (select 0, 1::float, 1::float, 1::float, 1::float, 1::float
UNION ALL select id+1,
al-0.001*avg(2xhour* (al*hour+a2*day+a3*distance+ad*bearing+b-duration)),
a2-0.001*avg(2xday* (al*hour+a2xday+a3*distance+ad*bearing+b-duration)),
a3-0.001*avg(2xdistancex (alxhour+a2+«day+a3*distance+ad*bearing+b-duration)),
a4-0.001*avg(2*bearing* (al*hour+a2xday+a3*distance+ad*bearing+b-duration)),
b -0.001*avg(2+*(al*hour+a2*day+a3*distance+ad*bearing+b-duration))
from gd, (select * from normalised tablesample reservoir (10)) where id<50 group by id,al,a2,a3,a4, b)
select id, avg(al*hour+a2+day+a3*distance+ad*bearing+b-duration) "2
from gd,normalised where 1d=50;

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 10

ML Operators

UMBRA

Maximilian E. Schiile (TUM) | In-Database Machine Learning with SQL on GPUs

11

TUTI

ML Operators: Why Lambda Functions in SQL?

@ Operators

@ saL

Performance

@ UDFs
@ External Tools

Expressiveness

e SQL

— Turing-complete with recursive tables

— queries get optimised before execution

— statements must be expressed in relational algebra
* Operators (Table Functions)

— purpose-specific but high-performant

— require development by a database engineer
¢ User-Defined Functions (UDFs)

— allow procedural language statements in SQL

— not as performant as operators
¢ External Tools

— database system as storage layer only
— time consuming extraction necessary

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 12

TUTI
ML Operators: Why Lambda Functions in SQL?

e SQL
— Turing-complete with recursive tables
— queries get optimised before execution
— statements must be expressed in relational algebra
* Operators (Table Functions)
— purpose-specific but high-performant
— require development by a database engineer
¢ User-Defined Functions (UDFs)
— allow procedural language statements in SQL
— not as performant as operators
@ UDFs ¢ External Tools
— database system as storage layer only
— time consuming extraction necessary
¢ Operators + Lambdas
Expressiveness — customisation of operators

, Operators Operators + Lambdas

@ saL

Performance

@ External Tools

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 12

ML Operators: Lambda Functions in HyPer and Umbra

HyPer and Umbra: code-generating database systems
produce LLVM IR (Intermediate Representation)
Lambda expressions: inject code into regular operators
composed of lambda arguments to identify tuples and
a lambda body to formulate an expression

A(names,names,,...)(expr)

Example: k-Means with injected distance metric

A(S,T(Sx—Tx)*+(Sy—T.y)?

(9)

(6)

LLVM IR code

Operator

Operator

CREATE TABLE data(x float, y int);
CREATE TABLE centre(x float, y int);
INSERT INTO ...
SELECT * FROM kmeans (
(SELECT x,y FROM data),
(SELECT x,y FROM centre),
-- distance function and max. number of iterations
A(a,b) (a.x-b.x)"2+(a.y-b.y)"2, 3);

| Ep——

Left Pipeline Right Pipeline

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 13

TUTI

ML Operators: Automatic Differentiation as Operator

Automatic differentiation using backward mode

f(g(l,r)) * applying the chain rule to backpropagate the loss
‘9_; * no need for manually derived gradients
af _ df 99 a(l,r) af _ of dg * subexpressions are cached in LLVM registers for reuse
dl — dg dI ! r— dg odr

* expose as SQL operator

\
o

y,2)=(x+y)-2)

select * from umbra.derivation(
TABLE(select 2 x,3 y,6 z),
lambda(x) ((x.x+x.y)*x.2));

\@ --zyzdazxzdydz
-- 236665

6

2 3

W

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

TUTI

ML Operators: Automatic Differentiation as Operator

Automatic differentiation using backward mode

f(g(l,r)) * applying the chain rule to backpropagate the loss
‘9_; * no need for manually derived gradients
of _ df dg a(l,r) of _ df dg * subexpressions are cached in LLVM registers for reuse
dl — dg dI ! ar — dg dr

@/, \@ * expose as SQL operator

select * from umbra.derivation(
TABLE(select 2 x,3 y,6 z),
lambda(x) ((x.x+x.y)*x.2));

\@ --zyzdazxzdydz
-- 236665

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

TUTI

ML Operators: Automatic Differentiation as Operator

Automatic differentiation using backward mode

f(g(l,r)) * applying the chain rule to backpropagate the loss
‘9_; * no need for manually derived gradients
of _ df dg a(l,r) of _ df dg * subexpressions are cached in LLVM registers for reuse
dl — dg dI ! ar — dg dr

@/, \@ * expose as SQL operator

30 select * from umbra.derivation(

@\ TABLE(select 2 x,3 y,6 z),
/ lambda(x) ((x.x+x.y)*x.2));
\@ --zyzdazxzdydz

-- 236665

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

TUTI

ML Operators: Automatic Differentiation as Operator

Automatic differentiation using backward mode

f(g(l,r)) * applying the chain rule to backpropagate the loss
‘9_; * no need for manually derived gradients
of _ df dg a(l,r) of _ df dg * subexpressions are cached in LLVM registers for reuse
dl — dg dI ! ar — dg dr

@/, \@ * expose as SQL operator

30 1 select * from umbra.derivation(

@\ TABLE(select 2 x,3 y,6 z),
/ lambda(x) ((x.x+x.y)*x.2));
\@ --zyzdazxzdydz

-- 236665

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

TUTI

ML Operators: Automatic Differentiation as Operator
Automatic differentiation using backward mode
¢ applying the chain rule to backpropagate the loss
* no need for manually derived gradients
¢ subexpressions are cached in LLVM registers for reuse
* expose as SQL operator

select * from umbra.derivation(
TABLE(select 2 x,3 y,6 z),
lambda(x) ((x.x+x.y)*x.2));

-~z yzdxzdydz

-- 236665

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

TUTI

ML Operators: Automatic Differentiation as Operator
Automatic differentiation using backward mode
¢ applying the chain rule to backpropagate the loss
* no need for manually derived gradients
¢ subexpressions are cached in LLVM registers for reuse
* expose as SQL operator

select * from umbra.derivation(
TABLE(select 2 x,3 y,6 z),
lambda(x) ((x.x+x.y)*x.2));

-~z yzdxzdydz

-- 236665

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 14

ML Operators: Automatic Differentiation for Gradient Descent

Manually Derived

TUTI

Automatically Derived

create table data (x float, y float);
insert into data ...

with recursive gd (id, a, b) as (
select 1,1::float,1::float
UNION ALL
select id+1,
a-0.05*avg (2*x* (a*xx+b-y)),
b-0.05%avg (2x (a*xx+b-y))
from gd, data where id<b
group by id,a,b)
select * from gd order by id;

create table data (x float, y float);
insert into data ...

with recursive gd (id, a, b) as (
select 1,1::float,1::float
UNION ALL
select id+1, a-0.05%avg(d_a), b-0.05*avg(d_b)
from umbra.derivation(TABLE (
select id,a,b,x,y from gd,data where id<5),
lambda (x) ((x.a * x.x + x.b - x.y)"2))
group by id,a,b)
select * from gd order by id;

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

15

TUTI

ML Operators: Training a Feed-Forward Neural Network

Fully connected neural network with one hidden layer of size h, L output vector of probabilites, two weight matrices wy, € RIXIxh
and wp, € R an activation function (applied elementwise), model function my,, w, (X) € R, forward pass and loss:

—

mWXh7WhO(X) = SIQ(SIQ(}T : WXh) . Wh0)7 (7)

/thvwho(Y(’y) = (memWho(}) _y)2 (8)

with recursive gd (id,w_xh,w_ho) as (
select 0, array_fill(0.1::float,array[4,10]), array_£fill(0.1::float,array[10,3])
union all
select id+1, w_xh - 0.1 * avg(d_w_xh), w_ho - 0.1 * avg(d_w_ho)
from umbra.derivation(TABLE(
select * from data,gd where id < 10),
lambda(x) ((sig(sig(x.img*x.w_xh)*x.w_ho) - one_hot)"2))
group by id, w_ho, w_xh)
select * from gd order by id;

Listing 4: Training a neural network when applying matrix algebra on arrays.

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 16

ML Operators: Gradient Descent as Operator

Test Data with Predicted Values

Labelling

3 Dedicated operator for gradient descent
g 2 * Input: training data, initial weights and the loss function
(Gradient Descent) Test Data * Output: optimal weights
¢ allows to call specialised libraries and off-loading to GPU

6
7 B
(Training Data) 2! (Initital Weights
Loss Functio

select * from umbra.gd(
TABLE (select * from data), TABLE (select 10::float a, 10::float b),
lambda (x,y) ((y.a * x.x + y.b - x.y)"2), 1, 0.05, 10);

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 17

GPU Co-Processing

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 18

GPU Co-Processing: GPU Architecture

NVIDIA GeForce RTX 2080 Ti

¢ Each GPU device owns one global memory (device
memory) and an L2 cache.

' || Shared Memory Shared Memory | |! ! _ . . .

L + + * Core components: streaming multiprocessors with an
o 64 KB 64 KB o

Lo -) attached shared memory

64 Cuda Cores | 64 Cuda Cores | | 1 e Parallel threads perform the same instructions
SR T T L simultaneously

! ’ L2-Cache 5.5 MB . ® 32 threads in a bundle: warp, multiple warps: block

! __Bandwidth | 616 GB/s . * Challenge: map mini-batches of data to blocks

! Device Memory 11GB . * Parameter: number of warps per block

"""""""" PCle3.0XT6[12 GB/s™ ™~~~ TTTTT

Main Memory

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 19

GPU Co-Processing: Multiple Learner per GPU

Device Memory
e Goal: utilise all GPU threads even with small batch sizes

¢ Solution: multiple independent learners per GPU
¢ Each block = one learner, responsible for a mini-batch

Shared Memory * Each learner maintains local weights Wy and the
[W, Wiocal0, Co. L] difference Cjca to the global weights w.

¢ Minimum batch size: one warp (minimum block size) with
Block 0 Block 1 Block N 32 threads

* Maximum number of learners = number of possible warps

X1 X2 %3, X0 331 x32

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

20

GPU Co-Processing: Synchronisation

Wo Wy Wo Wo Wy Wo W3 Wy Wo W1 Wo
s — | % — ﬂ G o o
0 I I [I I I I [1 2 3
g -l gror by B 8o
‘6 B4 { BS ‘ I 6 B4 I BS I : 86 : 5 B41 B5 21\0{ BG Ca‘:
| B , . B | 5| B . B, =l B ™ B %
Bo . B B B Bp B A
Time Time Time
Synchronised threads Worker threads (global updates) Worker threads (local models)

* Synchronised threads: same weights with an individual mini-batch, the main worker collects the calculated gradients and
takes their average to update the weights, workers might drive idle and waiting for input

* Worker threads (global updates): independent workers have to fetch their mini-batches on their own, global atomic counter
as a batch identifier. Weights are updated globally. Assuming a low learning rate, weights are changing marginally and locks
can be omitted similar to HogWild.

* Worker threads (local models): local models known from Crossbow: Each learner maintains local weights. For every
learner t a vector called corrections ¢; stores the differences to the global weights. After each iteration, the corrections of all

learners are summed up to form the global weights.
Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 21

Evaluation

- SAS SAS =
1 800GB 10K oo s e "ov
HUAWEI 02310KP!

1" 17 n " L} L] d . ") s @ :
i Y e B | AL LN LI

") > >
2 A /’/ A > p 3

> -
>

A Lt
: 5 v % ///////.}.;“.’.“
2727 77
AV PP JF

o @0 -
5 @m0 @0 LA - y
b~ . _“---
® O - - -
o ') O -

B

Evaluation: Set-Up

* System: Intel Xeon Gold 5120 processors, 4x14 CPUs (2.20 GHz), Ubuntu 20.04.01 LTS , 256 GiB RAM.
¢ GPU: either four GPUs (NVIDIA GeForce GTX 1080 Ti/RTX 2080 Ti) or one NVIDIA Tesla V100.
* Models: linear regression and feed-forward neural network with a single hidden layer for image recognition.

* Data: synthetic data, New York taxi data set (January 2015, 2.65 GiB), (Fashion-)MNIST data set

#attr. #training #validation
New York Taxi 4+1 61,664,460 15,416,115

Synthetic 99 + 1 10 10
MNIST 784 + 1 60,000 10,000
Fashion-MNIST 784 + 1 60,000 10,000

Table: Training and validation data sets used with linear regression and a neural network respectively.

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

23

Evaluation: Automatically vs. Manually Derived

10000 || 100000 ‘ 204

0.05 -

n
1=}

1504
0.04 4

@
@
S

= 100

o

50

Compilation Time [s]
g
Execution Time [s]
>
Execution Time [s]
Execution Time [s]

Execution Time [s]
=)

w

| j———— IR | el B NN N
4 16 64 4 16 64 4 16 64 1101 1e+02 16103 1e+04 1e+05 10 100 1000 2 4 6 8
Attributes Attributes Tuples Iterations Threads

o

Automatically ---- Manually Operator Automatically ---- Manually Operator Auto. ---- Manu. Op. Auto. ---- Manu. Op. Auto. ---- Manu. Op.

batch gradient descent (the batch size corresponds to the number of tuples), linear model, synthetic data

recursive tables with either manually or automatically derived gradients, and a dedicated (single-threaded) operator

automatic differentiation: speeds up compilation time and execution time (subexpressions are cached in registers for reuse)

also visible when the batch size, the number of iterations or the number of threads is varied

parallelisation when using recursive tables

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 24

TUTI

Evaluation: GPU co-processing (Learners, Linear Regression)

= GTX 1080 Ti RTX 2080 Ti Tesla V100
~
[an] e TN
@ 300 - TN TN
g, 59 Locbarss XN
S 2001 i =i | AP AN
Q. AT 24 A
5, 4 e Taarsi e (2507 Wi
- TR T T e &« v
g o0 GFETT b b
e 0+ " T R T * vary the number of threads per block (32 to 1,024 threads,
F 0 250 500 750 10000 250 500 750 1000 250 500 750 1000

4 attributes) or number of attributes (32 threads per block)
¢ a small number of threads per learner: a higher throughput

Batch Size [Tuples]

E‘ GTX 1080 Ti RTX 2080 Ti Tesla V100 for small batch sizes.
M 250 - . o .
S, 200 4 ¢ highest throughput when batch size is a multiple of the
5 150 RN block size
£ 100 e I . . _ _ _
o PN AN . Io_cal maximum (spikes): batch size = multiple of a block
_g 0 n = .I.. =L ‘_I__ T = T T T T T T Slze
[0 25 50 75 0 25 50 75 0 25 50 75
Number of Attributes
32 --- 96 ---- 160 —- 224 512
Threads per Learner
64 -- 128 --- 192 256 1024

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 25

Evaluation: GPU co-processing (Linear Regression)

Throughput [GiB/s]

Throughput [GiB/s]

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

NVIDIA GeForce GTX 1080 Ti

Batch Size [Tuples] = 64

Batch Size [Tuples] = 768

Batch Size [Tuples] = 1024

-
o Q
S o

1004

o
t=]

o

T2 3 4

T2 3 a4

GPUs

T2 3

. global updates . local modes (dirty) . local modes (locks) . synchronised (blocking)

NVIDIA GeForce RTX 2080 Ti

Batch Size [Tuples] = 64

Batch Size [Tuples] = 768

Batch Size [Tuples] = 1024

500
400
300
200

o
=3

o

o I
s 8

T2 3

GPUs

T2 3

. global updates . local models (dirty) . local models (locks) . synchronised

CPU (Intel Xeon Gold 5120)

Batch Size [Tuples] = 1310

A e

. global updates . local models (dirty) . local models (locks) . synchronised (blocking)

Batch Size [Tuples] = 2621 Batch Size [Tuples] = 3932

Throughput [GiB/s]
o n £ o ©

1 2 4 8

CPUs

i 2 4 8

* no synchronisation, global updates (global updates), local models with
locking of the critical section (local models (locks)) or without locking
(local models (dirty)), (synchronised (blocking)).

* CPU: linear speed-up when no synchronisation takes place
* locks: lower throughput, blocking threads cause underutilisation

* GPU: the larger the batch size (less synchronisation), the higher the
scale-up as (parallel workers work independently)

* local models: inter-GPU communication decreases the performance
with the third additional device

26

Evaluation: GPU co-processing (Neural Network)

NVIDIA GeForce GTX 1080 Ti

Batch Size [MiB] =2 Batch Size [MiB] = 15 Batch Size [MiB] = 150
2
G 30-
g o ...I
2 10+
€ e o e e || DO I
= 1 2 3 4 1 2 3 4 1 2 3 4 - .
GPUs * one additional worker increases the throughput
. global updates . local models (dirty) . local models (locks) . synchronised (blocking) * for any further Worl.(ers, the Inter-GPU Communlcatlon
decreases the runtime
NVIDIA GeForce RTX 2080 Ti small batch sizes: best result on two GPU devices
Batch Size [MiB] =2 Batch Size [MiB] = 15 Batch Size [MiB] = 150
o0l * larger batch sizes: every additional device allows a higher
2 throughput
% 40+
1 1
E | e I e e | 0 N O DD
i 3 3 i] 3 3 :] 3 3 :

GPUs

. global updates . local models (dirty) . local models (locks) . synchronised (blocking)

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs 27

Evaluation: End-to-End

2 500
(]
£
=

Python GTX 1080 Ti SQL Auto. SQLManu. SQL Op. GTX 1080 QL Op.RTX 2080 Ti SQL Op. Tesla

t:Load [l 2:Exvact [3:Normaiise 4:Train

training of one epoch (New York taxi data: 13- 10° tuples)

ML pipeline in Python using Keras vs. SQL within Umbra

Steps: data loading from CSV, feature extraction and normalisation either with NumPy or SQL-92 queries, and training

much time spent on data loading from CSV and preprocessing (no longer required within a database system or highly
parallelised)

¢ gradient descent using recursive tables: comparable performance to library functions

¢ all outperformed by our operator that off-loads training to GPU

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

28

TUTI

Conclusion

* in-database machine learning pipeline expressed in pure SQL based on sampling, continuous views and recursive tables

* operator for automatic differentiation and one for gradient descent

off-load training to GPU units

training algorithms as GPU kernels and fine-tuned learners at hardware level to increase the learning throughput

automatic differentiation accelerated both the compile time and the execution time by the number of cached expressions

fine-tuned learners at hardware level: highest possible throughput for small batch sizes

end-to-end machine learning pipeline in SQL: comparable performance to traditional machine learning frameworks

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

29

Thank you for your attention!

m)‘!ﬂ
-

Maximilian E. Schile (TUM) | In-Database Machine Learning with SQL on GPUs

30

