
Versioning in Main-Memory Database Systems
From MusaeusDB to TardisDB

Maximilian E. Schüle
maximilian.schuele@tum.de

Lukas Karnowski
lukas.karnowski@tum.de

Josef Schmeißer
josef.schmeisser@tum.de

Benedikt Kleiner
benedikt.kleiner@tum.de

Alfons Kemper
kemper@in.tum.de

Technical University of Munich

Thomas Neumann
neumann@in.tum.de

ABSTRACT
As relational database systems do not support collaborative dataset
editing, online lexicons—such as Wikipedia’s MediaWiki—build
their own version control above the database system to allow
constraint-preserving version checkouts or commits involving mul-
tiple tables. To eliminate the need for purpose-specific solutions,
we propose adding version control as a layer on top of the database
system or integrating versioning in the database system’s core.

This paper presents the first two architectures for versioning an
entire state of a database system with respect to references among
multiple relations. We design the prototype MusaeusDB as a solu-
tion for existing database systems, either as an external tool or as
an extended SQL interface. The prototype TardisDB—an extended
main-memory database system—reuses multi-version concurrency
control for in-place updates while keeping older versions accessible.
For performance tests on different storage layouts, we create—based
on Wikipedia’s page history—the TardisBenchmark. Our results
show that it is indeed feasible to reduce wasted space while still
ensuring constant retrieval time. Also, extending a main-memory
database system’s multi-version concurrency control has no nega-
tive impact on the transactional throughput. For further research
on database versioning, we offer a flexibly sized benchmark with
time evolving, text-based datasets and compression techniques.

CCS CONCEPTS
• Information systems→ Database management system en-
gines; Main memory engines; • Applied computing → Ver-
sion control.

KEYWORDS
Version control, SQL
ACM Reference Format:
Maximilian E. Schüle, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner,
Alfons Kemper, and Thomas Neumann. 2019. Versioning in Main-Memory
Database Systems: From MusaeusDB to TardisDB. In 31st International
Conference on Scientific and Statistical Database Management (SSDBM ’19),
July 23–25, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3335783.3335792

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6216-0/19/07. . . $15.00
https://doi.org/10.1145/3335783.3335792

Compression Rate
Ti
m
e
fo
r
Pa

ge
R
et
ri
ev
al

TardisDB (first)
TardisDB (latest)

LiteTree (first/latest)

HyPer Snapshots (first/latest)
PSQL Snapshots (first/latest)

Git (latest)

Git (first)

HyPer Diffs (latest)
PSQL Diffs (latest)

HyPer Diffs (first)
PSQL Diffs (first)

Figure 1: Sketch of the trade-off between storage savings
(compression rate) and retrieval time: storing only one ver-
sion snapshot and computing the others out of the changed
differences (diffs) will reduce the amount of storage needed
but will increase the retrieval time.

1 INTRODUCTION
On the one hand, software engineering relies on version control
systems such as SCCS, CVS, SVN and Git to allow distributed code
development and to document the project’s progress in commits
and version tags. On the other hand, database systems are essential
for efficiently handling huge amounts of data in index structures
such as B*- [2] or Adaptive-Radix-Trees [13]. To unify both use
cases, approaches such as temporal databases or dataset versioning
aim to bind the validity of tuples to time instances or to allow
collaborative dataset editing.

The most common example for documenting versions inside a
database system isMediaWiki—thewiki software behindWikipedia—
as it manages the versions in a page content table of a MariaDB
system for every article. So far, research has focussed on versioning
single datasets. But to fulfil the requirements for versioning a wiki
system, a version control for database systems should be able to
include multiple relations per single commit and respect referen-
tial integrity. When versioning one namespace of the Wikipedia
encyclopedia, we expect a compression rate of up to 70 % when
storing the differences only. Our estimation is based on the Simple
English Wikipedia edition for which we computed the file and the
edit differences for all page revisions (see Table 1). Applying ver-
sioning and compression techniques to database systems eliminates

1

https://doi.org/10.1145/3335783.3335792
https://doi.org/10.1145/3335783.3335792

Size Compression
Full Page Edit History 35.0 GiB -
Current Version Only 1.1 GiB -
History as File Diffs 14.0 GiB 59.77 %
History as Edit Diffs 9.4 GiB 72.71 %

Table 1: Estimation of saved storage when using compres-
sion techniques based on the Simple EnglishWikipedia page
edit history dump of October 1, 2018.

the need for purpose-specific solutions, reduces the storage needed
and allows comparable retrieval times (see Figure 1). We claim that
database systems with full incorporated version control commands
fill the gap caused by distributed data and knowledge management,
and facilitate the versioning of wiki entries.

Starting at extending single tables—known from OrpheusDB—to
multiple relations per version, we present MusaeusDB as a stand-
alone tool along the database system. It implicitly sends SQL com-
mands, manages the versions in meta tables and benefits from the
database systems’ user rights management, as tables are checked
out in the user’s namespace. Based on the same schema,MusaeusSQL
incorporates the SQL commands by providing a single interface
for SQL as well as for versioning commands. We make use of the
gathered knowledge for TardisDB, a main-memory database system
that deeply integrates versioning based on additional bitmaps for
each tuple and reusing multi-version concurrency control to pre-
serve former databases’ states. In our TardisBenchmark, we evaluate
TardisDB and the different storage approaches developed for data-
base systems, and compare their runtime to those of the version
control system Git. The main contributions of this work are:

• Extending version control on top of database systems to
include multiple tables instead of single datasets per version

• The architectural blueprint for integrating versioning inside
a main-memory database system

• A benchmark, which covers dependencies between relations
and evaluates different storage techniques in respect for the
querying performance

The paper is structured as follows: after a review of related work
on temporal databases and their connection to research on version
control, we will introduce our SQL-based prototypes (MusaeusDB,
MusaeusSQL) and their architecture comprising the schema, syntax
for the user input and storage conventions. We proceed with the
architecture of TardisDB, for which we adapt the table scan opera-
tor and the multi-version concurrency control of a main-memory
database system to allow branches and to store multiple states of
the database. To benchmark the prototypes, we will explain how
we extract Wikipedia’s page edit history to create a version control
benchmark. The evaluation section uses the benchmark for measur-
ing time performance impacts of different versioning techniques on
classical relational as well as modern main-memory database sys-
tems compared to storage savings. Based on the results discussed,
we present solutions for overcoming the trade-off between storage
savings and retrieval costs.

2 RELATEDWORK
Whereas version control for software projects has a long tradition,
studies on database systems have mainly focussed on temporal
databases. This section describes temporal databases and research
on full versioning of databases (mostly limited to single datasets),
the starting point of this work, and Git as the most popular version
control system, which is later used as competitor.

2.1 Temporal Databases
Temporal databases bind the validity of tuples to time intervals
by offering an additional datatype. Until 2011, several extensions
of SQL such as TQuel [20] and TSQL2 [21] examined adding time
travelling to fetch the database state from a certain date in the past.
They tried to be backward compatible with SQL:92 but were not
considered for a new SQL standard. Instead, the SQL:2011 stan-
dard [12] marks the tuples of a temporal database with two date
columns indicating the period of the tuple’s validity. Nowadays,
most of the commercial database systems support time travelling.
For example,Microsoft SQL Server (MSSQL)1, IBM DB2 102 andMari-
aDB3 take a time range from two date columns. PostgreSQL (PSQL)4
offers the tstzrange type to indicate time instances and an addi-
tional history table for past records. Based on the presence of data
types for temporal databases, different optimising techniques aim
at integrating time travelling inside transaction handling [14] or
at indexing tuples for accessing time evolving data efficiently [18].
Beyond relational database systems, studies focus on compress-
ing time evolving data as XML archives [7] or on integrating time
travelling inside RDF databases to be addressed with SPARQL [23].

2.2 Version Control: Git
Git5 was initially developed for managing large software projects,
but can be used for other purposes as collaborative text editing. In-
ternally, commits represent changes; one commit may havemultiple
preceding ones, forming an acyclic graph. It works decentrally and
allows branching and merging for collaborative code development.

Actually, Git is a key-value store for storing any kind of data
returning a unique hash identifier, which allows the data to be
retrieved. Internally, Git stores three type of objects, blob, tree and
commit. A blob object represents the content (binary large object)
that Git has to track, so every object corresponds to one file. Conse-
quently, for every minor edit, a new blob object is created. The tree
objects correspond to the directories and store the identifiers of
the contained blob or sub-tree objects. Finally, the commit objects
contain a parent one and the tree objects.

This so-called Loose Object Format would be inefficient if no
packing took place. But Git uses delta encoding, a form of taking
differences between objects. The optimal differences, adjustable by
one variable that sets the maximum length of a delta-chain and one
for the number of files to compare, are stored in packfiles. This infor-
mation is useful for adapting delta encoding and for understanding
the benchmark results.

1www.mssqltips.com/sqlservertip/3680/introduction-to-sql-server-2016-temporal-tables/
2www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/
3https://mariadb.com/kb/en/library/system-versioned-tables/
4https://wiki.postgresql.org/wiki/SQL2011Temporal
5https://git-scm.com/

www.mssqltips.com/sqlservertip/3680/introduction-to-sql-server-2016-temporal-tables/
www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/
https://mariadb.com/kb/en/library/system-versioned-tables/
https://wiki.postgresql.org/wiki/SQL2011Temporal
https://git-scm.com/

vid tableid rlist
v1 tasks {1}
v1 users {1,2}
v2 users {3,4}
v2 tasks {1,2,3}

Version table

vid parent message
v1 initial commit
v2 v1 wedding

Meta table

rid user_id user_name
1 1 Carla Cat
2 2 Carl Tomcat
3 1 Carla Cats
4 2 Carl Cats

User table

rid user_id task_name
1 1 singing
2 1 wedding
3 2 wedding

Task table

Figure 2: Schema: Version table and meta table for managing the commits on the left; tables containing the data on the right;
the record id serves as a key for every tuple.

2.3 Versioning in DBMS
In contrast to temporal databases, which protocol the validity of
each tuple, versioning should log at a higher granularity to preserve
the whole database’s state. As part of the DataHub system [3, 4],
Decibel [15] is an approach of integrating dataset versioning inside
a database system. It benefits from recovery, "fault tolerance" and
SQL as the declarative language provided by the database system,
but also includes VQuel [8] as a versioning query language besides
SQL. It evaluates different bitmap based storage techniques for
creating and merging branches by using a self-created versioning
benchmark. The versioning scope is limited to single relations. We
take the idea of bitmaps indicating included tuples for each branch
of a main-memory database system. To test our system, we adapt
the versioning benchmark, as well.

A version control on top of database systems is OrpheusDB [10,
24], called a "bolt-on" technique as it works on existing datasets.
First, the data to be versioned is loaded from CSV files or from a
database system into an extended database schema. Then, every
tuple is extended by a record identifier rid. A version consists of
multiple rids, which are managed in a separate table. The database
system itself remains unmodified as OrpheusDB can run on top
of any arbitrary database system as long as it provides SQL-92
commands and an array datatype. Our SQL prototype,MusaeusDB6,
will extend this work to manage multiple tables. Independent of
the underlying data storage, RStore [6] allows versioning on top
of arbitrary key-value stores. It investigates the trade-off between
storage costs, query performance and online updates. It uses delta
compression—as in this work—to compress textual documents.

A key challenge for versioning datasets—postulated in 2015 [5]—
is the trade-off between reducing the amount of storage with delta
compression while restoring datasets fast enough. To tackle the
trade-off, array database systems, designed to host array-like datasets,
incorporate versioning techniques as forward or backward delta
compression [22]. SciDB [19] decides on a minimum weight span-
ning tree either to materialise versions for fast recreation or to store
the differences for dense as well as sparse array-oriented data. We
will use delta compression for text-like data.

LiteTree7 is a recently invented modification of the file-oriented
SQLite database system. It implicitly handles every SQL insert,
delete or update statement as another commit, which can be checked
out when needed. We use LiteTree as the competitor during our
TardisBenchmark.
6Musaeus is a contemporary of Orpheus; in honour of OrpheusDB.
7https://github.com/aergoio/litetree

3 MUSAEUSDB: VERSIONING USING SQL
The SQL prototypes—called MusaeusDB and MusaeusSQL—rely on
the extended schema of OrpheusDB to combine changes over multi-
ple relations as one version. The key idea is to keep the initial data
tables unchanged but with an added record identifier (rid) and to
store the information about versions in separate tables. As multiple
tuples across different versions may share the same primary key,
the rid is needed as the new primary key for all tuples.

The version table manages the corresponding rids for each ver-
sion and each table (we adopt the rlist as array-like structure but
the table can be easily normalised using unnest). For each commit,
the meta table contains information such as the commit message
or the parent version. In comparison to OrpheusDB, we extended
the version table by one attribute referencing the table in question.
Instead of only one tuple, it contains as many tuples per version as
tables involved. During query processing, we need an additional
join predicate to retrieve the tuples of a certain version. Figure 2
shows the tables responsible for managing the commits and the
tables containing the data. In this example, the meta table hosts
two commits, one initial and one descending; the tuples concerned
are stored in the version table. For example, the name of the users
has changed after they got married, so the user table’s attribute
name has been updated and "wedding" was added to the task table.
The data tables now have a unique artificial key (rid) as the original
keys will not suffice as primary keys, but are restored on a table
checkout. Indexing rid as primary key allows fast join processing
even for a huge number of entries. Given the presented database
schema, we present MusaeusDB as a tool besides and MusaeusSQL
as a tool on top of an existing database system.

3.1 MusaeusDB as a Separate Tool
MusaeusDB stores datasets in "public repositories" and allows users
to clone them. It benefits from the conception of database systems
as they provide multiple databases per server (at least one for each
user) with named schemas per database. In fact, a "public repository"
is an own namespace (a named schema) of a public database. Each
user is allowed to check out a certain version in a private namespace
of his/her database and may modify the tuples locally. Afterwards,
the changes get propagated by a commit to the origin repository.

In Figure 3, we see the distinction between public and user
databases with separate namespaces for the repositories. Each
namespace represents one repository. The default namespace of
the public database hosts all versions and their meta information.
On a checkout, all tuples belonging to the dedicated version are

https://github.com/aergoio/litetree

Versiontable: {[vid,tablename,rlist]}
Metatable: {[vid,parent,message]}

<p
ub

lic
>

<reponame> <tablename>: {[rid,...]}

commitcheckout

<u
se
r>

Dataset: {[tablename,tableid]}
Checkouts: {[tablename,dataset,versionid]}

<checkoutname> <tablename>: {[...]}

Figure 3: Distinction between global and local (user) space in
MusaeusDB: The global space maintains a separate names-
pace for each repository, relations can be checked out for
modifications in the user’s namespace.

checked out into tables that are created for that purpose in the
specified namespace. To keep track of all tables currently checked
out, all checkouts are documented in the default namespace of the
user’s database. MusaeusDB is based on database systems imple-
menting the PostgreSQL interface and works as a separate tool. For
commits and checkouts it uses the pqxx library8 to connect to the
database server. The source code has been made publicly available9.
In the following, we will introduce the SQL commands behind init,
checkout and commit.

3.1.1 init. The init command prepares the tables of an existing
namespace for versioning comparable to git init. The command
expects the name of the destined global repository and the name
of a schema with its tables to be prepared for versioning and col-
laborative working (see Listing 1). MusaeusDB generates the SQL
commands to endue each tuple with an rid as its new primary key
and to create a global table in the designated global namespace to
which each of the source’s relations can be copied.

$./ musaeus init <public >.<reponame > <user >.<localreponame >

Listing 1: MusaeusDB: init command: this takes the local
database schema as source argument to copy it to a public
database schema, which allows versioning.

3.1.2 checkout. The checkout command works contrary to the init
one: this takes the name of the global namespace and copies the
tables to newly created ones in a designated private namespace
(see Listing 2). The global rid is hereby omitted and the original
primary keys are restored.

$./ musaeus checkout <public >.<reponame > <user >.<localreponame >

Listing 2: MusaeusDB: checkout command: it takes the
public database schema name as source argument to copy
the tables to the schema given as second argument.

8http://pqxx.org/development/libpqxx/
9https://gitlab.db.in.tum.de/tardisDB/musaeusDB

3.1.3 commit. The commit command updates the global repository
with changed, inserted or deleted tuples. It takes the name of the
source’s namespace and a commit message (see Listing 3). It treats
all changes as one whole commit and pushes the updates to the
origin. The rlist for the new version is copied from the ancestor
one except the rids of the changed or deleted tuples. For every
changed or inserted tuple, a new rid is created and added to the
rlist. As the command is translated into one atomic transaction,
the tool ensures that commits are processed atomicly, and respects
referential integrity as local tables inherit the parent’s database
schema. This is useful as MediaWiki stores the page title separately
from the content, but using references.

$./ musaeus commit <user >.<localreponame > <commitmessage >

Listing 3: MusaeusDB: commit command: the changes made
in the given schema name are updated in the remote
repository.

3.2 MusaeusSQL: Using One Interface

Main

CheckoutCommit

Versioning SQL

INSERTDELETE

UPDATESELECT

MockHyPerPSQL

DBMSConnector

Operation

+execute(): string
+transform(): void

Figure 4: Architecture of MusaeusSQL: Operations are di-
vided into basic SQL and versioning commands; SQL com-
mands are transformed as the extended schema is hidden,
versioning commands are translated into SQL queries.

MusaeusSQL is a lightweight tool on top of existing database
systems and provides an interface for SQL as well as versioning
commands. With MusaeusSQL, we tackle the obstacles arising by
using a separate tool: two different user interfaces and the doubled
configuration setup. Instead of checking out the relations locally be-
fore any edit, MusaeusSQL performs actions directly on the remote
repository.

3.2.1 Design. The conceptual design stays the same: on a commit,
an entry consisting of a new vid and the corresponding rids is
added to the version table. But now, the rids are created as soon
as a tuple is inserted or created. As the rids are hidden from the
user perspective, MusaeusSQL translates SQL queries to restrict the
validity of a query to the tuples of the current version.

Its modular design makes it easy to create extensions to support
further database systems or SQL commands that are currently not
supported (see Figure 4). Part of its architecture is made up of
SQL/versioning operations and a class for the communication with
the database server. Our SQL transformations are based on objects

http://pqxx.org/development/libpqxx/
https://gitlab.db.in.tum.de/tardisDB/musaeusDB

SELECT <column_names > FROM t1,t2 ,... WHERE <condition >

SELECT <column_names >
FROM (SELECT * FROM t1, versiontable
WHERE $state_vid=versiontable.vid AND versiontable.

tableid='t1' AND t1.rid ANY=versiontable.rlist),
(SELECT * FROM t2, versiontable
WHERE $state_vid=versiontable.vid AND versiontable.

tableid='t2' AND t2.rid ANY=versiontable.rlist)
WHERE <condition >

Listing 4: select. Check for all tuples for
containment in the rlists.

INSERT INTO t1 (SELECT ...)

INSERT INTO t1 (SELECT nextrid () ,...);
UPDATE versiontable
SET rlist=rlist|| newrids
WHERE table_id='t1' AND $state_vid=vid

Listing 5: insert. New tuples get
a new rid appended, which is
tracked in the version table.

DELETE FROM t1 WHERE <condition >

SELECT rid FROM t1 WHERE <condition >;
UPDATE versiontable
SET rlist=array_remove(rlist ,oldrids)
WHERE table_id='t1' AND $state_vid=vid

Listing 6: delete. Instead of a tuple
being deleted, only the rid list is
updated.

Figure 5: Transformation rule for select, insert and delete queries. Above, the original SQL-92 queries are listed; below, their
transformations based on the versioning schema.

of the Hyrise [9] C++ SQL Parser10 and are redirected as strings
to the database connector. We will describe the transformation of
select, insert, update and delete statements in the following.

3.2.2 Query Transformations. In Listing 4, we see the transfor-
mation of a select statement: first, we pick the id of the version
currently checked out. Then, we transform each table into a sub-
query containing only the relevant tuples. Thus, we perform a join
on the rid attributes of the version table.

The remaining statements were transformed in a similar manner:
an insert statement adds an rid to the next version (see Listing 5).
Instead of removing tuples, a delete statement just removes the
corresponding rid of the new version (see Listing 6); update is
transformed to an insert query to preserve the former state.

3.2.3 Versioning Commands. In addition to common SQL-92 queries,
MusaeusSQL offers the commands commit <message> and checkout
<version> also known from Git. The checkout command updates
the local version to be used. All subsequent SQL commands will
use this state when reading or modifying data. The commit com-
mand materialises a state. Before committing, all tuples belong to a
temporary state. After committing, the state will be persisted and a
new temporary state created.

4 TARDISDB: VERSIONING INSIDE A
MAIN-MEMORY DATABASE SYSTEM

Having summarised how versioning can be performed on top of
database systems, this section describes how versioning can be
integrated inside a modern main-memory database system. There-
fore, we cover how version control is realised inside a prototyping
framework of a code-generating in-memory database system. This
framework utilises the push operator model [16] and represents
the logical core of a main-memory database system. Query plans
are compiled to LLVM’s Intermediate Representation (IR), then
optimised and executed.

The push model, as the name suggests, is characterised by the
inversion of the logical tuple flow. Tuples are pushed from a child op-
erator to its parent rather than pulled as in the traditional approach.
This model can generally be characterised by the two functions
produce() and consume(attributes,source). A parent operator
will request tuples from its child by invoking produce. In response
10https://github.com/hyrise/sql-parser

to the produce call, the child operator will generate its own tuples.
These tuples are subsequently pushed by invoking the consume
function of the parent operator. This leads to an important differ-
ence in contrast to the traditional pull model: in the push model,
a child always passes all of its tuples to its parent at once, rather
than a single tuple at a time.

For TardisDB11, we modify the table scan operator to push only
visible tuples. We therefore introduce branches in the form of
bitmaps with every set bit representing an active tuple in the cer-
tain branch, as well as we adapt multi-version concurrency control
(MVCC) to retrieve any previous state of a tuple.

4.1 Bitmaps for Versioning
TardisDB is based on the tuple-first approach described by Mad-
dox et. al. [15], where all tuples are stored in one table and bitmaps
indicate the association to a certain branch or version. Each branch
consists of only one version, so branching and versioning (updates,
insertions, deletions) means the same operation, that is, copying
the bitmap to serve as the new starting point. On an insert, the bits
corresponding to the inserted tuples will be set; on a delete, the
corresponding ones unset and both on an update.
LoopGen scanLoop(funcGen ,{{"index",cg_size_t (0ul)}});
cg_size_t tid(scanLoop.getLoopVar (0)); {

LoopBodyGen bodyGen(scanLoop);
auto branchId = _context.executionContext.branchId;
IfGen visibilityCheck(isVisible(tid ,branchId)); {

produce(tid);
}

}
cg_size_t nextIndex = tid+1ul;
scanLoop.loopDone(nextIndex <tableSize ,{ nextIndex });

Listing 7: The modified scan loop: the table scan operator,
which iterates over all tuples, has been modified to check
the visibility of the tuple first. A tuple is visible when the
corresponding bit of the versioning bitmap is set.

With regard to the underlying logic of the push model, only the
table scan operator requires certain modifications. The physical
manifestation of this operator (the part of the operator that conducts
the actual code generation) has been slightly altered to only produce
tuples that are visible within the context of the current branch. In
particular, this concerns the generation of a conditional branch
instruction ensuring that only those tuples are forwarded onto the
11Time and Relative Dimensions in DataBases: versioning (time) and branching

https://github.com/hyrise/sql-parser

Tuple Update latestoldest
Tu

pl
e
In
se
rt

M
as
te
r

Br
an
ch

3
Br
an
ch

2
Br
an
ch

1

Bitmaps

A | 1 A | 6

B | 2

C | 3

D | 4

E | 12

Master

A | 10

B | 7

C | 8

B | 12

C | 13

Branch 1

Branch 2

Branch 3

A | 1

B | 2

C | 3

D | 4

A | 6

E | 12

B | 7

C | 8

A | 10

B | 11

C | 13

Time Master Branch 1 Branch 2 Branch 3
1 insert A
2 insert B
3 insert C
4 insert D
5 branch 1
6 update A
7 update B
8 update C
9 branch 2
10 update A
11 update B
12 insert E
12 branch 3
13 insert C
14 delete A
15 delete B

Figure 6: Adaption of multi-version concurrency control for versioning (left): bitmaps for each branch indicate the included
tuples; an insert increases the size of all bitmaps. Updates in the master branch are handled in place with a pointer to the
previous version, updates from other branches are prepended. Tuples receive a unique timestamp, their colour indicates the
creator branch. Descendance tree (middle) determines the tuple visibility for the corresponding history (right).

parent operator, as well as corresponding instructions for extracting
the branch indicator bit from our branch bitmap. Listing 7 depicts
the modified code generation logic within the table scan operator.
The concept of bitmaps is easily transferable to multiple relations,
we just have to maintain one bitmap for every branch, for each
relation.

Nevertheless, we need to intersect the involved bitmaps to obtain
a version chain in this approach, as no information is stored than the
tuple itself. Also, many updates will result in sparse bitmaps. Thus,
we will use bitmaps for branches only and will rely on multi-version
concurrency control to track versions.

4.2 Reusing MVCC for Versioning
As database systems come along with concurrency control mech-
anisms to encapsulate transactions and to restore previous states,
we can rely on these mechanisms to preserve different versions.
We base our versioning approach on the multi-version concurrency
control model [17] where updates happen in place and previous
versions are stored in undo buffers. We therefore introduce the
concept of a prioritised branch—so called master—with in-place
changes (see Figure 6). We should thus be able to retain the high
scan performance of our system in cases where only a few tuples
are not active in the master branch.

Each branch is represented by a bitmap that indicates the ac-
tive tuples. Creating a branch preserves the current version and
simplifies its retrieval. Previous versions to which other branches
still refer are chained in buffers. Similarly to [17], we maintain
timestamps ts() for every tuple, as well as for every branch, to
indicate their creation. To map timestamps and tuples to a certain
branch, we introduce markers for every tuple to indicate the creator
branch (created()). This allows us to traverse the visible range of

the tuple’s history. On creation of a branch, we copy the bitmap for
the descending branch; all its tuples are visible. Afterwards, inserts
or updates on the ancestor branch are hidden for the new one. To
access the latest version of a tuple in a given branch, we first check
the bitmap to ascertain whether a tuple is included, then we follow
the chain until we reach an entry for a tuple that was created by
the current branch or by a parent one. Formally, for each entry
t and each branch b we can define the predicate active(t,b) that
evaluates to true when an entry belongs to the current branch:

active(t,b) ⇔ created(b, t)∨
∨

p∈parent (b)

active(t,p)∧ts(t) < ts(b).

An entry is active within a branch when it was created by the
respective one itself or by one of its parents (parents(b)). Of course,
an entry, created by an ancestor branch, is only visible when it
was created before branching. That is why we compare the entry’s
timestamp with the branch’s one. When the chain is traversed, the
first—newest—active entry will be returned.

The actual implementation considers a non-recursive reformula-
tion of active(). We introduce the set-oriented mapping C(b) of a
branch b that returns the lineage as pairs ({parent, child}):

C(b) =
⋃

p∈parent (b)

{(p,b)} ∪C(p).

The implementation uses the expression for creating a precomputed
hashtable out of the non-recursive definition of active():

active(t,bq) ⇐⇒created(t,bq)∨

∃(p,bd) ∈ C(bq) : created(t,p) ∧ ts(t) < ts(bd).

Therefore, we useC(b) to identify the relevant branching point that
has to be investigated. If ts(t) < ts(bd) holds, we can infer that all
timestamps of further descendants are also greater.

XML

TardisBenchmark {insert, latest, first}

Insert RetrieveLatest RetrieveFirst

<page>

<title>No More Heroes </title>

<ns>0</ns>

<id>29222308 </id>

<revision >

<id>148225419 </id>

SELECT old_text

FROM mediawiki.pagecontent

WHERE old_id = 148225419

Figure 7: Conception of the TardisBenchmark: it allows run-
ning retrieval or insert queries, the latter requires an XML
file out of the page edit history.

5 TARDISBENCHMARK
This section presents the TardisBenchmark based on the Wikipedia
page edit history. We have chosen the MediaWiki schema as it is the
most common example of a versioned database with reference key
constraints, which we will introduce in the following. Afterwards,
wewill explain the different aspects and operations that we consider
for our benchmark and what storage approaches we tested with the
operations. We have published the benchmark as open-source12.

5.1 MediaWiki Schema and Wikipedia Data
Wikipedia is the 5th most important web site in the world with
1,333,742 sites linking in [1]. Being a collaborative online encyclo-
pedia to which everyone is allowed to contribute, Wikipedia relies
on version control mechanisms that allow previous versions to be
restored if the free edit rights are misused. Together with the fact
that data and the architecture are freely available, Wikipedia is the
ideal candidate for deriving a benchmark out of it.

The core of MediaWiki, the software behind Wikipedia, is a data-
base schema (see Listing 8) out of the three relations page (the meta
data of the articles), pagecontent (the actual content) and revision
(references to former versions of an article). A current article can
be retrieved by finding the page by title first (see Listing 9), then
a foreign key points to the current page content (see Listing 10).
We feed our benchmarking program with the database dumps in
XML format. The dumps may consist of all latest versions or also
of the complete edit history. In this manner, the benchmark can
have a flexible workload up to 13 TiB, the size of the full English
Wikipedia.

5.2 Benchmark Operations
Our benchmark covers the most common use cases, which are the
insertion of articles or retrieval of the latest or first version of an
article. Figure 7 shows the conception of the benchmark with the
XML file as input and the three different queries. The motivation
for picking this set of benchmark operations is as follows:

12https://gitlab.db.in.tum.de/tardisDB/TardisBenchmark

• Insert.When a page is initially created or updated, the page
content will be inserted as a new tuple to the database system.
So inserting articles is the fundamental operation on which
any project relies on. We take the Wikipedia dumps with
full page edit history as real world examples.

• Retrieve Latest (retLatest). The common case an online
encyclopedia is used or collaborative work is performed is
the retrieval of the latest version of an article or the software.
When using Wikipedia, users are always redirected to the
current version. Former versions can be viewed on demand
afterwards. So retrieving the latest version will form the
majority of the work load.

• Retrieve First (retFirst). The superficial use case of retriev-
ing the first (oldest) version of an article is the most chal-
lenging one. It covers retrieval of any prior version. This is
important when storing former versions as differences to
the latest article, as all deltas between the versions have to
be applied. As another benefit, when we support the oper-
ations for retrieving both the first and the latest version of
an article, we obtain the runtime of backward and forward
delta-based versioning techniques, but we need to compute
the differences in one direction only.

5.3 Storage Approaches
We consider the following four storage approaches:

5.3.1 Snapshot. The snapshot-based approach forms the classical
way of storing every article as a new tuple in the manner of Medi-
aWiki. We therefore rebuild the database schema out of pagecontent,
revision and page to benchmark the performance. The operations
are listed in further detail here:

• Insert. The new content is always (on update or insert)
added to pagecontent. When the page is initially created, a
new tuple is added in revision and page. Otherwise on a page
edit, we just update the references.

• Retrieve Latest. Retrieving the latest version means a join
on page (stores the latest pageid) and pagecontent.

• Retrieve First. We retrieve the first version of an article by
selecting the minimal timestamp of a revision in the table of
that name.

5.3.2 Diff. The difference-based versioning reduces the amount
of wasted storage by storing the latest version as a whole and the
previous ones as text differences (see Listing 11). We adapt the
MediaWiki schema to make it suitable for storing text differences,
as we save the latest page content as an additional attribute of
the page table and store the text differences in pagecontent. As the
latest version is stored as a whole in page, this ensures that the
page demanded most frequently can be retrieved quickly, with no
need for joins. For an arbitrary version, we apply all differences
starting from the latest, also called backward deltas.

• Insert. On a page edit, the content in page will be updated
and the difference from the previous one will be inserted in
pagecontent. Initially, when an article is created, an empty
tuple is inserted in page.

https://gitlab.db.in.tum.de/tardisDB/TardisBenchmark

CREATE TABLE page (page_id INT PRIMARY KEY ,
page_title TEXT , page_latest INT

);
CREATE TABLE revision (rev_id INT PRIMARY KEY ,

rev_page INT REFERENCES page (page_id),
rev_text_id INT , rev_parent_id INT ,
rev_timestamp TIMESTAMP

);
CREATE TABLE pagecontent (

old_id INT PRIMARY KEY , old_text TEXT);

Listing 8: Simplified MediaWiki schema:
page (all meta informations), pagecontent
(actual page content) and revision (history
of former versions).

SELECT page_id , page_title , page_latest
FROM mediawiki.page
WHERE page_title = 1
LIMIT 1

Listing 9: Retrieve page by given
title (1).

SELECT old_text
FROM mediawiki.pagecontent
WHERE old_id = 1 LIMIT 1

Listing 10: Retrieve page content by
identifier 1.

CREATE TABLE page (page_id INT PRIMARY KEY ,
page_title TEXT , page_latest INT ,
page_len INT , page_text TEXT);

CREATE TABLE revision (
rev_id INT PRIMARY KEY ,
rev_page INT , rev_parent_id INT ,
rev_timestamp TIMESTAMP ,
rev_text_id INT , rev_order INT);

CREATE TABLE pagecontent (
old_id INT PRIMARY KEY , old_text TEXT);

Listing 11: Modified schema (Diff):
page contains the current content,
revisionmanages the differences stored
in pagecontent.

• Retrieve Latest. Retrieving the latest article works in less
time as no join must be performed anymore. The content
attribute of page can be read directly.

• Retrieve First. The downside when retrieving the first ar-
ticle is that it has to be computed out of all differences in
pagecontent, starting from the latest version of page. This
operation has linear complexity with the number of edits.

5.3.3 Git. As we use the version control software Git as our com-
petitor, we store all pages on the file system with one file per page
and one commit per version. Traversing the predecessors of a com-
mit works efficiently in Git. We store every article on a separate
branch to avoid long chains when retrieving an earlier version.

• Insert. For every new page encountered, we create a new
branch with the same name as the article descending from an
empty commit (stub). Every commit of a branch represents
a page edit.

• Retrieve Latest. Retrieving the latest version is identical to
a look up to the latest commit of the respective branch.

• Retrieve First. We retrieve the first version by traversing
all commits to the origin. The time complexity is linear with
the number of commits.

5.3.4 LiteTree. LiteTree allows branches to be created for each
new version of a page. It stores every version uncompressed, which
allows any arbitrary article to be retrieved efficiently. We rely on the
internal versioning mechanisms, so we just need one page relation
for the content.

• Insert. A page edit is translated to an SQL update statement
and a page creation to an SQL insert statement.

• Retrieve Latest/First. As the commits are enumerated for
every branch, we can access and retrieve any commit.

6 EVALUATION
The evaluation section discusses the benefits and obstacles arising
from the different storage approaches with respect to the differ-
ent benchmark operations. Therefore, we evaluate the results of
MusaeusDB and the TardisBenchmark—both text-based benchmarks—
and conclude by finding the approach that is the most suited to
certain use cases. In addition, we reproduce the branching bench-
mark of [15], for which code snippets have been made publicly
available, to show comparable results of our bitmap-based version-
ing of TardisDB.

6.1 MusaeusDB
To evaluate MusaeusDB, we have chosen two settings: In order to
measure the impact of extending versioning to support multiple
tables, we have reimplemented versioning on single datasets as
described for OrpheusDB, but using C++ instead of Python to be
compiled instead of interpreted. We omit MusaeusSQL as it is based
on the same database schema and performs similar query trans-
formations. 106 tuples of fictional users and corresponding tasks
served as test data. We first initialised the schema by adding the rid
and a version table, then we performed a checkout, updated every
tuple and committed the changes. For the second setup, we com-
pared the speed up gained from the main-memory database system
HyPer [11] in contrast to PostgreSQL as the underlying database
system. We performed the test on a Debian 9 machine with four
cores of Intel i7-7700HQ CPU, running at 2.80 GHz clock frequency
each, and 16 GiB RAM. As we see in Figure 9, MusaeusDB needed
twice as much the time as OrpheusDB, as it has to keep track of two
tables for each version. When HyPer was used as the underlying
database system instead of PostgreSQL, we only needed less than
half the amount of time, in average.

6.2 Branching Benchmark
In the style of the versioning benchmark [15], our branching bench-
marks aims to evaluate TardisDB with respect to the scan perfor-
mance in the presence of multiple branches. The benchmark itself is
divided into a fixed number of epochs, each defined and concluded
by the creation of a new branch (see Figure 8a). In total, 5 ∗ 105 new
tuples will be inserted during each epoch. Additionally, existing
tuples will be updated, yielding an update-to-insert ratio of 15 to
1. The final branch hierarchy with the creation timestamp and the
number of visible tuples per branch is depicted in Figure 8b.

During each epoch, our master branch takes a privileged role in
that each time an operation is performed, a random branch is drawn
from a distribution where Pr(branch=master) = 0.7 holds. This
choice should, to a certain degree, resemble real-world scenarios
in which operations on the master branch are more frequent. The
probability of encountering a tuple belonging to the master branch
during the scan benchmark is thus higher than for other branches.
We used an Ubuntu 18.04 LTS server with an Intel Xeon CPU E5-
2660 v2 processor with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM.

Our benchmark results are depicted in Figure 8c. As expected,
scanning the master branch yields the best performance. This is
particularly the case for the retLatest scanwhere no version chain

time
−−−→

Epoch 0

Epoch 1

Epoch 2

populate master

branch1 creation

insert and update

branch2 creation

insert and update

(a) Epochs for tuple insertions.

master

ts = 0
1846143

branch1

ts = 1
844015

branch2

ts = 2
844015

branch3

ts = 3
94016

branch4

ts = 4
94016

(b) Branch hierarchy.

107 108

master
branch1

branch2

branch3

branch4

1.63 · 107
3.35 · 106
3.03 · 106
3.36 · 106
3.05 · 106

1.85 · 108
4.88 · 106
4.22 · 106

3.48 · 106
3.23 · 106

records per second (log scale)

retFirst

retLatest

(c) Branching benchmark results.

Figure 8: Overview of the branching benchmark: (a) shows the epochs during which tuples are inserted into a new branch,
(b) shows the resulting branch hierarchy annotated with the number of visible tuples associated with the according branch
and (c) shows the branching benchmark results concerning the record throughput.

0 5 10 15

init

checkout

commit

3.22

3.49

8.71

6.3

7.85

14.34

1.32

3.78

4.01

Time in seconds

OrpheusDB (PSQL)
MusaeusDB (PSQL)
MusaeusDB (HyPer)

Figure 9: Runtime of MusaeusDB in contrast to OrpheusDB
and in dependency of the underlying database system, Post-
greSQL (PSQL) or HyPer.

has to be processed. However, we also see a significant performance
advantage in the retFirst scan in favour of the master branch.
One reason related to this behaviour is the fact that the master
branch always serves as the anchor point at the beginning of our
version chain, therefore, no entries belonging to other branches
have to be processed in this scenario. Better execution branch pre-
diction results are one side effect of this approach, since we will
only encounter entries belonging to the master branch. In gen-
eral, processing version chains is low in cost since the difference
between retFirst and retLatest is minor for all non master
branches. We will see similar results regarding this difference in
the TardisBenchmark with the Wikipedia workload.

6.3 TardisBenchmark
This section discusses the runtime of the four storage approaches
broken down into the different benchmark operations. The Tardis-
Benchmark was run on an Ubuntu 18.04 server with an Intel Xeon
CPU E5-2660 v2 with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM.
We used 2 TB of SSD storage to get the best performance out of the

disk-based database systems SQLite and PostgreSQL. The bench-
mark was run single-threaded.

6.3.1 Insert. We inserted the Wikipedia dumps with full page edit
history13 from 1 August, 2018 for pages 10 up to 2,087 using the four
storage approaches presented. The pages were stored as snapshots
or as differences in the database systems PostgreSQL version 10.5
(classical disk-oriented) and HyPer (in main-memory). The uncom-
pressed XML dump file takes up to 76.8 GB of space. As the dump
consists mostly of text, nearly the same amount of text was inserted
into the database. To measure the performance of the operations
for smaller datasets, we also ran our benchmark with only 3.7 GB
of data (pages 30,227 to 30,303).

As we see in Figure 10, storing snapshots is always faster than
computing the differences beforehand. That is valid for both Post-
greSQL and HyPer, where the latter outperforms the disk-based
database system, as no tuples have to be written to disk. LiteTree
(see Figure 10a) shows the worst insert performance. When per-
forming on the larger dataset (see Figure 10b), Git shows better
runtime than PostgreSQL, but worse than HyPer, whereas SQLite is
not capable of managing more than 1,024 branches at all. TardisDB—
as optimised to this setting—was the fastest system.

6.3.2 Space Consumption. After inserting the pages, we analysed
the space consumption in comparison to the original size of the two
datasets (see Figure 13). The most space-consuming approaches—as
no compression took place and the whole snapshots were copied—
are LiteTree, HyPer-Snapshot and TardisDB-Snapshot.

LiteTree stores each page as a new database entry on each commit
and creates no index structures. As it just copies the pages, its
insertion time was one of the lowest ones, but also space consuming
with more than the initial 3.7 GB. HyPer does not compress text-
based data, so it needed the same amount of storage but in main-
memory when storing each snapshot. One improvement would
be to compress the articles manually before insertion, with the
drawback of a higher runtime. Unexpectedly, PostgreSQL needed
about 38 GB for the large dataset in both approaches (snapshot and

13https://dumps.wikimedia.org/enwiki/20180801/

https://dumps.wikimedia.org/enwiki/20180801/

0 200 400 600 800

Postgres-Snapshot
Postgres-Diff

Git
LiteTree

HyPer-Snapshot
HyPer-Diff

TardisDB-Snapshot
406.3

481.1
326

848.38
284.13
305.55

142.58

Insert duration in seconds
(a) insert results for small (3.7 GB) dataset.

0 0.5 1
·104

Postgres-Snapshot
Postgres-Diff

Git
HyPer-Snapshot

HyPer-Diff

TardisDB-Snapshot
8,526.53

10,154.08
7,267.78

5,223.53
6,214.98

2,986.26

Insert duration in seconds
(b) insert results for larger (76.8 GB) dataset.

Figure 10: Benchmark results for the insert operation: The left side shows the insertion of the small dataset, the right that of
the larger. LiteTree was not capable of handling enough branches for the larger dataset.

0.1 1 10 100 1000 10000

Postgres-Snapshot
Postgres-Diff

Git
LiteTree

HyPer-Snapshot
HyPer-Diff

TardisDB-Snapshot
78.71

0.12
1.52

142.05
10.68

0.13

4,164.45

retFirst operations per second (log scale)

(a) retFirst results with small (3.7 GB) dataset.

0.01 0.1 1 10 100

Postgres-Snapshot
Postgres-Diff

Git
HyPer-Snapshot

HyPer-Diff

TardisDB-Snapshot

0.85

6.93 · 10−3

6.52 · 10−2

1.35

7.72 · 10−3

95.3

retFirst operations per second (log scale)

(b) retFirst results with larger (76.8 GB) dataset.

Figure 11: Benchmark results for the retFirst operation with small (left) and larger (right) dataset. When pages are stored
as snapshots, any version can be accessed immediately. When the differences between versions are stored instead, the first
version has to be patched out of all deltas, which results in runtimes up to 50 times slower.

10 100 1000

Postgres-Snapshot
Postgres-Diff

Git
LiteTree

HyPer-Snapshot
HyPer-Diff

TardisDB-Snapshot
54.57
58.93

45.49
123.23

15.06
21.31

4,231.66

retLatest operations per second (log scale)

(a) retLatest results with small (3.7 GB) dataset.

10 100

Postgres-Snapshot
Postgres-Diff

Git
HyPer-Snapshot

HyPer-Diff

TardisDB-Snapshot

3.47
3.58

2.51
2.16

3.17

100.83

retLatest operations per second (log scale)

(b) retLatest results with larger (76.8 GB) dataset.

Figure 12: Benchmark results for retLatest operation with small (left) and larger (right) dataset. All storage approaches show
about the same page retrieval time, as the latest version is always stored as a whole. The difference-based storage layout shows
slightly better performance as no joins are performed.

0% 50% 100%

Postgres-Snapshot

Postgres-Diff

Git

LiteTree
HyPer-Snapshot

HyPer-Diff

TardisDB-Snapshot

54.68%

43.78%

3.51%

108%

94.59%

15.54%

98.56%
49.5%

3.5%

1.7%

93.5%

11.52%

94.44%

space ratio

3.7 GB
76.8 GB

Figure 13: Relative space consumption to the original size.

diff), as it did not delete tuples immediately. After a cleanup, the
database size for the Postgres-Diff had been shrunk to 2.8 GB for
the large and 1.62 GB for the small dataset.

Git initially needed about 38 GB—the same amount of memory as
PostgreSQL. The benchmark used libGit for insertion, so the pages
were stored uncompressed. After we manually ran the garbage
collector git gc, the storage size shrank to 1.3 GB for the large dataset
and 130 MB for the small one, so 1.7 % (3.51 % respectively) of the
size of the uncompressed XML file. Here, as in all difference-based
approaches, the bigger the dataset, the higher the compression rate.
The size was reduced due to packing, the process of compressing the
Git repository, implicitly called by the garbage collector. Packing
the Git repository results in the lowest database size in our setup.

6.3.3 Retrieve First. Retrieving the first version works faster when
the page content can be accessed as snapshots directly. This can
be seen using either a main-memory or a classical database sys-
tem as data storage for small (see Figure 11a) or large workloads
(see Figure 11b). Git was always faster than the difference-based
storage layout using its own delta compression. The performance
of PostgreSQL decreased with the number of inserted elements:
while it performed the fastest after LiteTree for the small load, the
runtime decreased when the larger dataset was handled. LiteTree
showed a good performance as every commit in a branch has an
incrementally-growing number. To fetch the first version, we just
specify it by article-branch.1. Also in this setting, the architec-
ture of TardisDB allowed the greatest number of retrieving opera-
tions per second, but this number decreases with higher workload,
as a longer version chain has to be traversed.

6.3.4 Retrieve Latest. As we see in Figure 12, our difference-based
storage layout always showed the best performance except for
the small workload (see Figure 12a), where LiteTree performed
the fastest. The reason that this outperformed the snapshot-based
storage layout was that the joins were eliminated. For the larger
workload (see Figure 12b), we see that the database systems out-
performed Git by 20 % of its runtime. As TardisDB was tuned for
fast scans on the latest tuples, it allowed the most read transactions
independent of the workload size.

7 TAKE AWAY
Based on the evaluation, this section balances the benefits and
downsides of storing snapshots or differences to propose the best
versioning strategies.

7.1 Snapshot
Storing every snapshot of an article is a sufficient way of retrieving
articles quickly. It can be implemented easily as a key-value storage
without the need for external tools but condoning a high space
consumption. To reduce the size, compression methods should be
used, for example, PostgreSQL allows better storage strategies with
EXTERNAL. Also, main-memory database systems would benefit
from storage strategies as main-memory is limited.

7.2 Diff
When the differences are stored to the latest article, retrieving the
latest one is quite fast, whereas for the first article, all deltas have
to be patched. To reduce the number of deltas, we propose storing
the whole snapshot every N th revision to allow constant retrieval
times (in O(1) per operation). The factor N controls the space
requirement, together with S as the total uncompressed size of all
articles and cavд as the average size of a delta patch (cavд = 0.05 for
Wikipedia dumps). We obtain the following formula to approximate
the storage size:

space(N , S, cavд) =
1
N

× S +
N − 1
N

∗ cavд ∗ S .

We provide this idea as an experimental implementation as part of
the TardisBenchmark. It outperforms retFirst and shows compa-
rable runtime to retLatest but runs only in main-memory.

Another optimisation concerns the application of deltas. A delta
looks like Replace from index X to Y with text T (implemented by
string::replace). As a replace usually involves the copying and
allocation of new memory, an improvement is collecting multiple
deltas in order to allocate memory only once. For example, having
two deltas, which each add a character to a string of size three, we
can allocate a buffer of size five in advance to avoid string copying.

7.3 Solution
To summarise, we postulate the following requirements for a ver-
sioning system for text-based datasets:

• Reduce space consumption by compressing full articles
• Enable delta compression to reduce redundancy
• Constant retrieval times (with focus on the latest version)
• Database system guarantees as ACID properties, multi-user
concurrency control and recovery

• SQL as a declarative programming language

The database systems’ guarantees, together with a declarative
programming language, allows queries to be formulated with no
concern for the actual implementation. This increases a program’s
maintainability from a software engineering point of view.

Therefore, we propose integrating a modifier for existing text-
like datatypes, such as TEXT VERSIONED, in the database system’s
type logic. With this modifier, these datatypes behave similarly, but
are optimised for texts that only change marginally between every

version. Such a modifier is adaptable for similar datatypes, such as
XML or JSON, which would also benefit from compression.

8 CONCLUSION
This paper showed how to adapt versioning for database systems
and evaluated the performance and space consumption of storing
the differences between pages in contrast to storing the whole snap-
shots. We first developed a database schema, which was capable
of managing versions over multiple relations, and described two
tools—MusaeusDB and MusaeusSQL—to deal with the schema. To
include versioning inside modern main-memory database systems,
we adapted multi-version concurrency control for our prototype
TardisDB that generated low-level machine code. In addition to
timestamps for tuples and branches, the table scan operator verified
in a version bitmap for each tuple whether that tuple is contained in
the current branch. TardisDB performed best at retrieving the latest
tuples, the setup for which it was designed. Our TardisBenchmark
evaluated storing deltas against storing snapshots of pages based
on the schema and data of MediaWiki. Our benchmark showed
that it was indeed possible to shrink the amount of storage used
by a factor of ten, while still offering comparable time when the
pages are demanded. To further increase the retrieval time of prior
versions, we investigated the internal storage layout and compres-
sion techniques of the engines used and proposed an algorithm that
offers linear page retrieval time for the number of versions while
consuming less space.

Overall, we showed versioning techniques that fit for database
systems and proved the capability, with Wikipedia as a real world
use case. To support further research on database versioning besides
our proposed storage techniques, we provide our TardisBenchmark,
which is capable of handling a flexible-sized workload.

Since the need does exist to version a single table’s attributes
instead of the whole relation, we propose adding a versioning mod-
ifier for datatypes to database systems. In our scenario, only the
page content has changed, while all meta information stayed the
same. With such a modifier, the data could be stored independently,
no further joins would be needed and no redundant information
would be versioned.

ACKNOWLEDGEMENTS
This research has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

REFERENCES
[1] Alexa Internet. 2017. wikipedia.org Traffic Statistics. http://www.alexa.com/

siteinfo/wikipedia.org. [Online; February 23, 2019].
[2] Rudolf Bayer and J. K. Metzger. 1975. On the Encipherment of Search Trees

and Random Access Files. In Proceedings of the International Conference on Very
Large Data Bases, September 22-24, 1975, Framingham, Massachusetts, USA. 452.
https://doi.org/10.1145/1282480.1282514

[3] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande,
Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran. 2015. DataHub:
Collaborative Data Science & Dataset Version Management at Scale. In CIDR 2015,
Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings. http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper18.pdf

[4] Anant P. Bhardwaj, Amol Deshpande, Aaron J. Elmore, David R. Karger, Sam
Madden, Aditya G. Parameswaran, Harihar Subramanyam, Eugene Wu, and

Rebecca Zhang. 2015. Collaborative Data Analytics with DataHub. PVLDB 8, 12
(2015), 1916–1919. http://www.vldb.org/pvldb/vol8/p1916-bhardwaj.pdf

[5] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya G.
Parameswaran. 2015. Principles of Dataset Versioning: Exploring the Recre-
ation/Storage Tradeoff. PVLDB 8, 12 (2015), 1346–1357. http://www.vldb.org/
pvldb/vol8/p1346-bhattacherjee.pdf

[6] Souvik Bhattacherjee and Amol Deshpande. 2018. RStore: A Distributed Multi-
Version Document Store. In 34th IEEE International Conference on Data Engineer-
ing, ICDE 2018, Paris, France, April 16-19, 2018. 389–400. https://doi.org/10.1109/
ICDE.2018.00043

[7] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang Chiew Tan. 2004.
Archiving scientific data. ACM Trans. Database Syst. 29 (2004), 2–42. https:
//doi.org/10.1145/974750.974752

[8] Amit Chavan, Silu Huang, Amol Deshpande, Aaron J. Elmore, Samuel Madden,
and Aditya G. Parameswaran. 2015. Towards a Unified Query Language for
Provenance and Versioning. In 7th USENIX Workshop on the Theory and Practice
of Provenance, TaPP 2015, Edinburgh, Scotland, UK, July 8-9, 2015. https://www.
usenix.org/conference/tapp15/workshop-program/presentation/chavan

[9] Markus Dreseler, Jan Kossmann,Martin Boissier, Stefan Klauck,Matthias Uflacker,
and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management. InAdvances in Database
Technology - 22nd International Conference on Extending Database Technology,
EDBT 2019, Lisbon, Portugal, March 26-29, 2019. 313–324. https://doi.org/10.5441/
002/edbt.2019.28

[10] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya G. Parameswaran.
2017. OrpheusDB: Bolt-on Versioning for Relational Databases. PVLDB 10, 10
(2017), 1130–1141. http://www.vldb.org/pvldb/vol10/p1130-huang.pdf

[11] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based On Virtual Memory Snapshots. In Data
Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE, 195–206.

[12] Krishna G. Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL: 2011.
SIGMOD Record 41, 3 (2012), 34–43. https://doi.org/10.1145/2380776.2380786

[13] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013.
38–49. https://doi.org/10.1109/ICDE.2013.6544812

[14] David B. Lomet, Roger S. Barga, Mohamed F. Mokbel, German Shegalov, Rui
Wang, and Yunyue Zhu. 2006. Transaction Time Support Inside a Database Engine.
In Proceedings of the 22nd International Conference on Data Engineering, ICDE
2006, 3-8 April 2006, Atlanta, GA, USA. 35. https://doi.org/10.1109/ICDE.2006.162

[15] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden, Aditya G.
Parameswaran, and Amol Deshpande. 2016. Decibel: The Relational Dataset
Branching System. PVLDB 9, 9 (2016), 624–635. http://www.vldb.org/pvldb/vol9/
p624-maddox.pdf

[16] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011), 539–550. https://doi.org/10.14778/2002938.2002940

[17] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 677–689. https:
//doi.org/10.1145/2723372.2749436

[18] Betty Salzberg and Vassilis J. Tsotras. 1999. Comparison of Access Methods
for Time-Evolving Data. ACM Comput. Surv. 31, 2 (1999), 158–221. https:
//doi.org/10.1145/319806.319816

[19] Adam Seering, Philippe Cudré-Mauroux, Samuel Madden, and Michael Stone-
braker. 2012. Efficient Versioning for Scientific Array Databases. In IEEE 28th
International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012. 1013–1024. https://doi.org/10.1109/ICDE.
2012.102

[20] Richard T. Snodgrass. 1987. The Temporal Query Language TQuel. ACM Trans.
Database Syst. 12, 2 (1987), 247–298. https://doi.org/10.1145/22952.22956

[21] Richard T. Snodgrass and Henry Kucera. 1995. Rationale for a Temporal Extension
to SQL. In The TSQL2 Temporal Query Language. 3–18.

[22] Emad Soroush and Magdalena Balazinska. 2013. Time travel in a scientific array
database. In 29th IEEE International Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013. 98–109. https://doi.org/10.1109/ICDE.2013.
6544817

[23] Jonas Tappolet and Abraham Bernstein. 2009. Applied Temporal RDF: Efficient
Temporal Querying of RDF Data with SPARQL. In The Semantic Web: Research
and Applications, 6th European Semantic Web Conference, ESWC 2009, Heraklion,
Crete, Greece, May 31-June 4, 2009, Proceedings. 308–322. https://doi.org/10.1007/
978-3-642-02121-3_25

[24] Liqi Xu, Silu Huang, SiLi Hui, Aaron J. Elmore, and Aditya G. Parameswaran.
2017. OrpheusDB: A Lightweight Approach to Relational Dataset Versioning. In
Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. 1655–1658. https:
//doi.org/10.1145/3035918.3058744

http://www.alexa.com/siteinfo/wikipedia.org
http://www.alexa.com/siteinfo/wikipedia.org
https://doi.org/10.1145/1282480.1282514
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
http://www.vldb.org/pvldb/vol8/p1916-bhardwaj.pdf
http://www.vldb.org/pvldb/vol8/p1346-bhattacherjee.pdf
http://www.vldb.org/pvldb/vol8/p1346-bhattacherjee.pdf
https://doi.org/10.1109/ICDE.2018.00043
https://doi.org/10.1109/ICDE.2018.00043
https://doi.org/10.1145/974750.974752
https://doi.org/10.1145/974750.974752
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://doi.org/10.5441/002/edbt.2019.28
https://doi.org/10.5441/002/edbt.2019.28
http://www.vldb.org/pvldb/vol10/p1130-huang.pdf
https://doi.org/10.1145/2380776.2380786
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2006.162
http://www.vldb.org/pvldb/vol9/p624-maddox.pdf
http://www.vldb.org/pvldb/vol9/p624-maddox.pdf
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/319806.319816
https://doi.org/10.1145/319806.319816
https://doi.org/10.1109/ICDE.2012.102
https://doi.org/10.1109/ICDE.2012.102
https://doi.org/10.1145/22952.22956
https://doi.org/10.1109/ICDE.2013.6544817
https://doi.org/10.1109/ICDE.2013.6544817
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1145/3035918.3058744
https://doi.org/10.1145/3035918.3058744

	Abstract
	1 Introduction
	2 Related Work
	2.1 Temporal Databases
	2.2 Version Control: Git
	2.3 Versioning in DBMS

	3 MusaeusDB: Versioning using SQL
	3.1 MusaeusDB as a Separate Tool
	3.2 MusaeusSQL: Using One Interface

	4 TardisDB: Versioning inside a Main-Memory Database System
	4.1 Bitmaps for Versioning
	4.2 Reusing MVCC for Versioning

	5 TardisBenchmark
	5.1 MediaWiki Schema and Wikipedia Data
	5.2 Benchmark Operations
	5.3 Storage Approaches

	6 Evaluation
	6.1 MusaeusDB
	6.2 Branching Benchmark
	6.3 TardisBenchmark

	7 Take Away
	7.1 Snapshot
	7.2 Diff
	7.3 Solution

	8 Conclusion
	References

