
d d d d
ddd ddd ddd ddd

d d dd Technische Universität München
Institut für Informatik

Lehrstuhl für Datenbanksysteme

Pathfinder:

XQuery Compilation Techniques

for Relational Database Targets

Jens Thilo Teubner

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Torsten Grust

2. Prof. Dr. Martin L. Kersten,
Universiteit van Amsterdam/Niederlande

Die Dissertation wurde am 10. Mai 2006 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 28. September 2006 angenom-
men.

ii

This thesis is also available in print (ISBN 3-89963-440-3).

iii

pathfinder ("pA:TfaInd@) n. a person who makes or finds a way,
esp. through unexplored areas or fields of knowledge.

Collins English Dictionary [Makins95]

iv

Abstract

Even after at least a decade of work on XML and semi-structured information,
such data is still predominantly processed in main-memory, which obviously leads
to significant constraints for growing XML document sizes.

On the other hand, mature database technologies are readily available to handle
vast amounts of data easily. The most efficient ones, relational database manage-
ment systems (RDBMSs), however, are largely locked-in to the processing of very
regular, table-shaped data only. In this thesis, we will unleash the power of re-
lational database technology to the domain of semi-structured data, the world of
XML. We will present a purely relational XQuery processor that handles huge
amounts of XML data in an efficient and scalable manner.

Our setup is based on a relational tree encoding. The XPath accelerator, also
known as pre/post numbering, has since become a widely accepted means to effi-
ciently store XML data in a relational system. Yet, it has turned out that there
is additional performance to gain. A close look into the encoding itself and the
deliberate choice of relational indexes will give intriguing insights into the efficient
access to node-based tree encodings.

The backbone of XML query processing, the access to XML document regions
in terms of XPath tree navigation, becomes particularly efficient if the database
system is equipped with enhanced, tree-aware algorithms. We will devise staircase
join, a novel join operator that encapsulates knowledge on the underlying tree en-
coding to provide efficient support for XPath navigation primitives. The required
changes to the DBMS kernel remain remarkably small: staircase join integrates
well with existing features of relational systems and comes at the cost of adding a
single join operator only. The impact on performance, however, is significant: we
observed speedups of several orders of magnitude on large-scale XML instances.

Although existing XQuery processors make use of the resulting XPath perfor-
mance gain by evaluating XPath navigation steps in the DBMS back-end, they
tend to perform other core XQuery operations outside the relational database ker-
nel. Most notably this affects the FLWOR iteration primitive, XQuery’s node con-
struction facilities, and the dynamic type semantics of XQuery. The loop-lifting
technique we present in this work deals with these aspects in a purely relational
fashion. The outcome is a loop-lifting compiler that translates arbitrary XQuery

v

vi ABSTRACT

expressions into a single relational query plan. Generated plans take particular
advantage of the operations that relational databases know how to perform best:
relational joins as well as the computation of aggregates.

The MonetDB/XQuery system to which this thesis has contributed provides
the experimental proof of the effectiveness of our approach. MonetDB/XQuery
is one of the fastest and most scalable XQuery engines available today and han-
dles queries in the multi-gigabyte range in interactive time. The key to this per-
formance are the techniques described in this thesis. They form the basis for
MonetDB/XQuery’s core component: the XQuery compiler Pathfinder.

Contents

Abstract v

1 Introduction 1
1.1 Database Technology for XML . 2

1.1.1 Native XML Databases . 2
1.1.2 Relational Back-Ends . 3

1.2 Contributions of this Thesis . 6

2 Relational XML Storage 11
2.1 XPath Accelerator Encoding . 11

2.1.1 Pre- and Postorder Ranks 12
2.1.2 XPath Axis Conditions . 13
2.1.3 Illustrating XPath Accelerator: The pre/post Plane 14
2.1.4 SQL-Based XPath Evaluation 14
2.1.5 Index Support for XPath Accelerator 16
2.1.6 Techniques to Reduce the Search Space 17
2.1.7 Range Encoding: An Alternative to pre/post 22
2.1.8 A Word on Updates . 23

2.2 XPath on Commodity RDBMSs . 23
2.2.1 DB2 Runs XPath . 25
2.2.2 XPath Accelerator on PostgreSQL 31

2.3 Related Work . 32
2.3.1 Fixed-Length Encodings . 33
2.3.2 Variable-Length Encodings 35
2.3.3 Relational Database Support 36

3 XPath Evaluation with Staircase Join 39
3.1 Re-Inspecting XPath Accelerator 39

3.1.1 Node Distribution in the pre/post Plane 40
3.2 Staircase Join . 41

3.2.1 Pruning . 41

vii

viii CONTENTS

3.2.2 Empty Regions in the pre/post Plane 44
3.2.3 Partitioning . 46
3.2.4 A Further Increase of Tree Awareness: Skipping 49

3.3 Implementation Considerations . 51
3.3.1 A Disk-Based � Implementation 51
3.3.2 Main Memory-Related Adaptions 56

3.4 Tree Awareness Beyond Staircase Join 62
3.4.1 Loop-Lifting Staircase Join 62
3.4.2 Support for Non-Recursive Axes 65
3.4.3 Staircase Join Without Staircase Join 67
3.4.4 Tree Awareness in Other Domains 68

3.5 Related Work . 69
3.5.1 Path Evaluation on RDBMSs 69
3.5.2 Tree Properties in XPath . 70

4 Loop-Lifting: From XPath to XQuery 73
4.1 A Relational Algebra for XQuery 74

4.1.1 Relational Sequence Encoding 74
4.1.2 An Algebra for XQuery . 77
4.1.3 A Ruleset to Compile XQuery 79
4.1.4 Basic XQuery Expressions 80
4.1.5 Sequence Construction . 81

4.2 Relational FLWORs . 82
4.2.1 for-Bound Variables . 83
4.2.2 Maintaining loop . 85
4.2.3 Free Variables in the return Clause 85
4.2.4 Mapping Back . 87
4.2.5 Complete Compilation Rule for FLWOR Expressions 88
4.2.6 Optional: The order by Clause 89

4.3 Other Expression Types . 90
4.3.1 Arithmetics/Comparisons 90
4.3.2 Conditionals: if-then-else 91

4.4 Interfacing with XML/XPath . 93
4.4.1 XPath Location Steps . 93
4.4.2 Element Construction . 98
4.4.3 A Note on Side-Effects . 100

4.5 Support for Dynamic Type Tests 102
4.5.1 XQuery Subtype Semantics 102
4.5.2 Sequence Type Matching on Relational Back-Ends 103

4.6 XQuery on DB2 . 107
4.6.1 A Loop-Lifted XQuery-to-SQL Translation 107

CONTENTS ix

4.6.2 XPath Bundling and Use of OLAP Functionality 108
4.6.3 Live Node Sets: Compile-Time Information for Accelerated

Query Evaluation . 109
4.6.4 XMark on DB2 . 111

4.7 Wrap-Up . 112
4.7.1 Related Research . 113
4.7.2 Outlook & Perspective . 115

5 The Pathfinder XQuery Compiler 119
5.1 Logical Optimizations in Pathfinder 120

5.1.1 DAGs for Loop-Lifted Query Plans 120
5.1.2 A Peephole-Style Plan Analysis 120
5.1.3 Robust XQuery Join Detection 124

5.2 The Importance of Order . 127
5.2.1 Order in Loop-Lifted XQuery 127
5.2.2 Order Indifference in XQuery 128
5.2.3 A Performance Advantage can be Realized 131
5.2.4 Physical Optimization and Order Awareness 131

5.3 Cardinality Forecasts for Loop-Lifted Plans 133
5.3.1 Statistical Guide . 134
5.3.2 Cardinality Forecasts . 135

5.4 MonetDB/XQuery . 137
5.4.1 System Architecture . 138
5.4.2 Overall Query Performance 139
5.4.3 Order Awareness in Pathfinder 140
5.4.4 Scalability with Respect to Data Volumes 141
5.4.5 XQuery on High Data Volumes 142

5.5 Research in the Neighborhood . 142
5.5.1 Algebraic Optimization for XQuery 143
5.5.2 Order Awareness . 144
5.5.3 XQuery Cardinality Forecasts 145
5.5.4 Further Optimization Hooks 145

6 Wrap-Up 147
6.1 Summary . 147

6.1.1 Relational Tree Encodings 148
6.1.2 XPath Evaluation with Staircase Join 149
6.1.3 Loop-Lifting: A Relational Approach to Iteration 150
6.1.4 Query Optimization for Loop-Lifted XQuery Plans 151
6.1.5 MonetDB/XQuery: The Proof of Our Claim 151

6.2 Ongoing and Future Work . 153

x CONTENTS

6.2.1 Alternative Back-Ends for Pathfinder 153
6.2.2 Further Optimization Hooks 153
6.2.3 Exploring New Fields of Knowledge 154

Acknowledgments 155

1
Introduction

Since 1998, when the W3 Consortium published its first XML Recommendation,
the Extensible Markup Language has become a standard means for data repre-
sentation, storage, and interchange. The XML format has proven to be versatile
enough to describe virtually any kind of information, ranging from a couple of
bytes in Web Service messages to gigabyte-sized data collections (e.g., [Ley,PIR]).

The massive amount of data available in the XML format raises an increasing
demand to store, process, and query these data in an effective manner. The
W3 Consortium has long since realized this demand and since 1999, the XML
Query Working Group has been developing a standard query language for XML:
XQuery [Boag05]. Its proposals have matured over the past years and the first
official W3C XQuery Recommendation is expected to be released soon.

XQuery is a functional and strongly typed language built around its (older)
sublanguage XPath. Other core functionalities include the FLWOR (pronounced
“flower”) looping primitive, conditionals, and a means to construct transient XML
nodes during query processing, turning XQuery into a Turing-complete language
[Kepser04].

Current XML processors mainly implement XPath, XSLT, and XQuery pro-
cessing in main memory. Increasing amounts of XML data, however, render this
approach infeasible. Data manipulation (updates), transaction management, as
well as security issues raise additional questions. All these concerns have quite
early suggested the use of database technology to process XML data.

1

2 CHAPTER 1. INTRODUCTION

1.1 Database Technology for XML

Database systems, e.g. for relational data, employ techniques that provide scal-
ability into the terabyte data range and beyond. Applied to the XML domain,
these techniques promise a similar scalability for XML query processing.

There are a number of key aspects that lead to the scalability of modern
database management systems:

(i) Suitable storage model.
Data volumes that exceed the limits of main memory require appropriate
storage structures that easily extend to secondary storage devices (e.g., hard
drives). An example is the avoidance of physical addresses for data references
in favor of logical identifiers.

(ii) Suitable algorithms.
Database algorithms are designed for operation on secondary storage. The
adherence to specific data access patterns allows for intelligent caching and
storage management.

(iii) Declarative query formulation.
The use of a declarative (intermediate) query language decouples a user’s re-
quest from specific physical implementations. This allows for the interchange-
ability of physical operators, the construction of access and index structures,
and the rewriting of query plans without affecting the user interface or the
query outcome. The latter is facilitated by an algebraic intermediate query
representation with mathematically sound rewrite rules.

Experiences on relational database systems show that it is particularly ben-
eficial to express queries in a bulk-oriented (rather than tuple-oriented) fash-
ion. This holistic view allows operators to be implemented for highly cache-
friendly behavior.

(iv) Query optimization.
The choice and execution order of database operators can have a significant
impact on query performance. Database systems, hence, employ sophisti-
cated query optimizers that rewrite queries according to rules, heuristics,
and physical cost models. An appropriate intermediate query representation
facilitates optimization, too.

1.1.1 Native XML Databases

The approaches to bring database technology into the XML domain turn out to be
quite diverse. An obvious approach is to build up a database system from scratch

1.1. DATABASE TECHNOLOGY FOR XML 3

that employs XML trees as its intrinsic data type. Such XML database systems
are usually referred to as native XML databases.

A representative of a native XML database is the Natix system, developed by
Fiebig et al. [Fiebig02]. Natix implements a novel storage engine to account for
the XML tree structure. In a nutshell, documents are semantically split based on
their tree structure. Tree fragments are then stored on disk pages of fixed size.
The split algorithm may be tuned using a split matrix to accommodate for specific
application needs. Full text and the structural XASR1 indexes may be created to
further accelerate tree access.

Natix offers a bulk-oriented intermediate query representation in terms of the
Natix Physical Algebra (NPA), which operates on sequences of tuples. XML tree
operations as well as XQuery’s FLWOR iteration primitive are handled as nesting
and unnesting operations in NPA.

The Timber system by Jagadish et al. [Jagadish02] takes a slightly different
approach to an algebraic query description. TAX, a tree algebra for XML [Ja-
gadish01], defines manipulations on multi-sets of trees. To accommodate for the
heterogeneity in XML trees, TAX introduces the notion of pattern trees. As an
annotation to each tree set, a pattern tree describes the commonality of all the
trees in the set. The common features may then be used to efficiently represent
all items as homogeneous tuples.

TAX pushes declarative query description even a step further. The access
to XML tree nodes is described in terms of pattern matching of a pattern tree
against an XML tree, which might be appropriately supported by, e.g., structural
join algorithms [Bruno02]. A concise mapping from arbitrary XPath expressions
to respective pattern trees has never been formally published, though.

Only recently, IBM has presented the Viper system [Nicola05] that will form
the XML back-end for upcoming releases of the DB2 Universal Databaser system.
Similar to Natix, Viper splits up the XML document tree and distributes tree
fragments over database pages of fixed size.

1.1.2 Relational Back-Ends

Building up a completely new database engine for XML from scratch almost seems
like a re-invention of the wheel. The past decades of research have turned relational
databases into highly efficient data processors that readily provide effective opti-
mizers, fault tolerant storage techniques, and concurrency control. The relational
data model has proven its versatility to process virtually any kind of information.

With this insight, an avalanche of papers has been published that describe
relational storage techniques for XML data. In their survey paper, Krishnamurthy

1Extended Access Support Relation

4 CHAPTER 1. INTRODUCTION

<persons>
<person>

<name>Marc Johnson</name>
<address>
<street>13 Main Street</street>
<city>Miami, FL 12345</city>

</address>
</person>
<person>

<name>Martha Doe</name>
<address>
<street>42 Kings Road</street>
<city>New York, NY 54321</city>

</address>
</person>

</persons>

➦
id name street city
1 Marc Johnson 13 Main Street Miami, FL 12345
2 Martha Doe 42 Kings Road New York, NY 54321

Figure 1.1: Schema-based mapping of XML documents to relational tables.

et al. [Krishnamurthy03] classify these proposals into schema-based and schema-
oblivious mapping schemes.

Schema-Based Storage

The idea of schema-based XML storage is illustrated in Figure 1.1: an input XML
document is mapped to a relational table whose schema reflects the semantic
content of the document. The schema is typically derived from a DTD or XML
Schema specifications (e.g., [Shanmugasundaram99]), or from the specific data
instance [Deutsch99]. These schema-based approaches are closely related to XML
publishing, where relational data is serialized into an XML format and then queried
using, e.g., XQuery. The bidirectional mapping between XML and the relational
model becomes particularly important in the context of information integration
and eases the creation of value-based indexes.

However, intrinsic shortcomings of schema-based XML storage approaches rule
out their application for a versatile and standards-compliant XQuery engine. Doc-
ument order, an inherent concept in the XML data model, is only recoverable
if multiple attributes are added to the resulting table schema. XPath naviga-
tion along recursive axes or with wildcard name tests lead to expensive multi-way
unions and recursion, if possible at all. The implementation of XQuery expressions
beyond XPath (FLWOR clauses, sequence order, or transient node construction)
raises further questions. Finally, this approach depends on a strong regularity and
schema conformance of the XML documents to store.

1.1. DATABASE TECHNOLOGY FOR XML 5

Schema-Oblivious Storage

An alternative approach is the schema-oblivious XML storage on relational back-
ends. This approach stores the semantic properties of each XML tree node in a
relational table of fixed schema, independently of any XML schema information.
One or more attributes in the schema are reserved for the structural information
of the XML tree.

A large number of proposals have been published to store XML documents in a
schema-oblivious fashion. The ones that provide acceptable performance typically
use numbering schemes to encode the XML tree structure and can be classified
into one of two groups:

(i) Dewey-based schemes assign to each node a vector that represents its path
from the document root (e.g., ORDPATH [O’Neil04]), whereas

(ii) pre/post-based numberings use each node’s ranks within a pre- and post-
order tree walk to encode the structural information (e.g., XPath accelera-
tor [Grust02]).

We will elaborate on both approaches in the course of this thesis.
It turns out that the simplicity of the relational data model and the effectiveness

of modern database technology easily compensate for the seemingly large mapping
overhead and turn relational databases into highly efficient XML processors.

Relational XQuery

Schema-oblivious mapping techniques thus provide promising storage solutions as
we demanded for database-backed XQuery evaluation in our list of key aspects
on page 2. Existing work, however, cannot provide convincing solutions for the
remaining three items in our list:

(ii) Suitable algorithms.
Conventional relational database kernels cannot fully exploit information on
the XML tree structure encoded in relational tables and behave suboptimal
if we demand close adherence to the XPath semantics.

(iii) Declarative query formulation.
Though it is not uncommon to keep XML data in a relational back-end,
existing XQuery processors tend to perform core XQuery functionalities using
imperative programming languages outside the database kernel. If we express
incoming XQuery expressions in a relational algebra dialect as a whole, the
entire query may be shipped to the back-end in one go and take full advantage
of the RDBMS’s bulk processing capabilities.

6 CHAPTER 1. INTRODUCTION

(iv) Query optimization.
The use of a relational back-end makes relational query optimization tech-
niques available for XQuery processing. Nevertheless, we can expect further
improvements if we consider specific properties of plans that originate from
XQuery input.

1.2 Contributions of this Thesis

This thesis focuses on relational XQuery evaluation. We will derive a number of
techniques that bridge the apparent gap between the relational model (based on
sets of tuples) and the XQuery language with sequences of items as its underlying
data model.

RDBMS

Tree Encoding (XPath Accel.)

XPath Axes (Staircase Join)

Compiler (loop-lifting)

XQuery

Figure 1.2: XQuery processing stack.

Together, these techniques assemble
into the purely relational XQuery process-
ing stack, shown on the left.

The thesis starts off with a refresher on
the XPath accelerator numbering scheme
[Grust02] in Chapter 2. The discussion
will identify a number of interesting prop-
erties of this encoding that may aid the
efficient query evaluation on existing rela-
tional back-ends. A thorough experimental
section assesses how many of these proper-
ties off-the-shelf RDBMS implementations
(IBM DB2 and PostgreSQL for that mat-
ter) can already grasp for efficient XPath

processing. Parts of these results have already been published in a follow-up pa-
per to the original XPath accelerator publication:

[Grust04e] Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating
XPath Evaluation in any RDBMS. ACM Transactions on Database Systems
(TODS), 29(1), pages 91–131, March 2004.

In terms of their advanced index structures (namely B-tree or R-tree indexes),
existing systems can benefit from the proposed tree encoding to a remarkable
extent. However, the statistical information collected by conventional RDBMSs
cannot capture specifics in the generated data distribution that stem from the fact
that the relational tables actually encode a tree; operators are unable to exploit
these specifics for optimized query processing.

This takes us to the development of a novel relational join operator, the stair-
case join, in Chapter 3. Staircase join encapsulates full tree awareness for XML

1.2. CONTRIBUTIONS OF THIS THESIS 7

trees encoded in relational tables. The algorithm can be plugged into a relational
database kernel just like any other join operator, requiring only local modifica-
tions to the kernel. Query rewrite techniques, such as selection pushdown, are still
available with staircase join. The original algorithm has been published in:

[Grust03c] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. In Proc. of the 29th
Int’l Conference on Very Large Databases (VLDB), pages 524–535. Berlin,
Germany, September 2003.

[Grust03b] Torsten Grust, Maurice van Keulen, and Jens Teubner. Bridging the
Gap Between Relational and Native XML Storage with Staircase Join. In
Proc. of the 15th GI Workshop on Foundations of Database Systems, pages
85–89. Tangermünde, Germany, June 2003.

To support the claim that staircase join can speed up XPath processing in
any RDBMS, we incorporated the algorithm into the open source database Post-
greSQL, as published in:

[Mayer04b] Sabine Mayer, Torsten Grust, Maurice van Keulen, and Jens Teubner.
An Injection with Tree Awareness: Adding Staircase Join to PostgreSQL. In
Proc. of the 30th Int’l Conference on Very Large Databases (VLDB), pages
1305–1308. Toronto, Canada, September 2004.

Only lately, we have extended staircase join to also handle the XPath evaluation
of multiple context sequences in a single run. This loop-lifted staircase join forms
the basis for a full-scale XQuery implementation:

[Boncz05b] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Loop-Lifted Staircase Join: From XPath
to XQuery. Technical Report INS-E0510, CWI, Amsterdam, March 2005.

While the application of staircase join leads to a highly efficient XPath step
evaluation, the remaining features of the XQuery language are often left to a
standard programming language outside the DBMS kernel. Most notably in this
respect are XQuery’s FLWOR iteration primitive and transient node construction.

In Chapter 4, we will push relational XML processing one step further and
extend our processing stack to full XQuery compliance. Our approach remains
purely relational: our loop-lifting compilation procedure turns arbitrary XQuery
expressions into purely relational plans, efficiently executable on, e.g., SQL hosts.
An overview of the compilation procedure has been published as:

8 CHAPTER 1. INTRODUCTION

[Grust04c] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts.
In Proc. of the 30th Int’l Conference on Very Large Databases (VLDB), pages
252–263. Toronto, Canada, September 2004.

[Grust04d] Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue—
XQuery: Fluent. In Proc. of the 1st Twente Data Management Workshop
(TDM), pages 7–14. Enschede, The Netherlands, June 2004.

To assess the viability of our approach in practice, the open-source implementa-
tion Pathfinder accompanies this thesis. Pathfinder implements the full processing
stack and compiles XQuery expressions into code for the relational back-end Mon-
etDB [Boncz02]. The compiler is part of the MonetDB/XQuery system, one of the
fastest and most scalable XQuery engines available today. The software is available
via http://www.pathfinder-xquery.org/; two publications give an overview of
the system setup:

[Boncz05c] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Pathfinder: XQuery—The Relational Way.
In Proc. of the 31st Int’l Conference on Very Large Databases (VLDB), pages
1322–1325. Trondheim, Norway, September 2005.

[Boncz05a] Peter Boncz, Torsten Grust, Stefan Manegold, Jan Rittinger, and Jens
Teubner. Pathfinder: Relational XQuery over Multi-Gigabyte XML Inputs
in Interactive Time. Technical Report INS-E0503, CWI, Amsterdam, March
2005.

By exploiting memory mapping facilities in modern operating systems, we ex-
tended the MonetDB/XQuery implementation into an XQuery system with full
transaction and update support. We demonstrated its practicability as well as the
employed peephole optimization strategy in

[Boncz06a] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Sjoerd Mullender, Jan Rittinger, and Jens Teubner. MonetDB/XQuery—
Consistent & Efficient Updates on the Pre/Post Plane. In Proc. of the 10th
Int’l Conference on Extending Database Technology (EDBT). Munich, Ger-
many, March 2006.

[Boncz06b] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Pro-
cessor Powered by a Relational Engine. In Proc. of the 2006 SIGMOD Int’l
Conference on Management of Data. Chicago, IL, USA, June 2006.

http://www.pathfinder-xquery.org/

1.2. CONTRIBUTIONS OF THIS THESIS 9

The peephole optimization strategy as well as other aspects of Pathfinder’s
query optimizer will be our topic for Chapter 5, which we will conclude with an
experimental assessment of the MonetDB/XQuery system. Chapter 6 finally wraps
up.

10 CHAPTER 1. INTRODUCTION

2
Relational XML Storage

An appropriate storage model for its underlying data lies at the very heart of any
database implementation. As this thesis focuses on XML processing on relational
back-ends, whose table-shaped data model seems contrary to the tree-based XML
model, our challenge is to find a proper translation that allows for the lossless stor-
age of XML content in relational tables, while enabling the RDBMS to efficiently
evaluate XPath location steps.

Our findings are based on a schema-oblivious tree encoding. The XPath accel-
erator described by Grust [Grust02] maps each node in the XML tree structure to
a binary tuple 〈pre, post〉. After a short review of the encoding in Section 2.1, we
will elaborate on some of its specifics that will aid the efficient processing of XPath.
A thorough experimental assessment in Section 2.2 highlights strengths and weak-
nesses of the evaluation strategies employed by existing RDBMS implementations
with respect to encoded tree data. We will close this chapter in Section 2.3 with
a brief summary of work related to the approach pursued here.

2.1 XPath Accelerator Encoding

While the W3 Consortium specifies XML in terms of the lexical structure of XML
files, the file format actually describes a serialized representation of ordered, un-
ranked trees. Hence, a proper relational encoding of this underlying data model
forms the starting point for any relational XQuery processor. Primarily, such
an encoding must allow for the efficient execution of XQuery’s document access

11

12 CHAPTER 2. RELATIONAL XML STORAGE

a

b

c

d e

f

g h

i j

0

1

2

3 4

5

6 7

8 9

9

3

2

0 1

8

4 7

5 6

prepost node
0 9 a
1 3 b
2 2 c
3 0 d
4 1 e
5 8 f
6 4 g
7 7 h
8 5 i
9 6 j

Figure 2.1: Tree walk to determine preorder ranks pre(v) (left numbers) and post-
order ranks post(v) (right numbers) for an example document of ten nodes.

facilities, namely its sublanguage XPath.
Our work is based on the XPath accelerator encoding proposed by Grust

[Grust02]. The encoding keeps information on the structural component of the
XML document in a pair of integer values and supports the efficient evaluation of
all 12 XPath axes—and thus XQuery’s full axis feature—, starting from arbitrary
context nodes.

2.1.1 Pre- and Postorder Ranks

XPath accelerator annotates all nodes in the XML structure according to their
occurrence in a pre- and postorder traversal of the tree. For any tree node v, we
record its pre-/postorder rank in the pair 〈pre(v), post(v)〉. The encoding is effi-
cient to generate: both values can easily be derived in a single sequential document
read, e.g., using a SAX [SAX] parser. Figure 2.1 illustrates this technique for a
small example tree.

Once values pre(v) and post(v) have been determined, any XPath axis can
directly be mapped to a range condition on these values, where any tree node may
serve as the step’s context node. For example, for the descendant axis we have
that

v′ ∈ v/descendant
⇔

pre(v) < pre(v′) ∧ post(v′) < post(v) .
(2.1)

An intuitive explanation for this condition can be derived from the serialized XML
representation. Pre- and postorder ranks pre(v)/post(v) describe the order in
which element start and end tags are encountered in a sequential document read,
respectively. So Condition 2.1 may be read as: v′ is a descendant of v if its start
tag <v′> is read after <v> and </v′> occurs before the closing tag </v> in the XML
stream. (“Element v′ is contained in v.”)

2.1. XPATH ACCELERATOR ENCODING 13

Axis α Axis Predicate axis(α, v, v′)

ancestor pre(v′) < pre(v) ∧ post(v′) > post(v) ∧ kind(v′) 6= attr
ancestor-or-self pre(v′) ≤ pre(v) ∧ post(v′) ≥ post(v) ∧ kind(v′) 6= attr
child par(v′) = pre(v) ∧ kind(v′) 6= attr
descendant pre(v′) > pre(v) ∧ post(v′) < post(v) ∧ kind(v′) 6= attr
descendant-or-self pre(v′) ≥ pre(v) ∧ post(v′) ≤ post(v) ∧ kind(v′) 6= attr
following pre(v′) > pre(v) ∧ post(v′) > post(v) ∧ kind(v′) 6= attr
following-sibling pre(v′) > pre(v) ∧ par(v′) = par(v) ∧ kind(v′) 6= attr
preceding pre(v′) < pre(v) ∧ post(v′) < post(v) ∧ kind(v′) 6= attr
preceding-sibling pre(v′) < pre(v) ∧ par(v′) = par(v) ∧ kind(v′) 6= attr
parent pre(v′) = par(v) ∧ kind(v′) 6= attr
self pre(v′) = pre(v) ∧ kind(v′) 6= attr

attribute par(v′) = pre(v) ∧ kind(v′) = attr

Table 2.1: XPath axes α and their associated axis predicate axis(α, v, v′) (context
node v).

Observe that the preorder rank pre(v) trivially implements XQuery’s node iden-
tity operator is. As it coincides with the XML document order, we will also use
it to express XQuery operators that test for document order (<</>>).

2.1.2 XPath Axis Conditions

If stored in an RDBMS table together with each node’s semantic content (e.g., its
tag name) such as suggested in Figure 2.1, values pre(v) and post(v) constitute
a slim relational encoding of XML document trees. Grust [Grust02, Grust04e]
maintains semantic node content in the two columns kind(v) and prop(v), the
former encoding each node’s kind as one of the values elem, attr, text, comm, doc,
or pi. The latter contains the tag name for element or attribute nodes and textual
node content for the remaining node kinds.

For efficient and easy characterization of the non-recursive XPath axes, Grust
adds a fifth column par(v) to hold the preorder rank of each node’s parent. In this
five-column schema 〈pre, post , par , kind , prop〉, the predicate axis(α, v, v′) charac-
terizes the result set v′ of XPath axis α, as seen from context node v. axis(α, v, v′)
is lined up for the 12 XPath axes in Table 2.1. The conjunctive predicate test(ν, v′)
accounts for a node test ν in a step α::ν (Table 2.2). Both predicates are efficiently
implementable, e.g., on SQL hosts.

14 CHAPTER 2. RELATIONAL XML STORAGE

Node test ν Predicate test(ν, v′)

node() true
text() kind(v′) = text
comment() kind(v′) = comm
* kind(v′) ∈ {elem, attr}
n (name test) kind(v′) ∈ {elem, attr} ∧ prop(v′) = n

Table 2.2: Predicate test(ν, v′) to evaluate node test ν in XPath location step α::ν
(selection).

2.1.3 Illustrating XPath Accelerator: The pre/post Plane

In the following, we will use a more illustrative representation of the ranks pre(v)
and post(v). In Figure 2.2(a), we have used both values as coordinates to map
the nodes of our example document into the two-dimensional pre/post plane. The
dotted lines indicate that the numbering scheme actually encodes the full tree
structure. The adjacent Figure 2.2(b) replicates that tree structure for comparison.

In our new representation, the pre/post plane, axis predicates axis(α, v, v′) cor-
respond to region conditions. The shaded regions in Figure 2.2 illustrate the axis
conditions axis(α, v, v′) for the four XPath axes ancestor, descendant, following,
and preceding, as seen from context node f . These four axes partition the entire
pre/post plane into four disjoint regions: nodes in the quadrants top-left, top-right,
bottom-left, and bottom-right (as seen from f) constitute f ’s ancestor, following,
preceding, and descendant nodes, respectively.

This partitioning property holds for any context node in the document as a
direct consequence of the axes’ definition in XPath. For any context node v, the
set

v/ancestor ·∪ v/descendant ·∪ v/following ·∪ v/preceding ·∪ {v}

contains each document node exactly once. From now on, we will thus summarize
these axes under the term major axes.

2.1.4 SQL-Based XPath Evaluation

Based on the two predicates axis(α, v, v′) and test(ν, v′), XPath location paths may
straightforwardly be translated into query specifications for a relational database
back-end. The query template sql(e/α::ν) defines such a translation to SQL in a

2.1. XPATH ACCELERATOR ENCODING 15

•

•
•

•
•

◦

•

•

•
•

a

b

c

d

e

f

g

h

i

j

ancestor

preceding

following

descendant

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

post

pre

(a) pre/post plane.

a

b

c

d e

f

g h

i j

ancestor

preceding descendant

(b) Regions for major XPath axes.

Figure 2.2: The pre/post plane (left) illustrates XPath axis conditions for the four
major XPath axes ancestor, descendant, following, and preceding as seen
from node f . Corresponding tree regions are shown on the right.

fully compositional manner:

sql(e/α::ν) ≡

SELECT DISTINCT v′.*
FROM sql(e) AS v, doc AS v′

WHERE axis(α, v, v′)
AND test(ν, v′)

ORDER BY v′.pre .

(2.2)

sql(e/α::ν) selects the tuples, i.e., nodes, in doc that are reachable from con-
text set e via location step α::ν. Steps may start at any context set e, represented
as the subset sql(e) of the document relation doc. Specifically, sql(e) may be the
result of a previous location step, or—for absolute path expressions (starting with
/)—the document root, i.e., the tuple with pre(v) = 0. Clauses DISTINCT and
ORDER BY ensure XPath’s semantics of a duplicate-free result, sorted in document
order.

This XPath-to-SQL compilation scheme leads to queries of nesting depth k for
paths of length k that can be straightforwardly unnested. The XPath expression
/descendant::city/following-sibling::zipcode, for instance, can be mapped
to the SQL expression listed in Figure 2.3(b). Effectively, this translation turns
XPath expressions of k location steps into a k-fold self-join of the document relation

16 CHAPTER 2. RELATIONAL XML STORAGE

UNIQpre

SORTpre

1
pre/par

1
pre/post

σ
pre=0

σ
kind/prop

σ
kind/prop

1O

2O

doc

docdoc

(a) Relational plan.

SELECT DISTINCT z.*
FROM doc AS d, doc AS c, doc AS z

WHERE d.pre = 0
AND c.pre > d.pre AND c.post < d.post 1O
AND c.kind = elem AND c.prop = ’city’

AND z.pre > d.pre AND z.par = d.par 2O
AND z.kind = elem AND z.prop = ’zipcode’

ORDER BY z.pre

(b) SQL equivalent obtained using sql(e/α::ν).

Figure 2.3: Query template sql(e/α::ν) translates k-step XPath expressions into a
k-fold self-join of relation doc, with join predicates corresponding to the respective
step predicates (query /descendant::city/following-sibling::zipcode).

doc, where axis conditions serve as join predicates over pre and post ranges. A
possible evaluation strategy could be the query plan shown in Figure 2.3(a).

2.1.5 Index Support for XPath Accelerator

The self-joins employed in the relational XPath evaluation plans of the previ-
ous section describe axis conditions in terms of region conditions on the two-
dimensional pre/post plane. Multi-dimensional indexing techniques may, hence,
provide efficient support to evaluate location steps over encoded tree data.

Among the well-known index structures for multi-dimensional data (e.g., Grid
Files [Nievergelt84], Quad Trees [Finkel74]), the value distribution of pre/post-
encoded XML data suggests the use of R-trees [Guttman84]. They are known to
adapt well to non-uniform point distributions in a low-dimensional space. Fig-
ure 2.4 illustrates this distribution for an example document of 220 nodes.

The effectiveness of R-tree indexing for relational XPath evaluation has, in fact,
been confirmed by Grust’s experimental studies in [Grust02]. R-trees, however,
have hardly found their way into mainstream RDBMS products, where B-trees are
still the predominant means to index data. A workaround is the use of concatenated
B-trees. But as Grust points out, B-trees may be used to scan the pre/post plane
along only one direction at a time. Regardless of the choice of this direction (pre
or post), the system is doomed to encounter a large number of false hits during
the scan.

2.1. XPATH ACCELERATOR ENCODING 17

·

··········

·

·

·

····
·
··········
·
··········
···

·

····
·
··········
·
·
··········
··

·

····

·

··········

·

··········
·········
·········
··

·

··········

·

··········
·········
·········
··
·
··········
·
··········
··

·

··········
·
··········
·········
····

vpost(v)

pre(v)− height(t)

pre(v) post(v) + height(t)

post

pre

Figure 2.4: Node distribution in the pre/post plane for an example document of
220 nodes. Original () and shrunken () scan ranges for a descendant query
rooted at v.

2.1.6 Techniques to Reduce the Search Space

Regardless of the choice of an indexing technique, the determining cost factor for
query evaluation in the pre/post plane is the size of the query window implied
by the axis join predicate axis(α, v, v′). In Figure 2.4, this query window covers
almost 1/4 of the plane, though only few nodes qualify as descendants of v—the
database scans a large amount of unoccupied space.

A node distribution as in Figure 2.4 is typical for XML documents of realistic
size: for larger documents, tree nodes accumulate along a diagonal line; only few
nodes are located in the upper-left region, while the bottom-right region is entirely
empty. It is promising to exploit this observation and provide the database system
with tighter bounds for XPath query regions and, hence, reduce the involved search
space for each step.

A fundamental correlation to derive such bounds has already been observed by
Grust [Grust02]. For any tree node v, its pre- and postorder ranks pre(v)/post(v)
relate according to

pre(v)− post(v) = level(v)︸ ︷︷ ︸
≤height(t)

−size(v) , (2.3)

where level(v) describes v’s distance from the tree root, size(v) is the number of
nodes in v’s descendant region, and height(t) the length of the longest root-to-
leaf path in the tree. This correlation is a direct consequence of the fact that
the involved properties represent the relational encoding of a tree. For a concise

18 CHAPTER 2. RELATIONAL XML STORAGE

derivation of the equation we refer the reader to, e.g., [Rode03].
In case we do not have a node’s level information at hand, the overall tree height

height(t) may serve as a reasonable over-estimation for level(v). In practice, we
have found height(t) . 15 even for large XML instances. Hence, the estimation
error is negligible in comparison the total document size.

Shrink-Wrapping the descendant Axis

Correlation 2.3 forms the basis for the so-called shrink-wrapping technique de-
scribed by Grust [Grust02], an optimization that may significantly reduce the
search space for the descendant axis. Nodes in the descendant region of any
node v are consecutively assigned preorder ranks after v itself, hence,

v′ ∈ v/descendant ⇒ pre(v′) ≤ pre(v) + size(v) . (2.4)

With a similar reasoning on postorder ranks and with Equation 2.3, this inspires
the introduction of additional shrink-wrapping constraints for the axis predicate
axis(descendant, v, v′):

pre(v′) ≤ post(v) + height(t) and (2.5a)

post(v′) ≥ pre(v)− height(t) . (2.5b)

As illustrated in our example in Figure 2.4, this may significantly reduce the size
of the associated query window. The shrink-wrapping conditions overestimate
the actual descendant area by at most height(t) (which we found small even
for large XML instances). Moreover, this reduction makes the size of the query
window independent of the total document size. We will observe an increase in
performance of several orders of magnitude as the result of shrink-wrapping in the
experimental section of this chapter.

Stretching the pre/post Plane

We may avoid the problem of false hits in a B-tree-indexed plane altogether, if we
apply minor modifications to the document encoding itself. The reason for these
false hits is the specification of query windows based on two independent range
predicates (on dimensions pre and post). The scan along either dimension (using
a B-tree) leads to numerous false hits with regard to the other.

An important aspect of the axis predicates in Table 2.1 is that they define
pre/post query windows relative to pre(v) and post(v), i.e., independent of their
absolute values. We can exploit this observation by slightly modifying the com-
putation of pre(v) and post(v): Couple preorder and postorder ranks such that
whenever pre is incremented, post is as well and vice versa.

2.1. XPATH ACCELERATOR ENCODING 19

a

b

c

d e

f

g h

i j

0

1

2

3 5

9

10 12

13 15

19

8

7

4 6

18

11 17

14 16 ∅

∅

∅

∅

pre(c) post(c)

pre(c)

post(c)

•

•
◦

•
•

•

•

•

•
•

a

b
c

d

e

f

g

h

i

jancestor

preceding

following

descendant

1 5 10 15

1

5

10

15

post

pre

Figure 2.5: Stretched preorder/postorder rank assignment and resulting pre/post
plane. Axes preceding, descendant, and following are sufficiently characterized
as ranges along a single dimension only (pre or post).

The resulting stretched pre/post plane is illustrated in Figure 2.5. For any
node v′ ∈ v/descendant, we now have that

pre(v) < pre(v′) < post(v) as well as pre(v) < post(v′) < post(v) .

No other nodes in the plane can fulfill this property, since we incremented pre and
post monotonically after traversing the subtree of v, i.e., the regions marked by
∅ in Figure 2.5 are necessarily empty. As a consequence, it becomes sufficient to
scan the plane along either dimension to evaluate the descendant axis without
encountering any false hits. The same considerations also allow for the characteri-
zation of the axes preceding and following in terms of a one-dimensional range
query only.

Note that we have not lost any of the other valuable properties of the pre/post
plane:

(i) predicates axis(α, v, v′) continue to work as before for all axes,

(ii) pre(v) still implements document order and uniquely identifies document
node v, and

(iii) we can now accurately estimate the subtree size below node v:

size(v) =
1

2
(post(v)− pre(v)− 1) .

20 CHAPTER 2. RELATIONAL XML STORAGE

·

··········

·

·
·
····
·
··········
············
··
·
····
············
············
·

·

····

·

··········
·
··········
·········
··········
·

·

··········
·
··········
·········
··········
·
·
··········
············
·

·

··········
·
··········
··········
···

v

post

pre

(a) /descendant::n / ancestor::m.

·

··········

·

·
·
····
·
··········
············
··
·
····
············
············
·

·

····

·

··········
·
··········
·········
··········
·

·

··········
·
··········
·········
··········
·
·
··········
············
·

·

··········
·
··········
··········
···

v′

post

pre

(b) /desc-or-self::m [descendant::n].

Figure 2.6: Scan region for an ancestor step taken from node v (left). Rewriting
the query into its symmetric equivalent yields a shrink-wrapped query window
(now axis descendant) as shown on the right.

As we showed in [Grust04e], the single-dimensional range conditions for the
stretched pre/post plane can lead to an additional 10% performance increase in
comparison to the shrink-wrapping approach. At the same time, the stretched
plane no longer requires the explicit maintenance of height(t) as an estimate for
level(v). For lack of space, we omit a detailed discussion of the stretched pre/post
encoding here and refer the reader to [Grust04e] for a detailed study.

Symmetries in XPath

Though we have seen that shrink-wrapping and pre/post plane stretching may sig-
nificantly reduce the size of scan regions in the pre/post plane, both optimizations
primarily apply to the XPath descendant axis. As Olteanu et al. [Olteanu02] have
observed, symmetries between XPath axes may be used to rewrite path expres-
sions into equivalent ones with possibly better execution plans. This turns out to
have an unanticipated impact on relational XPath evaluation.

Consider the XPath expression below that retrieves all elements named m
which contain at least one element with tag name n:

/descendant::n / ancestor::m .

This expression taken literally involves searching all n nodes in the pre/post plane
(/descendant::n), and then, for each node v of them, a scan of v’s ancestor

region to retrieve result nodes with tag name m. The scan region for the latter
step is depicted in Figure 2.6(a).

2.1. XPATH ACCELERATOR ENCODING 21

SELECT DISTINCT vm.*
FROM doc AS vr, doc AS vn,

doc AS vm

1 WHERE vr.pre = 0
2 AND vn.pre > vr.pre
3 AND vn.post < vr.post
4 AND vn.prop = n
5 AND vm.pre < vn.pre
6 AND vm.post > vn.post
7 AND vm.prop = m

ORDER BY vm.pre

(a) /descendant::n/ancestor::m.

SELECT DISTINCT vm.*
FROM doc AS vr, doc AS vm,

doc AS vn

1 WHERE vr.pre = 0
2 AND vm.pre ≥ vr.pre
3 AND vm.post ≤ vr.post
4 AND vm.prop = m
5 AND vn.pre > vm.pre
6 AND vn.post < vm.post
7 AND vn.prop = n

ORDER BY vm.pre

(b) /desc-or-self::m [descendant::n].

Figure 2.7: Corresponding SQL code for a pair of symmetric XPath expressions.
The two SQL queries may serve as a proof for the equivalence of the two paths.

If, instead, we first rewrote the expression according to [Olteanu02], we could
trade the ancestor for an XPath descendant step:

/descendant-or-self::m [descendant::n] .

In other words, we search the document for each node v′ with tag m. Then, for
each of them, we evaluate descendant::n and reject v′ if the XPath predicate
result is empty.

Under these circumstances, the query becomes a candidate for applying the
shrink-wrapping technique which leads to a significant scan size reduction. This
benefit is clearly recognizable in Figure 2.6(b) which illustrates the resulting query
window for the second evaluation step. Remember that shrink-wrapping leads to
query window sizes that are independent of the overall document size. The rewrite
will be even more effective on larger document instances.

While Olteanu et al. argue the correctness of the rewrites based on specific
properties of XPath location steps, we may, in fact, prove these equivalences in a
purely algebraic fashion on the basis of the XPath accelerator encoding. Figure 2.7
illustrates this with the help of the SQL clauses that represent a symmetric pair
of XPath expressions.

Conditions 1 and 4–7 are identical for both queries. As for the remaining
Conditions 2 and 3, the descendant predicate in Figure 2.7(a) is implied by the
transitive combination of lines 2 and 5, and 3 and 6 in Figure 2.7(b), respectively.
In the opposite direction, the fact that the root node tuple vr, by construction,

22 CHAPTER 2. RELATIONAL XML STORAGE

is assigned the table’s overall minimum pre and maximum post value trivially
satisfies Conditions 2 and 3 in Figure 2.7(b).

2.1.7 Range Encoding: An Alternative to pre/post

The original XPath accelerator proposal provides a simple, yet efficient tree encod-
ing with values pre(v) and post(v) as the primary carrier of structural information.
The pre/post plane as its visualization offers an intuitive insight into query pro-
cessing on such encoded tree data. Specific application needs, however, may drive
the decision to alternatives to pre/post .

Equation 2.3 relates the four node properties pre(v) (preorder rank of v),
post(v) (postorder rank of v), level(v) (v’s distance from the tree root), and size(v)
(the number of nodes in the subtree below v) in a single equation. As a conse-
quence, we can recover the original pre/post values from any encoding that provides
at least three of these four values. In that sense, any such encoding is equivalent
to XPath accelerator. In fact, if an encoding involves at least either pre(v) or
post(v), one more value suffices to fully encode a tree.

The Pathfinder compiler, whose foundations we describe in this thesis, as well as
the compilation procedure that we pursue in Chapter 4 are based on such an alter-
native to pre/post . The range encoding employs the triple 〈pre(v), size(v), level(v)〉
and turns out to exhibit a set of interesting properties:

(i) Implicit search space minimization.
On pre/size-encoded data, the XPath descendant axis naturally corresponds
to a region scan along a single dimension only:

axis
pre/size

(descendant, v, v′) = pre(v) < pre(v′) ≤ pre(v) + size(v) .

Needless to say that this scan is efficiently implementable using, e.g., a B-tree
index scan.

(ii) Efficient construction of transient nodes.
The pre/post encoding leads to extensive renumbering costs in case of struc-
tural updates of the XML tree (see Section 2.1.8). Values size(v) and level(v)
are invariant with respect to subtree copying or moving, which, as we shall
see in Chapter 4, can significantly lower the costs for XQuery’s element con-
struction operator.

(iii) Enhanced estimation accuracy.
The maintenance of an explicit level(v) column turns out to significantly en-
hance the accuracy of cost estimations on encoded XML documents [Rode03].
This may be a promising leverage point for future enhancements of the
Pathfinder XQuery system.

2.2. XPATH ON COMMODITY RDBMSS 23

In addition, the Pathfinder implementation abandons column par(v) from its
relational storage. As already sketched by Rode [Rode03], the efficient implemen-
tation of non-recursive XPath axes (child, parent) may easily be recovered if
the respective algorithm is aware of specific tree properties captured by the val-
ues pre(v) and level(v) in range-encoded data. In the experimental section of
this chapter, we will see that even off-the-shelf RDBMSs adapt gracefully to the
missing parent pointer.

A positive side-effect of replacing par(v) with level(v) is its reduced storage
consumption: while a single byte typically suffices to store level(v), par(v) has to
scale with XML document sizes.

2.1.8 A Word on Updates

Tree nodes are consecutively assigned their pre- and postorder ranks during a tree
traversal as described in Section 2.1.1. While this can be efficiently implemented
for an initial tree load [Grust04e], the insertion of a new node v comes at a high
cost: the preorder and postorder ranks of all nodes in v’s following and ancestor

regions must be adapted accordingly.1 To delete a node, however, it suffices to
simply remove the corresponding tuple from relation doc.

High update costs are an inherent problem of numbering schemes that use
a fixed-width encoding [Cohen02]. Nevertheless, the Pathfinder system supports
efficient structural updates on encoded XML documents with its pointer swizzling
technique [Boncz06a].

2.2 XPath on Commodity RDBMSs

To see how off-the-shelf database implementations can cope with pre/post-encoded
data, we created several instances of a pre/post table and fed them into two popular
RDBMSs: Version 8.2 of IBM’s DB2 Universal Database (Enterprise Edition) as
one of the big players in the database industry and PostgreSQL 7.3.3 as a complete
open-source implementation of SQL. Both back-ends had been installed on a SuSE
Linux Enterprise Server 9 system, equipped with 2× 3.2GHz Intel Xeon processors
and 8GB RAM. The system was running off four SCSI hard drives (140GB each,
10,000 rpm), two of which were dedicated to DB2.

The initial nine XML document instances were generated using the XML doc-
ument generator xmlgen from the XMark benchmark project [Schmidt02]. Their
sizes ranged between 113KB and 1.1GB (5,256 to 50,844,982 tree nodes, respec-
tively). The benchmark documents model an internet auction site and use the

1Note that not only the update overhead is causing trouble here. Updating all ancestor nodes
of v also imposes a significant locking bottleneck.

24 CHAPTER 2. RELATIONAL XML STORAGE

site

regions people open_auctions closed_auctions catgraph

africa, . . .

item

description reserve

mailbox

name

mail

person

name
address

profile
phone
education age

city zipcode

open_auction

annotation
bidder initial

current

description
increase

closed_auction

annotation
price

itemref

edge

from to

Figure 2.8: Element hierarchy of XMark document instances (excerpt).

schema sketched in Figure 2.8. xmlgen scales generated documents very regularly,
so that result sizes for XPath expressions typically grow linearly with the document
size.

Before loading them into the database systems, the generated documents were
not only pre/post-, but also range-encoded (pre/size/level) for comparison with
the storage scheme of the Pathfinder system.

Indexes Created. The DB2 database system ships with a sophisticated index
wizard that suggests a set of indexes based on a typical database query workload.
We prepared a workload of different SQL queries that represent a selection of
various XPath expressions and set up indexes as suggested by the advisor. The
suggestions of the advisor included indexes on the structural component of our
storage (pre and post) as well as on the remaining node properties.

On the PostgreSQL installation, we created a combined 〈pre, post , kind , prop〉
B-tree index for the efficient evaluation of structural constraints. The inclusion
of columns kind and prop allows for the evaluation of name tests within index
scans. An additional index on 〈parent , pre, kind , prop〉 backs the execution of non-
recursive axes.

Query Set. Against all XMark instances, we ran a selection of XPath queries
each of which stresses a specific aspect of the XPath accelerator encoding:

� Q1: /descendant::open_auction/descendant::description

2.2. XPATH ON COMMODITY RDBMSS 25

Query 0.11MB 1.1MB 11MB 111MB 1,118MB

Q1 12 120 1,200 12,000 120,000
Q2 8 77 631 6,409 64,463
Q3 12 120 1,200 12,000 120,000
Q4 12 125 1,255 12,716 127,315
Q5 60 708 6,182 59,486 597,777

Table 2.3: Number of nodes returned by Queries Q1–Q5 on different XML docu-
ment instances. Results grow linearly to document sizes.

� Q2: /descendant::age/ancestor::person

� Q3: /descendant::current/preceding::initial

� Q4: /descendant::city/following::zipcode

� Q5: /descendant::open_auction/child::bidder/child::increase

All queries contain an initial descendant step, whose sole purpose is to provide
a context set of reasonable size for the following steps that are of actual inter-
est. Queries Q1 through Q4 use location steps with recursive semantics, hence,
are among the obvious strengths of the XPath accelerator encoding. Q5, in con-
trast, examines the support for the non-recursive child axis, probably the most
important axis in XPath. All queries return result sets that depend linearly on
the XMark instance sizes (cf. Table 2.3).

We expressed all five queries in SQL, strictly following the translation rules
described in Section 2.1.4. Queries were ran multiple times to determine the
average afterwards (though variations in execution time were remarkably small).

2.2.1 DB2 Runs XPath

As one of the major commercial database products, DB2 provides a highly scalable
relational platform. In this section, we want to assess how well an off-the-shelf
DBMS can cope with tree queries on pre/post-encoded data.

Querying the descendant Region

Figure 2.9 visualizes the query execution times observed for Query Q1 on the
DB2 installation. The system had no problems processing the query on any XML
document size loaded. Apart from that, in all cases, the execution cost is domi-
nated by the second location step. (In additional experiments, we ran the query
/descendant::open_auction on all nine XML instances. Execution times for this

26 CHAPTER 2. RELATIONAL XML STORAGE

101

102

103

104

105

106

107

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
shrink-wrapping
range encoding (pre/size/level)

1

2

6

3
6

2
8
6

2
,3

2
5

2
5
,2

2
0 2

2
5
,1

0
0

2
,5

1
5
,0

0
0

4 5

3

8

2
0

6
2

1
7
2 5

1
2 1

,7
4
9

1 1

2

8

1
7

4
5

1
5
2 4

3
1 1

,5
0
7

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 2.9: XPath evaluation performance for Query Q1. Shrink-wrapping avoids
the quadratic increase observed for the original pre/post encoding and leads to a
linear scaling. The range encoding exhibits a similar behavior.

step grew linearly with the XML document size, but remained negligible compared
to the execution times in Figure 2.9.)

The initial descendant step in Query Q1 produces a context set that scales
linearly to the number of tuples N in the document table. For each of these context
nodes, the scan region for the subsequent descendant step also grows linearly to
the size of the pre/post plane, which brings in another factor of N . This leads to
a quadratic scaling for the original XPath accelerator implementation as can be
seen in Figure 2.9.

The shrink-wrapped query regions for the descendant axis overestimate their
result set by at most the overall tree height height(t) (Equations 2.5), negligible
for large document instances. Therefore, the effort to evaluate the shrink-wrapped
variant of Query Q1 solely depends on the axis step result. For documents gener-
ated with xmlgen, result sizes grow linearly to the XML document size, hence, we
see a linear dependency in Figure 2.9.

For comparison, Figure 2.9 also includes the execution times we observed for
the equivalent queries on range-encoded data (cf. Section 2.1.7). In this encoding,
the descendant axis can be described as a one-dimensional range only—ideally
supported by a B-tree index scan. Moreover, there is no more over-estimation as
in the shrink-wrapping case: the range boundaries are now exact. In combination
with the computationally less expensive predicate, this leads to a performance
improvement of roughly 15% over the shrink-wrapped pre/post variant.

2.2. XPATH ON COMMODITY RDBMSS 27

101

102

103

104

105

106

107

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
range encoding (pre/size/level)
rewrite Qsymm

2 (pre/post)
rewrite Qsymm

2 (pre/size/level)

1 1

3

1
5

9
5

7
8
2

7
,8

3
0

7
0
,3

7
1

7
8
2
,1

5
8

1 1

5

2
0

9
5

7
7
8

8
,4

6
7

7
9
,8

2
4

8
6
5
,4

8
3

1

6

3

9

2
5

7
6

2
3
3

7
9
9 2

,5
6
7

1 1

3

9

2
5

6
8

2
2
1 6

6
2

2
,3

4
5

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 2.10: XPath performance for query Q2. The symmetric rewrite of Q2

according to [Olteanu02] reduces its quadratic complexity to a linear scaling for
both encoding variants, pre/post as well as pre/size/level .

Exploiting XPath Symmetries to Evaluate ancestor

The XPath performance for the second query of our test set, Q2, is lined up
in Figure 2.10. Again, a linearly growing context set in combination with the
linear growth of the pre/post scan regions leads to a quadratic complexity of the
respective SQL query. This time, the explicit maintenance of subtree sizes in the
range encoding is no help either: the original encoding and its variant are almost
at par in Figure 2.10.

Query Q2, however, is an instance of the query pattern we saw in Section 2.1.6
that allows for a path rewrite according to the symmetry observation of Olteanu
et al.:

Qsymm
2 = /descendant-or-self::person [descendant::age] .

On our evaluation platform, the reformulated query exhibits a linear behavior
for both encoding variants.2 Both of them perform equally well, with a slight
tendency towards the pre/size/level -based encoding.

DB2 Captures XPath Semantics. Rewriting simple XPath expressions ac-
cording to [Olteanu02] typically leads to the introduction of predicate expressions,

2Again, the evaluation on the pre/post back-end benefits from shrink-wrapping.

28 CHAPTER 2. RELATIONAL XML STORAGE

UNIQ

SORT
pre

NLJOIN
desc::age

NLJOIN
desc-or-self::person

IXSCAN
pre=0

doc

IXSCAN
〈post ,pre〉

doc

IXSCAN
〈post ,pre〉

single record

doc

Figure 2.11: The execution plan employed by DB2 to evaluate Query Q2 directly
reflects XPath’s existential predicate semantics. Relation doc is accessed with a
single record scan to implement the predicate.

which is also the case for query Qsymm
2 . XPath specifications prescribe existen-

tial semantics for these predicates, i.e., systems are free to abort processing for
the current context node, as soon as they find the first match for the predicate
expression.

This is exactly what DB2 does. In the query plan that DB2 uses to evaluate Q2

(see Figure 2.11), we can see how its optimizer seizes the opportunity and executes
the search for age nodes as a single record index scan . With that means, DB2
precisely implements XPath’s early out semantics.

Axes preceding and following

Without the application of specific query rewrites, the XPath descendant and
ancestor axes (Queries Q1 and Q2, respectively) have shown a quadratic runtime
behavior for the examined XMark document instances. We expect the same behav-
ior to apply to the remaining two major XPath axes, preceding and following.
Indeed, we see a quadratic scaling for test queries Q3 and Q4 in Figure 2.12;
execution times for the 1GB instance are even worse than quadratic complexity.

In the earlier cases, we were able to achieve linear runtime complexity with
specific adaptions to the generated SQL queries (shrink-wrapping) as well as to the
path expression itself (symmetric rewrites). None of these optimizations, however,
are able to achieve the same effect for the preceding and following axes. In
Chapter 3, we will discover how the introduction of tree-awareness can achieve a
linear scalability for both axes nevertheless.

Both queries reveal an additional aspect crucial for the scalability of any XPath
engine: the overhead incurred by XPath’s requirement for a duplicate-free, ordered
result. While all queries evaluated so far showed a linear scaling not only for the

2.2. XPATH ON COMMODITY RDBMSS 29

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
variant pre/size/level

1

2

8

5
0

3
2
2

2
,6

4
8

2
9
,0

6
6 2
8
1
,3

3
5

1
5
,6

7
4
,6

1
2

1

3

1
1

6
5

4
1
6

3
,4

1
2

3
8
,2

1
1 3
6
3
,1

9
4

1
6
,3

7
8
,2

1
4

XML document size [MB]

ex
ec

u
ti
o
n

ti
m

e
[m

s]

(a) Query Q3 (preceding axis).

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
variant pre/size/level

1

2

8

6
1

3
5
1

2
,9

0
2

3
2
,8

1
3 3
2
0
,5

6
6

2
0
,8

7
4
,6

0
1

1

2

8

7
7

3
4
4

2
,9

1
3

3
2
,3

0
6 3
2
0
,9

8
1

1
9
,3

5
6
,7

8
3

XML document size [MB]
ex

ec
u
ti
o
n

ti
m

e
[m

s]

(b) Query Q4 (following axis).

Figure 2.12: Axes preceding and following lead to a quadratic runtime com-
plexity for XML document instances generated with xmlgen.

final, but also for intermediate result sizes, the evaluation of Q3 and Q4 produces
a high volume of duplicates that the database needs to sort and remove after-
wards. For documents generated with xmlgen, the amount of these duplicates
grows quadratically for Queries Q3 and Q4, adding up to 7.2× 109 and 8.1× 109

tuples on the 1GB instance. From this document size onwards, we have to pay
the toll for the growing sorting overhead : DB2 falls significantly behind quadratic
scaling for both queries.

The Non-Recursive Case: Evaluation of the child Axis

The encoding of the XML document structure per values pre(v) and post(v) has
been particularly crafted to accelerate the evaluation of navigation steps with a
recursive definition in XPath. Obviously, this should not negatively affect the
execution of non-recursive axes, namely the axes child and parent.

For most efficient support of these two axes, Grust makes the parent/child
relationship among tree nodes explicit to the RDBMS in terms of the key reference
in column par(v) [Grust02]. With an index on par(v), this renders the evaluation
of the child axis into one of the operations most efficiently implemented in today’s
database systems: a relational join over index columns. Query Q5 exploits this
operation with two child steps and it is not surprising to see that the XPath
accelerator execution times in Figure 2.13 scale linearly to our document sizes.3

3Remember that the linear scaling factor is due to the linearly growing result sizes, while the

30 CHAPTER 2. RELATIONAL XML STORAGE

101

102

103

104

105

106

107

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator (pre/post/par)
range encoding (pre/size/level)

2

4

1
2

2
6

7
8

2
2
3

6
9
6 2

,0
7
9 7
,6

6
3

2

3

1
1

2
4

8
1

2
3
4 7

6
7 2

,3
3
7 8
,3

2
5

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 2.13: Execution times observed for Query Q5. The evaluation of axis child
via the combination pre/size/level is almost at par with the foreign key reference
in the original pre/post/par encoding.

When introducing the range encoding variant (Section 2.1.7), we abandoned
the explicit par(v) column in favor of each node’s level information, level(v). The
result set of a step v/child may then be described as the subset of v/descendant
that belongs to the tree level directly below v, level(v) + 1:

v′ ∈ v/child
⇔

v′ ∈ v/descendant ∧ level(v′) = level(v) + 1

This characterization of the child axis seems quite expensive at first, given that
the size of v/descendant is usually large. Nevertheless, we see only a negligible
performance penalty in comparison to an evaluation of the child axis via par(v)
(Figure 2.13).

Favorable Index Choice. The favorable child performance is a consequence
of the efficient usage of B-trees to access nodes in the pre/size/level space. An
index on the concatenation 〈level , pre〉 (with the major ordering on column level)
simplifies the query for a child step into the single range scan:

v′ ∈ v/child
⇔〈

level(v) + 1, pre(v)
〉

<
〈
level(v′), pre(v′)

〉
≤

〈
level(v) + 1, pre(v) + size(v)

〉
.

execution time of a single child step is actually independent of the XML document size.

2.2. XPATH ON COMMODITY RDBMSS 31

UNIQ

SORT
pre

NLJOIN
child::increase

NLJOIN
child::bidder

NLJOIN
desc::open_auction

IXSCAN
pre=0

doc

IXSCAN
pre

doc

IXSCAN
〈level ,pre〉

doc

IXSCAN
〈level ,pre〉

doc

Figure 2.14: Execution plan for Query Q5 with efficient B-tree usage.

Observe that, in this way, we obtain all children of v in pre-order (i.e., document
order), without encountering any false hits. The query plan shown in Figure 2.14
uses a B-tree on table doc in such a manner to map each child step to an index
scan along a 〈level , pre〉 range.

In fact, the plan is almost identical to the one employed by our DB2 instance
to evaluate Query Q5. DB2, however, prepends each index with information on
columns kind and prop. This effectively pushes the evaluation of name tests into
index conditions and avoids that index scans access any false tuples from their
base relations.

This opportunity to optimize index usage for XPath node tests arises for all
axes. The DB2 index advisor/optimizer seizes this chance for all queries we evalu-
ated. This constitutes another situation in which the system captures specifics of
the pre/post encoding without any explicit hints or user intervention.

2.2.2 XPath Accelerator on PostgreSQL

Being available in open source, the PostgreSQL database system provides the ideal
playground for tree-specific kernel tweaks, such as the staircase join algorithm
that will be described in the following chapter. Here, we form the baseline for
an evaluation of these kernel tweaks by looking at the XPath performance of an
unmodified PostgreSQL instance.

The trends observed on the PostgreSQL installation precisely reflect those mea-
sured on DB2 before. The open-source system lags behind its larger brother by
almost an order of magnitude, though. On document instances beyond 111MB,
PostgreSQL did not successfully finish execution within reasonable time (≈ 5 hours)
at all.

32 CHAPTER 2. RELATIONAL XML STORAGE

101

102

103

104

105

106

107

108

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

execution times

original XPath accelerator
shrink-wrapping

page misses
original XPath accelerator
shrink-wrapping

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s] page

m
isses

Figure 2.15: Relational evaluation of Q1 on PostgreSQL. Execution times closely
resemble those observed on the DB2 installation before.

The achieved XPath performance for queries Q1 and Q2 is illustrated in Fig-
ures 2.15 and 2.16, respectively. In addition to that, we used PostgreSQL’s facilities
to report page access statistics for every query. In both figures, the bar charts de-
pict the total number of page misses required to run the query, while the lines
represent the overall execution time. (All queries were run with caches “warm”;
hence, the small document instances did not require any page loads at all.)

The two measurements confirm the observations we made on our DB2 installa-
tion earlier. The tight correlation between query execution times and the amount
of page misses indicates scans over large document regions as the major cost fac-
tor. As expected, the number of misses grows quadratically to the document size
in case of the unaltered XPath accelerator application, while the shrink-wrapping
and symmetric rewrite techniques lead to a linear scaling on all XMark instances.

In Chapter 3, we will revisit PostgreSQL, when we investigate the impact of
tree-specific enhancements to the kernel itself. At that time, we will also provide
performance numbers for PostgreSQL’s preceding and following performance.

2.3 Related Work

The maturity of relational database systems has long since suggested their use as
back-ends for XQuery processing and a number of alternative encoding techniques
has been published in the literature. In the domain of schema-oblivious encodings
(cf. Section 1.1.2), these alternatives may be categorized into encodings that use

2.3. RELATED WORK 33

101

102

103

104

105

106

107

108

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

execution times

Q2 (original XPath accelerator)
Qsymm

2 (symmetric rewrite)

page misses
Q2 (original XPath accelerator)
Qsymm

2 (symmetric rewrite)

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s] page

m
isses

Figure 2.16: Execution times observed for Q2 on PostgreSQL. Much like DB2,
PostgreSQL embraces the cheaper evaluation strategy for the symmetric equiva-
lent, Qsymm

2 .

a fixed number of bits to store the structural part of the XML document tree and
variable-length encodings.

As we have seen in Section 2.1.8, structural updates require an expensive
renumbering of the pre/post plane. Upon insertion of a new subtree, any node
in the following and ancestor region of the insertion node is subject to such
renumbering. Others have suggested to overcome this renumbering problem by
the introduction of gaps during the determination of the nodes’ pre- and post-
order ranks [Li01] or the use of floating point numbers to represent pre(v) and
post(v) [Amagasa03]. Both approaches, however, do not solve the update problem
per se, but can merely defer the renumbering effort, until all gaps are filled up.4

In fact, Cohen et al. proved that for any possible labeling scheme, there exists
a sequence of N node insertions that requires labels of length Ω(N) [Cohen02].
Hence, no fixed-length encoding can possibly accommodate updates without rela-
beling (parts of) its relational storage (and XPath accelerator is no exception).

2.3.1 Fixed-Length Encodings

One of the first relational mappings for XML documents has been described by
Florescu and Kossmann [Florescu99]. The edge mapping technique models parent-

4Note that for a given bit-length of columns pre(v) and post(v), both “solutions” limit the
number of nodes that may be accommodated in the doc relation in the first place.

34 CHAPTER 2. RELATIONAL XML STORAGE

child relationships as directed edges and stores the node identifiers of source and
target nodes in two columns of the table Edge. Column ordinal implements the
order among sibling nodes and thus XML document order.

In contrast to XPath accelerator, the edge mapping technique requires re-
cursively defined XPath axes to be evaluated on the Edge table in a recursive
manner—a processing model that relational databases have not originally been
designed for. In return, edge mapping allows for simple and cheap structural
updates, where only few nodes require renumbering.

Li and Moon [Li01] describe a relational encoding that closely resembles our
range encoding. It uses an extended preorder rank plus the node’s subtree size to
encode the XML structure. However, their work exclusively focuses on the efficient
evaluation of the XPath child and descendant axes.

The same is true for the UID (unique identifier) encoding that was introduced
by Lee et al. [Lee96] and later refined by Kha et al. [Kha02]. The UID encoding
virtually fills up the XML tree structure to obtain a fully populated k-ary tree,
where k is the maximum fanout of the original document. The UID of any doc-
ument node is then its rank in a breadth-first traversal of the virtual tree. Given
the UID of a node v, the fixed arity allows to derive all UIDs of v’s parent/child
nodes. However, given the fact that the fanout of real-world XML instances is
rather irregular, with typically few nodes that exhibit a very high fanout, it seems
hardly appropriate to base an encoding on the maximum arity in the tree.

A Corner Case: Binary Associations

Somewhat on the borderline to the schema-based storage variant lies the binary
association technique proposed by Schmidt et al. [Schmidt00]. This storage ap-
proach is inspired by the edge mapping technique discussed earlier and stores the
structural relationship among nodes as explicit parent-child associations.

The technique of Schmidt et al. (employed, e.g., in an implementation on top
of MonetDB [Boncz02]) partitions the XML document according to all root-to-leaf
paths found in the overall document (the so-called path summary). This naturally
leads to a semantical grouping of tree nodes into various association tables. The
authors argue that, depending on the query workload, this data clustering may
significantly reduce the amount of processing work spent on irrelevant nodes.

The segmentation of the relational storage along root-to-leaf paths may be
beneficial for our pre/post storage as well. Apart from that, it could be imple-
mented in a surprisingly simple manner: if we record the root-to-leaf path path(v)
for each tree node v, a B-tree index with major ordering on column path (e.g., a
concatenated 〈path, pre〉 index) naturally simulates the fragmentation proposed by
Schmidt et al. in terms of B-tree partitioning. This way, we fully benefit from the
semantical grouping of binary associations, while we still retain the original XPath

2.3. RELATED WORK 35

a
1

b
1.1

c
1.1.1

d
1.1.1.1

e
1.1.1.2

f
1.2

g
1.3

h
1.4

i
1.4.1

j
1.4.1.1

k
1.4.1.2

(a) Dewey Order.

a
1

b
1.1

c
1.1.1

d
1.1.1.1

e
1.1.1.3

f
1.2.1

g
1.2.3

h
1.3

i
1.3.1

j
1.3.1.1

k
1.3.1.3

�
1.2

(b) ORDPATH labels.

Figure 2.17: Variable-length encoding schemes: Dewey Order [Tatarinov02] and
its extension ORDPATH [O’Neil04]. The illustration of the latter assumes that f
and g were inserted after the initial document load by careting in (�: caret).

accelerator performance (e.g., for wildcard steps). We will see another instance of
this unaccustomed use of B-trees in Section 2.3.3.

The addition of path(v) to the relational storage has, in fact, already been
proposed by others. Microsoft’s SQL Server�, e.g., maintains such information in
terms of its PATH ID field [Pal04].

2.3.2 Variable-Length Encodings

Tatarinov et al. have early recognized that update costs are an issue in XML
data processing [Tatarinov02]. Inspired by the Dewey Decimal Classification5, the
authors propose a numbering scheme that uses a dot-separated sequence of integer
numbers to label each node in the tree (cf. Figure 2.17(a)). Labeling according to
this Dewey Order limits the nodes affected by renumbering to the subtrees in the
following-sibling region of the insertion point.

Similar to XPath accelerator, Dewey Order labels allow us to efficiently test
two nodes u and v for their ancestor/descendant (u ∈ v/descendant) or document
order relationships (u << v), solely based on their node labels γu and γv.

More widely known is a variant of the original Dewey Order encoding, the
ORDPATH labeling [O’Neil04]. ORDPATH is successfully used in the 2005 version
of the Microsoft SQL Server� and eliminates the need to renumber tree nodes
in case of structural updates. The idea is equally simple and effective: during
the initial document load, only positive, odd integer values are used to create
ORDPATH labels. Even numbers are reserved as insertion points (carets) for later
updates. Figure 2.17(b) illustrates the use of carets to incorporate new tree nodes:
nodes f and g have been inserted as new children of a between the nodes b and h;

5See, e.g., http://en.wikipedia.org/wiki/Dewey_Decimal_Classification.

http://en.wikipedia.org/wiki/Dewey_Decimal_Classification

36 CHAPTER 2. RELATIONAL XML STORAGE

the caret � fills the space between 1.1 and 1.3 and leaves room for even more child
additions to a in the future. ORDPATH labels have similar properties to Dewey
Order labels, though care has to be taken to ignore carets (easily identified by the
even number in their last component) in the case of non-recursive axes (child,
parent, . . .).

The dotted notation for Dewey-based node labels constitutes an intuitive rep-
resentation for human reading. Internally, both approaches use a storage format
that is inspired by the UTF-8 character encoding [Yergeau03], where the leading
bits of the labels determine the bitlength of each integer. In the case of ORDPATH,
this leads to a highly compact binary representation.

2.3.3 Relational Database Support

The favorable XPath performance we saw in the foregoing sections is mainly due
to the re-use of mature database techniques inherent to the relational systems
we examined. Two truly relational techniques are particularly remarkable in our
context: the deliberate use of B-trees to index pre/post-encoded data as well as
the exploitation of dense key numberings in modern database kernels.

Index Support for the child Axis

We found the evaluation of the child axis efficiently supported by prepending the
level column to an index on preorder ranks. Similarly, columns kind and prop
as leading index keys could significantly accelerate the evaluation of XPath steps
that involve name tests. Technically, the prepending of level values to an index on
preorder ranks effectively leads to a partitioning of the resulting B-tree:

level = 1 level = 2 level = 3 level = 4

This partitioning resembles the work of Graefe on partitioned B-trees [Graefe03].
Graefe proposes the use of artificial leading key columns for an enhanced im-
plementation of sort operations in high-volume RDBMSs. He points out that a
low-selectivity leading column will typically not hamper query performance, par-
ticularly if the underlying B-tree implementation handles prefixes in a proper man-
ner. Prefix B-trees [Bayer77], e.g., provide such an implementation and elegantly
compress key prefixes.

2.3. RELATED WORK 37

Remember that we applied the same “trick” to simulate the effect of the bi-
nary association storage model on pre/post-encoded data in a simple and elegant
manner.

The use of a 〈level , pre〉 index also blends perfectly with the work of Chan et
al. [Chan04]. They use an artificial layer axis to rewrite chains of XPath wildcard
steps (e.g., paths of the form e/child::*/child::*/child::t) into a single tree
navigation. The resulting paths (e.g., e/L3::t) directly translate into conditions
on 〈level , pre〉 ranges and, hence, are ideally backed by the B-tree on 〈level , pre〉.

Support for Further Properties of the pre/post Plane

Some database kernels can exploit other interesting properties of the tables gener-
ated during the pre/post encoding of XML trees. The MonetDB system [Boncz02],
e.g., provides dedicated support for columns with a dense key numbering. Mon-
etDB will only store pre(v) for the first tuple of our encoding and infer remaining
pre values from the physical tuple order (in terms of its void column type). This
does not only avoid the materialization of column pre (and, hence, reduce stor-
age consumption), but also allows for instantaneous, positional access by preorder
ranks.

Additional benefits may be gained from a relational database implementation, if
we provide its kernel with specific information on the tables’ underlying tree origin.
Such kernel modifications constitute our agenda for the upcoming chapter.

38 CHAPTER 2. RELATIONAL XML STORAGE

3
XPath Evaluation with Staircase Join

The XPath accelerator tree encoding leverages mature database technology into
the domain of XML data and turns relational DBMSs into efficient tree processors.
In this chapter, we will increase the tree awareness of relational database systems
once more by the injection of a new join operator: staircase join. We will see
that this single operator, when added to the DBMS kernel, encapsulates all tree
knowledge that is inherent to the pre/post plane.

The chapter starts off with a review of some additional considerations about
the XPath accelerator tree encoding. We will then introduce staircase join (Sec-
tion 3.2) and discuss its implementation in disk-based or main memory-oriented
DBMS kernels (Sections 3.3.1 and 3.3.2, respectively). Experiments confirm the
effectiveness of staircase join in both setups. Section 3.4 discusses some more
applications of the staircase join idea, before we conclude in Section 3.5 with a
glimpse into the research vicinity of staircase join.

3.1 Re-Inspecting XPath Accelerator

In general, the translation of XPath expressions into pre/post-encoded data leads
to relational query plans such as the one shown in Figure 3.1(a): a repeated self-
join of the pre/post relation doc. Each XPath location step corresponds to a
join operator in the relational plan, with the join condition determined by the
predicates axis(α, v, v′) and test(ν, v′) (cf. Tables 2.1 and 2.2, respectively).

An RDBMS query optimizer will typically generate a query plan like the one

39

40 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

UNIQpre

SORTpre

1
pre/par

1
pre/post

context

σ
kind/prop

σ
kind/prop doc

doc

(a) Logical query plan.

UNIQpre

SORTpre

NLJOIN

NLJOIN

context

IXSCAN
kind/prop/par/pre

IXSCAN
kind/prop/pre

doc

doc

(b) Associated execution plan.

Figure 3.1: XPath location paths translate into repeated self-joins of the document
relation doc. (b) The resulting plan is typically executed in terms of index nested
loops joins (query context/descendant/following-sibling).

shown in Figure 3.1(b) to answer queries for XPath location steps. XML docu-
ments are accessed in terms of an index nested loops join, where the indexed doc
relation serves as the inner join relation. Depending on the join predicate and
the availability of appropriate indexes, systems may even employ index-only scans
and, hence, not access the base relation doc at all.

3.1.1 Node Distribution in the pre/post Plane

Proper index selection as well as efficient plan generation is typically driven by
statistics on the underlying database tables. The non-uniform point distribution
in the pre/post plane, however, makes such statistics a poor means to capture
the tree-specific nature of the data. Off-the-shelf RDBMSs, e.g., will not detect
the presence of unpopulated regions in the pre/post plane. In effect, they will
waste significant effort on scanning such unpopulated space. Making the system’s
optimizer aware of the underlying tree data could be a means to save a considerable
amount of effort.

In case of the XPath descendant axis, such hints to the optimizer were ex-
pressible on the SQL level in terms of shrink-wrapping (cf. page 18) by adding the
line

AND v1.pre ≤ c.post + height(t) AND v1.post ≥ c.pre − height(t)

to the SQL expression in Figure 2.3(b). As observed in Section 2.2.1, this leads
to a significant improvement in query performance. In the following, we will see

3.2. STAIRCASE JOIN 41

that the awareness of similar tree properties can lead to even further speedups of
XPath evaluation.

Expensive XPath Semantics

Another observation in Figure 3.1(a) is the need for expensive sorting and duplicate
elimination (operators SORT and UNIQ, respectively) to implement the respective
XPath semantics. In Chapter 2, we looked at location steps that originate from
a single context node only. In general, however, an entire set of context nodes
serves as the input to an XPath location step. In consequence, the joins in Fig-
ure 3.1(a) will typically produce duplicate nodes that the database system needs
to expensively eliminate afterwards.

3.2 Staircase Join

The processing of an entire set of context nodes is, in fact, the basis for the
optimizations we present in this chapter. We will first look into such a situation
in an XML document tree and see how it is reflected in the pre/post plane. This
will reveal a number of interesting tree properties that we will exploit afterwards
in terms of the three techniques pruning, partitioning, and skipping. The new join
operator that we propose, staircase join (�), incorporates all three techniques and
introduces full tree awareness if added to an RDBMS kernel. Though we will
discuss its details based on the pre/post encoding, all staircase join ideas can be
easily adapted to other encoding variants as well (the pre/size/level variant in
particular).

3.2.1 Pruning

Effectively, the processing of a context set with an (index) nested loops join as
we have observed it in actual DBMS implementations leads to the independent
evaluation of XPath axis regions for each context node in turn. Figure 3.2(a)
depicts the situation for the evaluation of an ancestor-or-self location step for
a context set of five nodes.

The ancestor-or-self regions for these nodes significantly overlap, which we
indicated by the intensity of the shadings in Figure 3.2(a). The darker a path’s
shade, the more often will the contained nodes appear in the join result, which
ultimately leads to the requirement for the duplicate removal operator UNIQ in
Figure 3.1(a).

Obviously, we can remove a node from the context set if its ancestor-or-self
region is entirely included in the query region of some other context node(s) prior

42 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

•
•

◦
• •
◦
•

•
•

•
•

• •

•
◦

• •
◦
•

• ◦

c1

c2

c3 c4

c5

(a) Original context set: (c1, c2, c3, c4, c5).

•
•

•
• •
◦
•

•
•

•
•

• •

•
◦

• •
•
•

• ◦

c1 c4

c2

c3

c5

(b) Context set after pruning: (c2, c3, c5).

Figure 3.2: (a) The ancestor-or-self regions for the context set (c1, . . . , c5)
intersect and hence produce duplicates in the result. (b) The pruned context set
(c2, c3, c5) covers the same ancestor-or-self region with less duplicate nodes.

to join processing without any effect on the final query result. In our example in
Figure 3.2, nodes c1 and c4 are instances of such nodes. As we see in Figure 3.2(b),
the removal of such nodes, the so-called pruning step, minimizes the number of
duplicates generated while, at the same time, lowering the join processing costs
due to a reduced context size. Note, however, that the duplicate problem still
persists: some tree nodes in Figure 3.2(b) (the root node in particular) are still
reachable from more than one context node.

Context Pruning in the pre/post Plane

In case of the ancestor-or-self axis, a context node v is a candidate for pruning
if it is located along a path from some other context node v′ to the document
root. Figure 3.3 illustrates this situation in the pre/post plane: each context node
defines the boundary of its corresponding ancestor-or-self region. Regions may
include one another or partially overlap.

The former case of inclusion is easily dealt with by the removal of covered
nodes, and thus regions, from the context set. This is exactly how we removed
the context nodes c1 and c4 before. Figure 3.3(b) illustrates this removal in the
pre/post plane after pruning the context set of Figure 3.3(a).

Similar opportunities to simplify the context set arise for other XPath axes
as well. Figure 3.4 illustrates the situation for the descendant, following, and
preceding steps for the same context set as in Figure 3.3(a). Again, a number
of context nodes and their query regions are entirely covered by the query regions
of other nodes such that we can safely remove them from the context set, i.e., we
can remove (a) nodes c2 and c5 for the descendant axis, (b) nodes c3, c4, and c5

3.2. STAIRCASE JOIN 43

•

•

◦

•

•
◦•
•
•

••
••

•

◦
••

◦•
•◦

c1

c2

c3

c4
c5

post

pre

(a) Original context set: (c1, c2, c3, c4, c5).

•

•

•

•

•
◦•
•
•

••
••

•

◦
••

••
•◦

c1

c4

c2

c3

c5

post

pre

(b) Context set after pruning: (c2, c3, c5).

Figure 3.3: (a) Nodes may be pruned from the context set if their query regions
include one another in the pre/post plane. (b) Pruning minimizes the region
overlap and hence the production of duplicate result nodes (cf. Figure 3.2).

for the following axis, and (c) nodes c1, c2, and c3 for the preceding axis.

Pruning for Forward Axes

The task of identifying the inclusion of query regions is easily implemented for a
pre/post-encoded context sequence. Algorithm 3.1 lines up the pruning procedure
for the descendant axis. Routine prunecontext_desc () assumes that the table
context is sorted along the pre dimension and processes it in a single sequential
pass. It collects nodes whose post value exceeds the maximum value seen so far
and discards the others. Note that this implementation seamlessly integrates with
the pipelined execution model of modern RDBMSs.

prunecontext_desc (context :table (pre, post))

begin1

result ← new table (pre, post);2

prev ← 0;3

foreach c in context do4

if post(c) > prev then5

append c to result;6

prev ← post(c);7

end8

Algorithm 3.1: Context pruning for the descendant axis.

44 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

•

•

◦

•

•
◦•
•
•

••
••

•

◦
••

◦•
•◦

c1

c2

c3

c4
c5

post

pre

(a) descendant axis.

•

•

◦

•

•
◦•
•
•

••
••

•

◦
••

◦•
•◦

c1

c2

c3

c4
c5

post

pre

(b) following axis.

•

•

◦

•

•
◦•
•
•

••
••

•

◦
••

◦•
•◦

c1

c2

c3

c4
c5

post

pre

(c) preceding axis.

Figure 3.4: Overlapping query regions for context set (c1, . . . , c5). The darkly
shaded areas are covered by the query windows of multiple context nodes and
hence produce duplicate result nodes.

After pruning for the descendant axis, all remaining context nodes exclusively
relate to each other in the preceding/following direction. As a result, they form

•

•

◦

•

•
••
•
•

••
••

•

◦
••

◦•
••

c2

c5

c1

c3

c4

post

pre

Figure 3.5: Pruned context
set for Figure 3.4(a).

a proper staircase as illustrated in Figure 3.5.
While Algorithm 3.1 is trivially adapted to im-

plement context pruning for the following axis, the
analogous handling of reverse axes (e.g., ancestor
or preceding) would require the context set to be
read in reverse document (i.e., pre-) order and,
hence, block pipelined processing. It turns out, how-
ever, that these cases also become fully pipeline-
able if we consider further properties of the pre/post
plane that are due to the tree origin of the nodes in
the plane. These properties are what we will look
into next.

3.2.2 Empty Regions in the pre/post Plane

Observe that the remaining region overlap in Figure 3.5 (darker shaded regions)
is entirely empty. Apart from that, Figure 3.4 also exhibits some cases in which
query regions cover unpopulated space in the pre/post plane. In Figure 3.4(b),
context node c1 does not contribute any new result nodes to the following region
originating at node c2. Respectively, node c4 does not contribute to the preceding
result of c5 in Figure 3.4(c). Note that the situation persists even if we apply
context pruning based on region inclusion.

3.2. STAIRCASE JOIN 45

•a

•bR S T

U V W

X Y Z
∅

pre

post
R

X U V S T

a b

Y W

(a) Nodes a and b relate on the
preceding/following axis.

•a

•b

R S T

U V W

X Y Z

∅

∅

pre

post
R

X a T

V

Y b W

Z

(b) Nodes a and b relate on the
ancestor/descendant axis.

Figure 3.6: Empty regions in the pre/post plane.

The described cases are not a coincidence of the example chosen here, but a
direct consequence of the fact that the pre/post plane represents the encoding of
a tree. In fact, more nodes may be pruned from the context set if we introduce
tree awareness into the pruning procedure.

Figure 3.6 gives a detailed insight into the tree-related properties of regions in
the pre/post plane. For any two nodes a and b, there are only two cases in which
they can relate to each other: (a) on the preceding/following axis or (b) on
the ancestor/descendant axis. In either case, nodes a and b partition the entire
pre/post plane into the nine regions R to Z illustrated in Figure 3.6.

If we assume both nodes to be in a preceding/following relationship (Fig-
ure 3.6(a)), the presence of a node v in region Z would imply that v is a descendant
of both, nodes a and b. Obviously, such a situation cannot arise in a tree, and we
can conclude that region Z must be entirely empty. (Note how this observation of
an empty region explains the node distribution in the pre/post plane observed in
Section 2.1.5.)

The case in which a and b relate in an ancestor/descendant direction is
illustrated in Figure 3.6(b). Again, based on our knowledge about the plane’s tree
origin, we know that an ancestor of node b may never precede (region U) or follow
(region S) a. Hence, U and S must be empty regions as well.

Pruning for Reverse Axes

The observations about empty regions form the basis for the pruning algorithm
of the XPath ancestor step as shown in Algorithm 3.2. From Figure 3.6(a), we
know that we can never encounter a context node whose ancestor region covers
the ancestor region of any node prev already appended to the pruned context
set, as such a node had to be situated in an empty region of type Z. This means

46 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

prunecontext_anc (context :table (pre, post))

begin1

result ← new table (pre, post);2

prev ← first node in context;3

foreach c in context do4

if post(c) > post(prev) then5

append prev to result;6

prev ← c;7

append prev to result;8

end9

Algorithm 3.2: Context pruning for the ancestor axis.

that with prunecontext_anc () we have found a means to prune an ancestor

context set in a fully pipelineable fashion (again we assume context to be sorted
in document (pre-) order).

The observations about empty regions also allow for pruning opportunities in
case of the preceding and following axes that are even more profound. Pruning
based on region inclusion as discussed earlier leads to a context set where all
nodes are related to each other along the ancestor/descendant axes, i.e., they
are all arranged in the same way as in Figure 3.6(b). For the preceding axis, this
implies that we can prune all context nodes but the one with the maximum pre
value, because region U is known to be empty. The same applies to the node with
the minimum post value in case of the following axis where region S must be
empty.

With only a single context node remaining, this degenerates the evaluation of
the preceding and following axes into a single region scan, regardless of the
original context size. We will, hence, focus on the ancestor and descendant

axes in the following and come back to the preceding and following axes in
Section 3.4.3.

3.2.3 Partitioning

Pruning redundant nodes from the context set may significantly reduce the amount
of duplicates produced by an XPath location step. However, as we can see in
Figures 3.2(b) and 3.3(b), a number of duplicates still remains due to intersecting
ancestor-or-self paths originating at different context nodes.1 We can avoid
this if we partition the document tree using the remaining context nodes and

1In fact, the tree root is always returned once for every context node.

3.2. STAIRCASE JOIN 47

p0 p1 p2 p3

•

•

•

• •

◦

•

•

•

•

•

• •

•

◦

• •

•

•

• ◦

c1 c4

c2

c3

c5

(a)
p0 p1 p2 p3

•

•

•

•

•
◦•
•
•

••
••

•

◦
••

••
•◦

c1

c4

c2

c3

c5

post

pre

(b)

Figure 3.7: Document partitioning induced by context nodes c2, c3, and c5.

ensure that we process each partition just once.
This approach is illustrated in Figure 3.7 for the case of the ancestor-or-self

step that we have seen earlier. The context nodes’ preorder ranks pre(ci) induce a
partitioning of the pre/post plane that follows the staircase shape retrieved after
pruning. Each of the partitions [p0, p1], (p1, p2], and (p2, p3] defines a region within
the plane that contains the axis step’s sub-result for the context nodes c2, c3, and
c5 (respectively).

A natural way to process such a partitioned pre/post plane is listed in Al-
gorithm 3.3. These basic staircase join algorithms sequentially scan the plane
partition-wise from left to right, selecting those nodes in each partition that lie
within the sub-result of its respective context node. Note that Algorithm 3.3 as-
sumes both input relations, the context set context and the XPath accelerator
document table doc, to be sorted in pre-order. Hence, accessing the tuple doc[i]
in procedure scanpartition () does not actually involve a distinct lookup for the
tuple with the preorder rank i, but rather means using the record at hand during
the sequential scan. Furthermore, as staircase join effectively traverses the tree in
document order, it will automatically produce its result in document order, too.

The evaluation of a location step according to Algorithm 3.3 exhibits a num-
ber of interesting characteristics and—most importantly—upper bounds for the
execution of each step:

(i) tables doc and context are both scanned sequentially,

(ii) both tables are read only once for an entire context set (hence, |doc| is an
upper bound for the number of tuple accesses in relation doc),

(iii) staircase join never delivers duplicate nodes, and

48 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

staircasejoin_anc (doc :table (pre, post), context :table (pre, post)

begin1

result ← new table (pre, post);2

n ← first node in context;3

d ← first node in doc;4

scanpartition (pre(d), pre(n)− 1, post(n), >);5

foreach successive pair (n1, n2) in context do6

scanpartition (pre(n1) + 1, pre(n2)− 1, post(n2), >);7

return result;8

end9

staircasejoin_desc (doc :table (pre, post), context :table (pre, post)

begin10

result ← new table (pre, post);11

foreach successive pair (n1, n2) in context do12

scanpartition (pre(n1) + 1, pre(n2)− 1, post(n1), <);13

n ← last node in context;14

d ← last node in doc;15

scanpartition (pre(n) + 1, pre(d), post(n), <);16

return result;17

end18

scanpartition (pre1, pre2, post, θ)

begin19

for i from pre1 to pre2 do20

if post(doc[i]) θ post then21

append doc[i] to result;22

return result;23

end24

Algorithm 3.3: Basic staircase join algorithms (ancestor and descendant axes).
For each context node, procedure scanpartition () sequentially scans the asso-
ciated pre interval in document order.

3.2. STAIRCASE JOIN 49

•

•

◦

•

•
••
•
•

••
••

•

◦
••

◦•
••

∅

v

c1

c3

c4

scan scanscan
skip

post

pre

Figure 3.8: Skipping for the
descendant axis.

scanpartition_desc (pre1, pre2, post)

begin1

for i from pre1 to pre2 do2

if post(doc[i]) < post then3

append doc[i] to result;4

else5

break ; /* skip */6

return result;7

end8

Algorithm 3.4: Abort scanning early (line 6) to
implement skipping (descendant axis).

(iv) result nodes are returned in document order ; no expensive post-processing is
required to comply with the semantics of XPath.

It is important to note, though, that Algorithm 3.3 only works correctly on
proper staircases, i.e., on pruned context sets. Both processing stages, prun-
ing as well as staircase join evaluation, read their input in a strictly sequential
fashion. They may thus straightforwardly be integrated into a single algorithm.
In [Grust03a], the authors describe a staircase join variant that implements such
pruning on the fly.

3.2.4 A Further Increase of Tree Awareness: Skipping

If we know certain regions of the pre/post plane to be empty, we may as well try
to skip them during our scan. Figure 3.8 illustrates this idea for the descendant

axis.
To evaluate this axis, staircase join scans the pre/post table from left to right,

starting at the first context node c1. During the scan of the first document parti-
tion (associated with c1), the first node we encounter outside of c1’s descendant

boundary is node v. Since nodes c1 and v are arranged in a preceding/following
relationship as illustrated earlier in Figure 3.6(a), we can conclude that no further
descendants of c1 can be found between v and the next context node c3 (indicated
with ∅ in Figure 3.8). In such a situation, we may stop processing the current
partition immediately and continue the evaluation at the next context node, as
indicated by the skip in Figure 3.8.

It is easy to adapt the basic staircase join algorithm to this behavior by re-
placing its worker function scanpartition () by the implementation shown as

50 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

Algorithm 3.4. When a node outside the current post boundary is encountered,
the algorithm immediately aborts the current partition scan (line 6) and continues
processing at the next document partition.

The effectiveness of skipping can be substantial. Each node we encounter while
scanning the document partition of a context node ci will either (i) belong to ci’s
result set or (ii) be of kind v and, hence, lead to a skip. To produce the final result,
we thus never touch more than |context|+ |result| nodes in the pre/post plane.

Most importantly, the effort to evaluate an XPath location step becomes in-
dependent of the size of the pre/post table (i.e., of the XML document size). In
contrast to that, the basic staircase join algorithm (Algorithm 3.3) would scan
the entire document relation, starting at the context node with minimum preorder
rank, and, hence, have an upper bound of |doc| tuple accesses. In [Grust03c], we
found staircase join to skip about 92% of these tuples.

Skipping for Other XPath Axes

For the ancestor and following axes, we can find similar opportunities to skip
parts of the document relation:

Ancestor Axis. Whenever we encounter a node v outside the ancestor bound-
aries of some context node c, we know that all of its descendants will also not
qualify as ancestor nodes of c. In that case, Equation 2.3 (that we used earlier to
implement shrink-wrapping) comes in handy to provide an estimate on the size of
the subtree below v. We are off by at most the height of the document tree if we
skip to the node v′ with pre(v′) = post(v) in that case.

Following Axis. Evaluating the following axis, we know that the nodes we
encounter in pre-order immediately after the single remaining context node c will
be c’s descendants. Again, using Equation 2.3, we can skip those with an error of at
most height(t). Consequently, we will read at most height(t) false hits to evaluate
an XPath following step, resulting in an upper bound of |result|+ height(t) node
accesses.2

Preceding Axis. When scanning the pre/post region left of the single remain-
ing context node c for a preceding step, we encounter all nodes that precede c,
interspersed with the ancestors of c. There are at most height(t) of the latter, such
that even without skipping we have to read at most |result| + height(t) nodes to
evaluate the preceding axis.

2Remember that height(t)� |doc|.

3.3. IMPLEMENTATION CONSIDERATIONS 51

3.3 Implementation Considerations

We have now identified a number of optimizations that a relational database en-
gine could exploit for accelerated XPath step evaluation. Staircase join makes
those optimizations available in the form of a new join operator which is added to
the DBMS kernel. The � operator encapsulates all tree specifics present in the
database’s pre/post relation and uses this tree awareness to evaluate XPath loca-
tion steps at a minimal cost. We claim that staircase join could easily be added to
any relational database kernel, turning it into a high-performance tree processor.

Maybe the most suitable characterization of the staircase join algorithm is a
merge join with a dynamic range predicate. � reads both of its inputs, a relation
that represents the step’s starting point and the document table doc, in a single
sequential scan. Moreover, staircase join exhibits a number of valuable properties
that allow for a seamless integration into existing database kernels:

(i) Staircase join is a join in the usual sense. As expected for other join imple-
mentations as well, � allows for effective plan rewrites such as, e.g., selection
pushdown.

(ii) Both input relations are consumed and processed in a stream-like fashion,
making � not only interesting in terms of its cache-friendliness, but also
suitable for pipelined execution.

Both aspects turn out to be equally important, whether staircase join is in-
troduced into a traditional, disk-based RDBMS or into a modern database kernel
tuned for CPU efficiency and execution in main memory. To prove the claim that
� speeds up XPath execution in any RDBMS, we implemented the operator in
the disk-based system PostgreSQL [PostgreSQL] as well as in the main memory
DBMS MonetDB [Boncz02].

3.3.1 A Disk-Based � Implementation

To assess the applicability of staircase join to a disk-based database environment,
the open-source system PostgreSQL provides quite an ideal playground. In the
course of the work in [Mayer04a], we injected staircase join into PostgreSQL 7.3.3.
The required changes to PostgreSQL were remarkably small. Only local changes
to the database’s execution engine (the addition of staircase join itself) and an
adaption of its planner/optimizer (to make it actually use the new operator) led
to significant performance advantages for queries on pre/post-encoded data. At
the same time, the addition did not do any harm to non tree-related SQL queries.

52 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

�
following

�
descendant

SORTpre

context

IXSCAN

IXSCAN doc

doc

Figure 3.9: Staircase join-enhanced query plan for the path expression
context/descendant/following. The � operator requires its input to be pre-
sorted and guarantees the same for its output.

Scheduling for Staircase Join

To benefit from the physical staircase join operator, we modified PostgreSQL’s
planning/optimization phase to apply the new � operator whenever it detects an
instance of an XPath location step. This decision is based on an examination of
the join clauses in the query tree. We trigger the use of staircase join whenever
the clauses meet the following four conditions:

(i) the join must be defined as two conditions on attributes named pre and post ,

(ii) the respective comparison operators must specify a valid XPath axis (e.g.,
d.pre > c.pre and d.post < c.post for the descendant axis),

(iii) both columns (pre and post) must be of data type tree in both join partners
(This column type was newly introduced into PostgreSQL to identify columns
that hold tree-structured data.), and

(iv) the system must find a suitable index on the inner join relation that supports
the � operator, i.e., a B-tree index on column pre.

The resulting plan (see Figure 3.9 for an instance) resembles the execution plan
we saw earlier for an unmodified relational system (cf. Figure 3.1(b)), except that
� is used to join the context set with the document relation for each XPath step.
Observe how � reads its input in document order (hence, requires a SORT operator
to access the context sequence). In return, it guarantees a duplicate-free result,
that is returned in document order (hence, no additional sorting effort is required
at the plan’s root).

Indexed Document Access

As mentioned earlier, an unmodified PostgreSQL instance would execute path
steps on pre/post-encoded data by applying its index nested loops join algorithm.

3.3. IMPLEMENTATION CONSIDERATIONS 53

INIT STORE

NEXT_CONTEXT IXSCAN

NEXT_NODE

JOIN

TEST_POST

TEST_PARTITION

partition

skip

prune

Figure 3.10: The finite state automaton that defines a fully pipelineable � imple-
mentation for the XPath descendant axis.

The pre/post relation doc is thereby accessed via a B-tree on column pre. Post-
greSQL provides a special index variant for this purpose, the inner join index, that
allows for efficient re-scans of the inner relation for each of the distinct tuples from
the outer join relation.

Staircase join adopts this way of accessing the doc relation as shown in Fig-
ure 3.9 (operators IXSCAN). Our implementation initiates a partition scan at the
lower partition boundary pi by triggering an index (re-)scan of the document table
using the condition doc.pre > pi. The inner join index will deliver the matching
tuples in ascending pre-order, starting directly at the first pre-value that satisfies
this property. With pruning in place and for a pre-ordered context set, this leads
to a progressive forward scan of doc.

A Pipelineable � Implementation

Typical for a disk-based database system such as PostgreSQL, it strives to avoid
materialization and process data in a fully pipelined fashion. To appropriately
support this execution paradigm, we carefully adapted the original staircase join
algorithm (Algorithm 3.3) such that it will only request the next input tuple from
either subplan if it is immediately required to produce the next output tuple.

The clearly distinguished execution steps predefined by pipelining and the three
staircase join-specific techniques (pruning, partitioning, and skipping) suggested
the use of a finite state automaton to implement the staircase join execution mod-
ule. Each of the four major axes was assigned its own automaton.

Figure 3.10 illustrates the automaton that implements staircase join for the
XQuery descendant axis. After the first context tuple v1 has been read from the
outer subplan (state INIT), the automaton stores it as the lower boundary for the
first partition. State NEXT_CONTEXT then requests tuples from the outer subplan
(the context set), until a context node v2 is found with a higher post value than

54 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

v1. This implements context set pruning (cf. prunecontext_desc (), page 43).
As soon as the first scan partition, (v1, v2], is set, � starts reading the document

nodes within that partition. As mentioned before, we assume the doc relation to
be accessed via an inner join index and, hence, initiate an index re-scan (state
IXSCAN), starting right after pre(v1). Tuples are retrieved one by one from the
inner join index in state NEXT_NODE. For each of them we ensure that it is still
within the boundaries of the current scan partition (state TEST_PARTITION) and
that it satisfies the post condition (state TEST_POST). State JOIN then builds and
returns the next result tuple. As soon as we encounter a node outside the current
scan partition (state TEST_PARTITION), we switch to state STORE and, hence, to
the next partition.

As we have seen, the crucial ingredient of efficient step evaluation with staircase
join is the opportunity to skip over parts of the pre/post table that are known not
to contribute to the result. In case of the descendant axis, this opportunity arises
whenever scanpartition_desc () (Algorithm 3.4) encounters a node outside the
current post range. In our pipelineable implementation, the state automaton im-
mediately switches to the STORE state whenever it finds a node that does not meet
the current post condition (state TEST_POST) and skips forward to the next context
node.

The automaton reaches a final state if either the outer or the inner subplan
runs out of tuples.

Quantitative Assessment

We used our staircase join-enhanced PostgreSQL instance to re-run queries Q1–Q4

from Chapter 2 on the identical hardware. For ease of comparison, we also recite
the execution times we observed in Chapter 2. All execution times are illustrated
in Figures 3.11 (Query Q1, descendant axis), 3.12 (Query Q2, ancestor axis),
and 3.13 (Queries Q3/Q4, preceding/following axes).

The four queries each stress one specific axis of the XPath language. On our
original PostgreSQL platform, we observed a quadratic scaling to document sizes
for each of them on documents generated with xmlgen. Only explicit modifications
to the original query (in the case of Q2) or to the resulting SQL code (Query Q1)
were able to reduce this complexity to a linear behavior. In contrast, none of these
modifications are required if the database has been extended by staircase join,
which incorporates any tree-specifics present in the pre/post plane. Our enhanced
PostgreSQL installation beats the original instance in all of our test queries (even
the modified ones). Staircase join achieved linear scalability within the entire size
range.

The staircase join-extended PostgreSQL system shows its advantage most promi-
nently during the execution of the preceding and following axes (Queries Q3

3.3. IMPLEMENTATION CONSIDERATIONS 55

101

102

103

104

105

106

107

108

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

execution times

original XPath accelerator
shrink-wrapping
staircase join

page misses
original XPath accelerator
shrink-wrapping
staircase join

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s] page

m
isses

Figure 3.11: Staircase join performance for Query Q1. Staircase join achieves
linear performance in the query’s result size. The introduction of the new join
operator no longer requires explicit query adaptions on the SQL level.

101

102

103

104

105

106

107

108

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

execution times

original XPath accelerator
symmetric rewrite (Qsymm

2)
staircase join

page misses
original XPath accelerator
symmetric rewrite (Qsymm

2)
staircase join

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s] page

m
isses

Figure 3.12: Staircase join implementation for the ancestor axis (Q2). The en-
hanced PostgreSQL instance renders any rewrites to the XPath expression itself
obsolete.

56 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

exec. times

orig. XPath accel.
staircase join

page misses

orig. XPath accelerator
staircase join

XML document size [MB]

ex
ec

u
ti
o
n

ti
m

e
[m

s]
/

p
a
g
e

m
is

se
s

(a) Query Q3 (preceding axis).

101

102

103

104

105

106

107

108

0.11 0.29 1.1 3.3 11 34 111 335 1,118

exec. times

orig. XPath accel.
staircase join

page misses

orig. XPath accelerator
staircase join

XML document size [MB]

ex
ec

u
ti
o
n

ti
m

e
[m

s]
/

p
a
g
e

m
is

se
s

(b) Query Q4 (following axis).

Figure 3.13: Staircase join on PostgreSQL for the preceding and following axes.

and Q4). Here, the off-the-shelf system not only suffers from the significant search
effort; sorting the query result and eliminating duplicate hits add another consid-
erable cost. In fact, the original system was not able to handle the two queries for
XML instances above 34MB at all (Figures 3.13(a) and 3.13(b)).

For further details and experiments on the injection of staircase join into Post-
greSQL, we refer the interested reader to [Mayer04a]. For now, we will put the
disk-based execution paradigm aside and look into the domain of main memory-
oriented database kernels.

3.3.2 Main Memory-Related Adaptions

The classical design of disk-based database systems considers access to secondary
storage as the dominating cost factor. This model, however, is increasingly being
invalidated by ongoing advances in hardware technology that put main memory
access cost into the spotlight. Main memory database systems (MMDBMS) ac-
knowledge this fact with algorithms optimized for execution on modern computing
hardware. The careful consideration of CPU and cache characteristics is crucial
to this new database paradigm, into which staircase join turns out to fit perfectly.

The MonetDB system [Boncz02] constitutes an advanced implementation of
the main memory-oriented execution paradigm and is available in open source.3

MonetDB’s data model exclusively uses binary tables (“binary association tables”,

3http://monetdb.cwi.nl/

http://monetdb.cwi.nl/

3.3. IMPLEMENTATION CONSIDERATIONS 57

BATs) and thus blends perfectly with the two-column schema of the XPath ac-
celerator document encoding. The MonetDB kernel forms the back-end of the
XQuery system MonetDB/XQuery. This section focuses on the staircase join im-
plementation included therein.

BATs provide a number of interesting features with respect to the implemen-
tation of the XPath accelerator document encoding, in particular the column type
void (virtual oid) mentioned earlier in Section 2.3.3. Columns of this type hold
continuous sequences of integers o, o + 1, o + 2, . . . , of which MonetDB only stores
the offset o. It is not the reduced storage requirement that is of special interest
here, but the possibility to execute many operations as positional lookups. This
functionality provides a highly efficient means to implement staircase join’s skip-
ping idea.

The adaptions to staircase join that we are about to describe are motivated
by the calculations we published in [Grust03c]. Though their concrete numbers
are specific to a certain hardware system, these calculations exemplify hardware-
independent characteristics of staircase join and may easily be reproduced for
different systems. The figures in the following assume a Dual-Pentium 4 Xeon
machine, clocked at 2.2GHz. The system is equipped with 2GB of main memory
and a two-level cache (levels L1/L2) of sizes 8KB/512KB. L1/L2 have cache
line sizes of 32 bytes/128 bytes with miss latencies of 28 cy/387 cy = 12.7 ns/176 ns
(measured with the calibrator tool described in [Manegold02]).

CPU Bottleneck Elimination

In MonetDB, staircase join essentially nests two loops that scan the context and
doc BATs, respectively. The major fraction of work is done by the inner loop,
i.e., by procedure scanpartition_desc () (see Algorithm 3.4), which scans the
document relation doc. To optimize the CPU characteristics of staircase join, we
will first concentrate on how to make this scanning process most efficient.

As suggested before, column pre forms a continuous sequence of integers, which
perfectly matches MonetDB’s space-efficient column type void. This leaves us
with the storage of post values, which we implemented as 4-byte integers. No
more overhead is required to store a tuple 〈pre, post〉 in MonetDB; hence, an L2

cache line will contain 128/4 = 32 nodes. The instruction latencies of single assembly
instructions [Int05] provide an estimate for the number of CPU cycles spent on
each iteration in scanpartition_desc (). On our test machine, they amount to
17 cy per iteration. For one cache line, this is 17 cy × 32 = 544 cy which exceeds
the L2 miss latency of 387 cy; scanpartition_desc () is obviously CPU-bound
(rather than cache-bound).

Algorithm 3.4 basically performs two distinct tasks for each document node:
(i) test the post condition in line 3 and (ii) append qualifying nodes to the output

58 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

height(t)

•

•

◦

•

•
••
•
•

••
••

•

◦
••

◦•
••

∅

v

c1

c3

c4

pre = post + height(t)

pre = post

copy scan scan scan
skip

post

pre

Figure 3.14: Estimation-based skipping: Lower and upper bounds for the number
of descendants of each document node form two diagonals in the pre/post plane.
The lower bound pre = post defines the range of the copy phase in Algorithm 3.5.

BAT (line 4). We obviously cannot avoid the latter step, as it implements the
construction of the operator’s result. However, we can save a large amount of
work with respect to the former task if we, again, take tree-specific properties of
values pre(v) and post(v) into account.

Based on Equation 2.3, we can find a lower bound for pre values, such that
nodes below this pre boundary cannot possibly violate the join’s post condition
(This is dual to the shrink-wrapping conditions, i.e., Equations 2.5.):4

pre(v′) ≤ post(v) ⇒ post(v′) < post(v) . (3.1)

According to Equation 2.3, this estimation of the number of v’s descendant nodes
is off by level(v), i.e., at most height(t). In combination with Equation 2.5a, it
defines lower and upper bounds for the size of each node’s descendant region.
In Figure 3.14, these bounds are illustrated by the two diagonals in the pre/post
plane.

Nodes within the lower boundary may safely be copied directly into the result
BAT, without any inspection of their post values. Our CPU-optimized implemen-
tation of scanpartition_desc () (Algorithm 3.5), hence, divides the processing
of the doc BAT into two distinct phases:

(i) The copy phase directly copies the first post(c) − pre(c) nodes that imme-
diately follow the context node c in the pre/post table into the join result.

4We assume pre(v′) > pre(v) here, as this is the situation in scanpartition_desc ().

3.3. IMPLEMENTATION CONSIDERATIONS 59

scanpartition_desc (pre1, pre2, post)

begin1

estimate ← max (pre1, post);2

/* copy phase */

for i from pre1 to estimate do3

append doc[i] to result;4

/* scan phase */

for i from estimate + 1 to pre2 do5

if post(doc[i]) < post then6

append doc[i] to result;7

else8

break ; /* skip */9

return result;10

end11

Algorithm 3.5: A CPU optimized implementation of scanpartition_desc ().

According to Equation 3.1, no postorder ranks have to be checked for these
nodes. The code for this phase forms an extremely tight copy loop.

(ii) The remaining document nodes within the partition are processed in the al-
gorithm’s scan phase. Essentially, this phase is identical to the original loop
and includes a test for each node’s postorder rank. As before, we abort scan-
ning the current partition, as soon as we find the first node in c’s following
region and skip forward to the next context node.

As mentioned earlier, the estimation error with respect to the number of descen-
dant nodes maximally amounts to the tree’s height, height(t). This is insignificant
in comparison to the overall document size, so that the copy phase will represent
the bulk of the algorithm’s work. A single node copy iteration takes about 5 CPU
cycles. On our system, processing one L2 cache line now takes 5 cy× 32 = 160 cy
which lies clearly below L2 miss latency. Procedure scanpartition_desc () is
now cache-bound, rather than CPU-bound.

The branch prediction friendliness of both processing phases adds another
share to the CPU efficiency of scanpartition_desc (). Both loops are termi-
nated by a fixed end condition and the postorder condition always enters the same
(then) branch, except for the last iteration. This branching behavior is per-
fectly predictable, such that the significant penalties for instruction retirement are
avoided [Ross02].

60 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

Enhancements to Staircase Join’s Cache Friendliness

Thanks to its sequential and strictly forward processing, staircase join shows a
highly cache-friendly data access pattern, which we already found beneficial for
disk-based database systems. This feature applies even more to the main memory-
optimized domain.

On the hardware level, sequential tuple access leads to a full usage of CPU
cache lines. The resulting sequential memory bandwidth of a machine with two
cache levels has been described by [Manegold02]. For our example system, we
get [Grust03c]:

LSL2

LL2 +
LSL2

LSL1
× LL1

=
128 byte

176 ns + 128 byte
32 byte

× 12.7 ns
= 551 MB/s

(with LSC the cache line size of cache C and LC the associated miss latency).
This bandwidth is shared by the parallel read and write operations in algorithm

scanpartition_desc () (both employ strictly sequential memory access). During
the execution of the procedure for the query /descendant::node() (which almost
entirely consists of a copy phase), we observed a bandwidth that was significantly
higher:

bytes read + bytes written

execution time

=
(|doc|+ context nodes scanned + result size)× 4 byte

execution time

=
(50, 844, 982 + 1 + 47, 015, 212)× 4 byte

519 ms
= 719 MB/s .

This excess sequential memory bandwidth is due to hardware prefetching pro-
vided by modern processors, such as the Pentium 4 system under investigation.
After a short startup penalty—after which it has recognized the sequential ac-
cess pattern—the CPU will automatically read two L2 cache lines (i.e., 256 byte)
ahead.

An additional read ahead may be obtained by employing software prefetching.
Explicit prefetch instructions (prefetchnta) advise the CPU to prefetch further
cache lines ahead. Our system has an overall miss latency (LL1 + LL2) of 28 cy +
387 cy = 415 cy, while Algorithm 3.5 requires only 2 × 160 cy = 320 cy to process
the two cache lines loaded by the hardware prefetcher. Hence, we use prefetchnta
to advise the CPU to read three cache lines ahead. In combination with additional
code tuning (loop unrolling), this boosted the observed bandwidth up to 805 MB/s.

3.3. IMPLEMENTATION CONSIDERATIONS 61

Performance Assessment

To assess the effect of introducing tree awareness into a main memory DBMS,
we implemented staircase join as an extension module to the MonetDB system.
As usual, documents from the XMark benchmark set [Schmidt02] served as a
synthetic, yet realistic data set to examine the benefits of staircase join.

The tree-aware optimizations introduced with staircase join—pruning, parti-
tioning, and skipping—are most effective for the XPath descendant and ancestor

axes.5 Figures 3.15 and 3.16 illustrate the performance of staircase join for the
following queries (respectively):

� Qdesc: /descendant::profile/descendant::education and

� Qanc: /descendant::increase/ancestor::bidder.

Again, the sole purpose of the initial step is to provide a sufficiently large context
set for the second step, which is of actual interest. Both queries have been eval-
uated in [Grust03c] on the hardware described above. An IBM DB2 installation
on the same system serves as a baseline for a commodity RDBMS (without the
availability of staircase join).

Both queries were answered by our staircase join implementation in interactive
time. Result sizes for Qdesc and Qanc show linear scaling to document size and,
hence, so do the execution times of staircase join.

Staircase Join and the descendant Axis. In case of Qdesc, Figure 3.15 shows
that DB2 keeps up with staircase join fairly well for the full range of document sizes.
This is mainly an effect of the shrink-wrapping conditions (included in Qdesc) that
serve as a very accurate estimate to “simulate” staircase join’s skipping technique.

Furthermore, a look into the execution plans employed by DB2 reveals another
instance of its elegant means to evaluate XPath name tests: pushing them through
the join operators makes them efficiently supported by suitable B-trees with a
primary ordering on tag names (cf. page 31). As mentioned earlier, staircase
join behaves much like a join in the classical sense to the query optimizer and
name test pushdowns are equally applicable here. To demonstrate their effect,
Figure 3.15 shows the execution times for both: staircase join with name tests
pushed through (“early name test”) and staircase join with name tests evaluated
after join processing. Note, however, that the effectiveness of this plan rewrite
depends on the selectivity of the particular name test. Ideally, the choice for
either plan should be driven by a suitable cost model.

5With pruning in place, axes preceding and following degenerate into a single range scan.
We will demonstrate this effect later in Section 3.4.3.

62 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

1 10 102 103 104

1 10 102 103 104

execution time [ms]

1.1

11

111

1,111

X
M

L
do

cu
m

en
t

si
ze

[M
B

]

1

4

35

345

2

12

109

1,108

3

21

224

2,230

staircase join (early name test)
staircase join
IBM DB2 SQL

Figure 3.15: CPU-optimized staircase join performance observed for the eval-
uation of /descendant::profile/descendant::education (Qdesc). Name test
pushdown saves another factor of three (measurements obtained in [Grust03c]).

Partitioning Boosts the ancestor Axis. The same arguments hold for the
evaluation of an ancestor step, illustrated by Query Qanc in Figure 3.16. Again,
we can significantly benefit from early name test evaluation.

Though the actual SQL input we shipped to DB2 describes a symmetric equiv-
alent to the Query Qanc listed above (cf. Section 2.1.6) and despite the database’s
efficient application of single record index accesses (cf. Section 2.2.1), the execu-
tion times observed for DB2 significantly suffer from the involved sort overhead.
The use of DB2’s index nested loops join algorithms now falls behind the order-
preserving staircase join operator by a factor of 25.

3.4 Tree Awareness Beyond Staircase Join

While staircase join elegantly integrates a high degree of tree awareness into a single
database operator, it does not yet mark the end of tree-specific optimizations to
relational database systems.

3.4.1 Loop-Lifting Staircase Join

It is in the very nature of staircase join to prune its input for redundant context
nodes or overlap of query regions. While this is an ideal strategy for expressions
along the lines of XPath 1.0, this optimization may hinder the implementation
of language features that go beyond those simple path expressions, in particular
XQuery’s FLWOR expressions. While the implementation of this iteration construct

3.4. TREE AWARENESS BEYOND STAIRCASE JOIN 63

1 10 102 103 104

1 10 102 103 104

execution time [ms]

1.1

11

111

1,111

X
M

L
do

cu
m

en
t

si
ze

[M
B

]
2

7

57

571

3

20

192

2,037

17

134

1,400

14,240

staircase join (early name test)
staircase join
IBM DB2 SQL

Figure 3.16: Path /descendant::increase/ancestor::bidder. The avoidance
of duplicates is particularly effective for the ancestor axis. Staircase join’s advan-
tage over DB2 is even more significant here (measurements obtained in [Grust03c]).

itself will be the subject of the next chapter, we will look into the impacts on path
evaluation right now.

Semantically, the use of a path expression within a FLWOR statement’s return
clause demands the repeated evaluation of the same sequence of path steps for
multiple context sets. To exemplify, the expression

for $v in (/child::a, /child::a/child::b) return

$v/descendant::node()

assembles the results of /child::a and /child::a/child::b into a single node
sequence, and then, for each $v within the sequence in turn, queries $v’s descen-
dants. All of them are collected, in order, into the flat result sequence.

Note that this is not the same as evaluating

(/child::a, /child::a/child::b)/descendant::node() .

In the latter query, all nodes returned by /child::a/child::b could obviously be
removed from the context set in order to avoid duplicates during the evaluation of
the final descendant step. The former FLWOR query, in contrast, makes these du-
plicates a semantically required part of the result. Hence, the direct application of
staircase join to the binding sequence (/child::a, /child::a/child::b) would
violate the semantics of FLWOR expressions. A repeated execution of staircase join
is hardly an alternative: for an iteration over n bindings, this could lead to n
repeated document scans—an unacceptable effort for larger n.

64 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

iter pre
1 γ1,1
1 γ1,2...

...
1 γ1,s1

...
...

n γn,1...
...

n γn,sn

In [Boncz05b], we introduced a loop-lifted variant of staircase join
that allows for the evaluation of an XPath location step for multiple
context sequences in a single document scan. A relational represen-
tation of the input accepted by loop-lifted staircase join is shown as
the table on the left. For each of the n iterations (encoded in column
iter), the table lists the preorder ranks γi,1, . . . , γi,si

of all nodes that
contribute to the context sequence in iteration i ∈ {1, . . . , n} (si de-
notes the length of the ith context sequence). In this representation,
loop-lifted staircase join restricts pruning to nodes within each iter
group.

Partitioning in the Loop-Lifted Case

It is a consequence of the partitioning technique in the basic staircase join al-
gorithm that only a single context node is active (and hence “producing” result
nodes) at a time while scanning the pre/post plane. Within an XQuery FLWOR

clause, however, the same node(s) might occur more than once in the result, each
occurrence belonging to a different iteration.

The key to partitioning for the loop-lifted staircase join variant is the main-
tenance of a stack of context nodes, annotated with the iterations they occur in.
While scanning/skipping over the document, partition boundaries now determine
when to push a context node onto the stack and when to pop it off again. When
loop-lifted staircase join encounters a result node, it will analyze the stack and
produce result tuples for all active context nodes/iterations.

Main Characteristics of Loop-Lifted Staircase Join

We refer the reader to [Boncz05b] for details on the loop-lifted staircase join im-
plementation but will summarize its main characteristics here:

(i) Loop-lifted staircase join processes an arbitrary number of context sequences
in a single sequential document read. Skipping further reduces the number
of nodes examined.

(ii) The algorithm’s output is an 〈iter , pre〉 schema, ordered on 〈pre, iter〉. With
only minimal effort, the result may alternatively be produced in 〈iter , pre〉
order.

The implementation of loop-lifted staircase join in the MonetDB kernel is part
of the MonetDB/XQuery system, the open-source XQuery processor that accom-
panies this thesis.

3.4. TREE AWARENESS BEYOND STAIRCASE JOIN 65

aO

b cO f

d esuspend resume

(a) Sample tree.

◦a

•b ◦c

•d •e
•f

scan

scan

scan

suspend resume

level

pre

(b) Corresponding pre/level space.

Figure 3.17: Order-preserving child implementation for arbitrary context sets. If,
while scanning the children of context node a, we pass a second context node c,
we suspend the scan process and resume after collecting the children of c.

3.4.2 Support for Non-Recursive Axes

So far, the considerations about tree properties for efficient XPath evaluation were
focused on the support for recursive axes. Similar observations, however, apply to
the non-recursive case as well.

Evaluating the child Axis for Entire Context Sets

Querying along XPath’s child axis was found to be highly efficient for single con-
text nodes if the execution is backed by suitable B-tree indexes. On pre/size/level -
encoded data, a range scan along a concatenated 〈level , pre〉 index for example,
directly retrieves all children of a given context node in document order, without
encountering any false hits (cf. page 30).

However, if applied to all items in a context sequence one by one, the result of
such an approach will typically violate the XML document order. If we evaluate
the query (a, c)/child::* in the sample tree in Figure 3.17(a) for both context
nodes a and c in separation, the concatenated result (b, c, f, d, e) does not satisfy
XPath’s order semantics. In Figure 2.14, this led to the introduction of an explicit
SORT operator into the query plan employed by DB2.6

Figure 3.17(b) illustrates an alternative, order-preserving technique to evaluate
the child axis. The idea is to scan the child region of the first context node (a
in Figure 3.17) using a 〈level , pre〉 index as usual. However, as soon as we pass
the pre value of the next context node c in the set, we suspend the scan process

6The child axis does preserve uniqueness, though. If evaluated on a duplicate-free context
set, the result of a child step will always be duplicate-free as well.

66 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

a

b c f

d eO

(a) Sample tree.

•
a

•
b
•
c

•
d
◦
e

•
f

scan

pre(e)

level(e)− 1

level

pre

(b) Corresponding pre/level space.

Figure 3.18: Tree-aware parent axis evaluation. On a concatenated 〈level , pre〉
index, a reverse scan starting at 〈level(e) − 1, pre(e)〉 will yield e’s parent as its
first hit.

and initiate a new scan for all children of c. As soon as we finish scanning for c’s
children, we resume the scan for the children of a.

This approach is inspired by the algorithm proposed in [Rode03] and guaran-
tees a properly sorted step result for arbitrary context sets. Its execution requires
exactly |result| tuple accesses. As the child axis naturally does not produce du-
plicate result nodes (hence, does not require pruning), this technique of retrieving
child nodes straightforwardly extends to a loop-lifted variant.

A parent Step With Tree Awareness

Unfortunately, the idea of scanning a concatenated 〈level , pre〉 index to evaluate
the child axis on range-encoded data cannot be directly transferred to the eval-
uation of XPath’s parent axis. For that axis, the respective region conditions
describe a constraint on two columns (pre(v′) and size(v′)) that can no longer be
mapped to a single B-tree scan:

v′ ∈ v/parent
⇔

pre(v′) < pre(v) ≤ pre(v′) + size(v′) ∧ level(v′) = level(v)− 1 .

However, considering tree-specific properties of the pre/level space, we may
evaluate parent in a single index lookup nevertheless. For a given context node e
(see Figure 3.18), a tree-aware parent implementation may trigger a reverse index
scan7 on a concatenated 〈level , pre〉 index, starting at 〈level(e)− 1, pre(e)〉. Such

7The functionality to scan indexes in a reverse fashion may presuppose an explicit declaration
during index creation. On DB2, e.g., reverse scans are enabled via the CREATE INDEX ...
ALLOW REVERSE SCANS command.

3.4. TREE AWARENESS BEYOND STAIRCASE JOIN 67

a scan will always encounter e’s parent node as its first hit (if any).
While this approach to the evaluation of the parent axis perfectly blends with

the execution model of existing databases (DB2, e.g., allows index scans to be
executed as single record scans; cf. page 27), the choice of such an execution plan
requires explicit knowledge about the data’s tree origin. The technique sketched
in Figure 3.18 is thus hardly expressible in SQL.

Additional advantages for the evaluation of the parent axis may be gained
if we consider the step’s behavior with respect to order. On a sorted context
set, the one-by-one evaluation of the parent axis guarantees document order as
well [Fernández04]. Hence, no explicit sorting is required to process the step’s
result.

3.4.3 Staircase Join Without Staircase Join

Staircase join is a single query operator that encapsulates full tree awareness
and may turn existing relational database systems into efficient tree processors.
Though the necessary changes remain local to the system’s query engine, the addi-
tion of staircase join still requires an invasion into the respective database kernel.
In some cases, however, this is not desirable or a system may not allow the addition
of kernel operators at all.

Yet, many of the observations that led us to staircase join may still be made
available to such “black box” systems. We have already discovered two such op-
timizations with a considerable impact in Chapter 2: shrink-wrapping and sym-
metric rewrites. Shrink-wrapping was identified as a weaker means to describe
staircase join’s skipping technique and makes this technique applicable to the sym-
metric rewrites. Both techniques were easily expressible in SQL, hence, accessible
to commercial RDBMSs such as DB2.

In fact, the idea of pruning can have an equally significant impact on such
systems. Pruning proved particularly effective for the preceding and following

axes, where context sets of arbitrary size could be reduced to a single context
node (cf. page 46). Both cases are easily expressible in SQL. E.g., for the path
e/preceding::ν, we get

q(e/preceding::ν) ≡

SELECT DISTINCT v′.*
FROM doc AS v, doc AS v′

WHERE v.pre = (SELECT MAX(pre) FROM q(e))
AND v′.pre < v.pre AND v′.post < v.post
AND test(ν, v′)

ORDER BY v′.pre .

(3.2)

We ran the “pruned” SQL code for Queries Q3 and Q4 from Chapter 2 on
our DB2 installation. The measured execution times are lined up in Figures 3.19

68 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

101

102

103

104

105

106

107

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
range encoding (pre/size/level)
SQL rewrite Qprune

3 (pre/post)
SQL rewrite Qprune

3 (pre/size/level)
1

2

8

5
0

3
2
2

2
,6

4
8

2
9
,0

6
6 2

8
1
,3

3
5

1
5
,6

7
4
,6

1
2

1

3

1
1

6
5

4
1
6

3
,4

1
2

3
8
,2

1
1 3

6
3
,1

9
4

1
6
,3

7
8
,2

1
4

1 1 1

2

6

1
2

3
2

9
2

3
0
2

1 1 1

2

4

9

2
6

7
5

2
4
5

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 3.19: Rephrasing Query Q3 on the SQL level leverages XPath performance
by orders of magnitude (Q3: /descendant::current/preceding::initial).

and 3.20. For reasons of comparison, both figures also include the execution times
observed for the unmodified queries as presented in Section 2.2.1.

On both document encodings (XPath accelerator as well as range encoding),
rephrasing the SQL code speeds up query evaluation by several orders of magni-
tude. Note that this is not only the effect of a reduced search effort due to the
smaller context set. Moreover, the new queries produce significantly less duplicates
and, hence, avoid a large amount of expensive result sorting.

3.4.4 Tree Awareness in Other Domains

The inspection of tree specifics hidden in encoded XML data is not restricted to the
XPath evaluation domain. Another possibly performance-critical application is the
efficient validation of XML tree fragments. This functionality, an integral part of
the W3C XQuery specification, describes the verification of structural constraints
on XML tree fragments, accompanied by an annotation of type information to the
validated nodes.

Grust and Klinger [Grust04b] describe a validation procedure that generates
type annotations for encoded tree data in a single sequential document read. Their
approach may benefit from type annotations already attached to parts of the
overall tree (such situations arise, e.g., after the construction of tree fragments
in XQuery’s strict construction mode). In that case, detailed knowledge about
the underlying encoding helps the algorithm to skip over the respective subtrees.

3.5. RELATED WORK 69

101

102

103

104

105

106

107

101

102

103

104

105

106

107

0.11 0.29 1.1 3.3 11 34 111 335 1,118

original XPath accelerator
range encoding (pre/size/level)
SQL rewrite Qprune

4 (pre/post)
SQL rewrite Qprune

4 (pre/size/level)

1

2

8

6
1

3
5
1

2
,9

0
2

3
2
,8

1
3 3

2
0
,5

6
6

2
0
,8

7
4
,6

0
1

1

2

8

7
7

3
4
4

2
,9

1
3

3
2
,3

0
6 3

2
0
,9

8
1

1
9
,3

5
6
,7

8
3

1 1 1

5

1
0

2
6

7
2

2
1
2 6

9
9

1 1 1

5

1
1 2

0

6
1

1
7
7 5

8
9

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 3.20: Context set pruning by a rewrite of the SQL code speeds up Query
Q4 by orders of magnitude (Q4: /descendant::city/following::zipcode).

3.5 Related Work

An efficient access to the logical tree structure is crucial to the performance of
any XML database system and since XML emerged in the database domain, a
large body of research has been published on the efficient evaluation of path ex-
pressions. Quite surprisingly, though, most of these suggestions are limited to the
child/descendant relationships.

3.5.1 Path Evaluation on RDBMSs

Staircase join is quite similar to the multi-predicate merge join (MPMGJN) devel-
oped by Zhang et al. [Zhang01]. In contrast to the traditional merge join (equi-joins
only), this new algorithm handles containment predicates in a merge-like fashion.
Containment in the sense of [Zhang01] precisely corresponds to the descendant

and child axes in XPath. MPMGJN assumes a pre/post-like tree encoding and,
hence, is directly applicable to XPath accelerator.

Much like staircase join, multi-predicate merge join is crafted for a high cache
utilization and performs particularly well in that respect. The algorithm has been
designed to exploit the hierarchical containment of intervals and, in contrast to
staircase join, does not inspect further tree-specifics in the underlying tables.

A natural extension of the MPMGJN algorithm are the structural joins sug-
gested by Al-Khalifa et al. [Al-Khalifa02]. They specifically target the evaluation

70 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

of location steps on XML tree structures and introduce additional support for the
ancestor and parent axes.

The structural join algorithms inherit the skipping of irrelevant document re-
gions from MPMGJN and guarantee a proper ordering of their output according
to XML document order. They do not, however, employ staircase join’s pruning
technique. This makes them easier applicable to a loop-lifted step evaluation on
the one hand, but may constitute a performance penalty on the other.

The PathStack algorithm proposed by Bruno et al. takes quite a different
approach to path evaluation [Bruno02]. PathStack accepts an entire path pattern
as its input and matches it against an XML document instance in a holistic fashion.
Support for twig patterns is provided in terms of the accompanying TwigStack
algorithm that divides the search for such twigs into several path queries (evaluated
with PathStack). Results are then “stitched” together to form the overall result.

PathStack may significantly benefit from the existence of indexes on the stored
document instances and, hence, interoperates well with existing database tech-
nology. In this proposal, indexes provide a stream of nodes that qualify for a
specific node predicate in the query pattern. In a sense, this is comparable to the
pushdown of name tests through staircase join and the respective application of
indexes.

Though PathStack efficiently evaluates arbitrary path patterns with at most
|doc| accesses to the document relation doc, its authors have already identified
one of its drawbacks themselves. In contrast to the algorithms mentioned before,
PathStack can only keep to XPath’s ordering constraints if it is evaluated in a
“blocking” fashion.

3.5.2 Tree Properties in XPath

Staircase join thoroughly exploits the semantics of XPath location steps for their
efficient evaluation on pre/post-encoded data. Others have looked into similar
characteristics of the query language, without the specific execution of queries on
a relational back-end in mind.

The complexity of path step evaluation has been investigated by Gottlob et
al. [Gottlob05]. Based on a reasonable evaluation strategy, they conclude an expo-
nential time requirement in the query size for path expressions. This complexity
is mainly a consequence of the growing size of intermediate query results. To
exemplify, each repetition in the query

//a/b /parent::a/b︸ ︷︷ ︸
n times

. . . /parent::a/b

multiplies the intermediate result size by the number of b children below an a

node. Staircase join’s pruning phase minimizes the number of context nodes before

3.5. RELATED WORK 71

executing each step. Hence, our algorithm would not suffer from the effect sketched
here. In fact, experiments confirmed a linear scaling for this example.

Our algorithm does suffer, however, during the evaluation of other test queries
listed by Gottlob et al.. This is mainly due to the lack of early-out semantics
in our implementation of staircase join. Experiments 2–4 in [Gottlob05] employ
XPath predicate expressions that lead to exponential sizes of intermediate results
even with staircase join.

The opportunity to prune nodes from an XPath location step context has
been observed by Helmer et al. in connection with the algebraic optimizer in-
cluded in Natix [Helmer02]. In Natix, pruning for the preceding, following, and
descendant axes is carried out with the help of explicit step functions, with the
same effect as sketched in Section 3.2.1.

Grust et al. have investigated the consequences of context pruning on positional
predicates in XQuery [Grust04a]. It is easy to see that the removal of context nodes
falsifies the query outcome in that case. As a remedy, the authors propose a refined
implementation of staircase join that directly incorporates predicates on positions.

The preservation of document order in the result set of different location paths
has been discussed by Fernández et al. [Fernández04]. Depending on sorting and
uniqueness properties of the input to a location step, some XPath axes give similar
guarantees for their evaluation result. Simplified reasonings of that kind have
inspired our implementation of the non-recursive XPath axes (cf. Section 3.4.2).

72 CHAPTER 3. XPATH EVALUATION WITH STAIRCASE JOIN

4
Loop-Lifting: From XPath to XQuery

As we have seen, suitable encoding techniques can turn relational databases into
highly efficient tree processors, particularly if their kernel has been explicitly en-
hanced for tree awareness, e.g., in terms of the staircase join operator. These
techniques, however, have remained focused on the execution of XPath queries so
far. In this chapter, we will leverage our relational processing stack to full XQuery
support, including the evaluation of FLWOR clauses with arbitrary nesting. This
iteration primitive defined in the XQuery language specification will be handled in
terms of the loop-lifting technique that we already touched upon in Chapter 3. It
will form the key contribution of this chapter. We propose an XQuery compilation
procedure that adheres to a relational algebra dialect easily implementable on,
e.g., SQL hosts.

Our assumptions about the relational back-end in our processing stack remain
minimal. After setting up a consistent representation for XQuery’s fundamental
data type, sequences of items, we will identify our back-end requirements in Sec-
tion 4.1. The loop-lifted compilation of XQuery FLWOR clauses will form the topic
of Section 4.2, before we discuss additional XQuery features in Section 4.3. We will
see that loop-lifted compilation goes perfectly together not only with the handling
of XML tree nodes (Section 4.4), but also with the dynamic typing facilities in
XQuery (Section 4.5). Experiments on a commercial SQL system in Section 4.6
confirm the applicability of our approach, before we wrap up in Section 4.7.

73

74 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

4.1 A Relational Algebra for XQuery

The set-oriented processing model of relational systems perfectly fits the set seman-
tics of XPath location steps, which is of great advantage for the tree navigation per-
formance we saw earlier. XQuery’s tight ordering constraints on (sub-)expression
results as well the means to iterate over them (FLWOR expressions) seem to be quite
contrary to that and require specific care in the setup of our compiler. Hence, we
will first have to draw our attention to an adequate representation of XQuery item
sequences by relational means.

4.1.1 Relational Sequence Encoding

The XQuery language specification considers data of two principal kinds: XML
tree nodes and atomic values. They are collectively referred to as items in the
W3C XQuery Data Model (XDM) specification [Fernández05]. Items may hetero-
geneously be assembled into sequences and the evaluation of any XQuery (sub-)
expression must result in an instance of XQuery’s fundamental data type, ordered,
finite sequences of items.

An important characteristic is the prohibition of nesting. XQuery sequences
will be immediately flattened upon combination or concatenation. This blends

pos item
1 "a"
2 "b"
3 "c"
4 "d"

perfectly with a relational representation as shown by the ta-
ble on the left, which illustrates our encoding of the sequence
("a", "b", "c", "d"). In this relation, each tuple 〈p, v〉 encodes a
single sequence item i, where p maintains the order among items
(i.e., the position in the sequence) and v carries the actual payload,
i.e., the value of i. We assume column item to be of a polymorphic

type that may hold the values of items of atomic type as well as node surrogates
for XML tree nodes (e.g., their preorder ranks pre(v)). The polymorphic column
types available in modern SQL implementations (e.g., the SQL_VARIANT type in
Microsoft SQL Server [SQL06]) are perfectly suited for this purpose.

We encode the empty sequence () in terms of the empty relation. A single
item i and the singleton sequence (i) have identical representations, which co-
incides with the XQuery semantics. We will usually populate column pos with
intuitive, consecutive numbers 1, 2, 3, Our compilation procedure, however,
does not actually depend on such a dense numbering in the relational encoding of
a sequence.

Interfacing with XML Trees and Fragments

Our approach does not prescribe any specific tree encoding for the storage of XML
instances. It only requires the availability of node surrogates γ that uniquely

4.1. A RELATIONAL ALGEBRA FOR XQUERY 75

identify each tree node. For a semantically correct XQuery translation, we assume
these surrogates to correctly implement the basic XML concepts of node identity
and document order, i.e., for two nodes v1, v2 and their surrogates γv1 , γv2 , we
require

v1 is v2 ⇔ γv1 = γv2

and

v1 << v2 ⇔ γv1 < γv2 .

This requirement is satisfied by both encodings discussed in Chapter 2, in which
node surrogates took the form of the nodes’ preorder rank pre(v). Operators is

and << then compile into integer comparisons on ranks. Other encodings serve our
purpose equally well and may easily be plugged into the compilation procedure,
e.g., ORDPATH labels [O’Neil04] or extended preorder ranks [Li01].

XQuery is not limited to queries on single XML documents. In general, query
evaluation involves nodes from multiple documents or fragments thereof, possibly
created at runtime using XQuery’s element constructors. To exemplify, the query

(element a { element b { () } }, element c { () })

creates three element nodes in two independent fragments. To capture this in-
formation by relational means, we extend the relational tree encoding by a new
property frag and record a unique fragment identifier for each constructed frag-
ment.

Figure 4.1 illustrates this concept for two XML fragments and the range en-
coding discussed in Section 2.1.7. For reasons that we will elaborate in Sec-
tion 4.4.2, this encoding is a particularly good fit for the compilation approach
pursued here and, hence, will be the encoding of choice for the remainder of this
chapter. Note that we kept the document order of two nodes v1 and v2 from
separate fragments consistent with the XQuery semantics: if v1 precedes v2 (i.e.,
v1 << v2 ≡ pre(v1) < pre(v2)), the same is true for any pair of nodes taken from
these two fragments.

Loop-Lifting for Constant Subexpressions

Our prime concern in this chapter is the sound implementation of XQuery’s iter-
ation primitive, the for-return construct. In a nutshell, a for expression succes-
sively binds a variable $v to the items listed in the clause’s in part. The return

76 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

<a>
<c/>
<d/>

<e>
s<f/>

</e>

(a) Two XML fragments.

a

b

c

d

0

1

2

3

3

1

0

0

e

"s" f

4

5 6

2

0 0

(b) Associated fragment trees.

pre size level kind prop frag
0 3 0 elem a 0
1 1 1 elem b 0
2 0 2 elem c 0
3 0 1 elem d 0
4 2 0 elem e 1
5 0 1 text s 1
6 0 1 elem f 1

(c) Relational encoding.

Figure 4.1: The addition of column frag to the relational tree encoding imple-
ments the distinctness of independent XML tree fragments. This chapter assumes
documents stored according to the range encoding (pre/size/level).

body e is then evaluated for each item and its sub-results are assembled to form
the overall expression result:

for $v in (x1,x2, . . . ,xn) return e
≡

(e[x1/$v], e[x2/$v], . . . , e[xn/$v])

(e[x/$v] denotes the consistent replacement of all free occurrences of $v in e by x).
The semantics of these FLWOR clauses remains purely functional: it is sound

to evaluate e for all n bindings of $v in parallel. This property suggests that we
encode all bindings of $v within the loop body e in a single relation, which forms
the basis for our loop-lifted compilation strategy:

(i) We represent a loop of n iterations by means of a relation loop with a single
column iter of n values (e.g., 1, 2, . . . , n).

(ii) If a subexpression e occurs inside the body of an XQuery FLWOR clause,
its relational representation is lifted with respect to loop (intuitively, this
accounts for the n independent evaluations of the loop body).

For a constant atomic value c, lifting with respect to a given loop relation
means to form the Cartesian product

loop× pos item
1 c .

4.1. A RELATIONAL ALGEBRA FOR XQUERY 77

iter
1
2
3︸︷︷︸

loop

× pos item
1 10︸ ︷︷ ︸

encoding of 10

≡
iter pos item
1 1 10
2 1 10
3 1 10︸ ︷︷ ︸

lifted encoding of 10

(a) Lifting the constant 10.

iter pos item
1 1 10
1 2 20
2 1 10
2 2 20
3 1 10
3 2 20

(b) Lifted encoding of (10, 20).

Figure 4.2: Loop-lifting for constant subexpressions. Lifted encodings for expres-
sions c = 10 and c = (10, 20) with respect to the loop for $v0 in (1, 2, 3)

return c.

Figure 4.2(a) shows an example of loop-lifting for the constant subexpression 10,
lifted with respect to the loop

for $v0 in (1, 2, 3) return 10 .

If, for example, we replace 10 by the sequence (10, 20), the loop-lifted repre-
sentation consists of the six tuples shown in Figure 4.2(b) instead.

To ensure compositionality for arbitrary nestings of XQuery FLWOR clauses, we
will use the 〈iter , pos , item〉 schema throughout the whole compilation procedure.
In this representation of a subexpression e, a tuple 〈i, p, v〉 may be read as the
assumption that, during the iteration identified by i, the item at position p in
e has value v. In the following, we will refer to this schema as the loop-lifted
representation of the XQuery expression e.

Before we derive a complete compilation scheme that exclusively operates on
loop-lifted sequence representations, we will briefly formalize the target language
of our compiler, the relational algebra we use.

4.1.2 An Algebra for XQuery

Our compilation procedure uses a relational algebra dialect that consists of the
operators lined up in Table 4.1. Most of these operators are rather standard or
even restricted variants of the operators found in a classical relational algebra. For
the join operator 1, e.g., it is sufficient to evaluate equality predicates only. The
selection operator σa solely selects tuples with column a = true. Such a column is
typically the output of an operator }a:〈b1,...,bn〉 which applies the n-ary operator ◦
to columns b1, . . . , bn and extends the input tuples by the result column a.

We do not expect the underlying implementation to implicitly remove dupli-
cates from computed relations. In particular, the union operator ·∪ will only be

78 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

πa1:b1,...,an:bn projection and column renaming
σa select tuples with a = true
·∪, \ disjoint union, difference
δ duplicate elimination
× Cartesian product
1a=b equi-join
%a:〈b1,...,bn〉‖p sorted row numbering (with ordering 〈b1, . . . , bn〉, grouping p)
#a unsorted (arbitrary) row numbering
�α,ν XPath step join (axis α, node test ν)
ε/τ element/text node construction
}a:〈b1,...,bn〉 n-ary arithmetic/comparison/Boolean operator ◦
grpa:◦ b‖p aggregation/grouping (◦ ∈ {min, max, sum, count, . . . })
ab literal table

Table 4.1: A relational algebra of rather standard operators constitutes the target
language of our compiler (a, b column names).

applied to disjoint arguments. Our compiler triggers any required duplicate re-
moval with the explicit δ operator.

All in all, this forms a rather simplistic relational algebra and we will later
benefit from its assembly style notation when it comes to effective algebraic opti-
mizations and rewrites.

A Tribute to XQuery’s Order Semantics: % and #

Though our compiler’s target language operates on relations, an inherently un-
ordered data model, we still demand strict adherence to XQuery language specifi-
cations, including its prevalent concept of order. To this end, the generated plans
make frequent use of the two row numbering operators % and #. Given the sort
order defined by columns b1, . . . , bn, operator %a:〈b1,...,bn〉‖p produces consecutive row
numbers in the new column a. Row numbers re-start at 1 for each partition defined
by the optional grouping attribute p.

This type of row number assignment can induce a significant cost: a physical
implementation of % will typically involve a blocking—hence, expensive—sort of
its input relation. If the actual order among assigned numbers does not matter
to the semantics of the plan, we may thus better trade the sorted row numbering
operator % for its unsorted counterpart #, which simply enumerates tuples as it
goes in arbitrary order. Both variants are readily provided by many RDBMS
implementations. According to the OLAP amendment to the SQL:1999 standard,

4.1. A RELATIONAL ALGEBRA FOR XQUERY 79

e.g., compliant systems provide %a:〈b1,...,bn〉‖p(q) in terms of [Melton03]

SELECT *, ROW_NUMBER() OVER (ORDER BY b1, . . . , bn PARTITION BY p) AS a
FROM q .

Database hosts operating on ordered relations may even provide such numbering
for free. We have already discussed the void columns in the MonetDB [Boncz02]
RDBMS in Chapter 2. To cope with the unsorted numbering operator #, a sys-
tem’s internal row identifier could serve as an implementation of # free of charge.
The exploitation of both opportunities is on our agenda in Chapter 5 where we
discuss order-aware optimizations in Pathfinder.

Access to XML Trees and Fragments

To keep our compilation procedure independent of any specific tree encoding, we
express access to XML tree nodes in terms of explicit operators that we assume to
be provided by the underlying back-end. Operators �, ε, and τ , e.g., describe the
evaluation of XPath location steps and the construction of transient element/text
nodes, respectively. On range-encoded data, the staircase join from Chapter 3
provides an efficient implementation for �, other means to evaluate path steps
include TwigStack [Bruno02] or structural joins [Al-Khalifa02].1 We will sketch
the semantics as well as a possible implementation for ε and τ in Section 4.4.2.

The tree access operators are expected to operate on node surrogates γ as
demanded earlier. Typically, these surrogates point into a database table doc of
persistently stored XML documents or refer to XML tree fragments constructed
at runtime. In order to have the respective node containers at hand whenever an
algebraic operator requires access to it,2 our compiler maintains a set of live nodes
∆ associated with every XQuery (sub-)expression. Note that we will postpone a
detailed discussion on live nodes to Section 4.4.1. For the time being, the reader
may think of the maintenance of ∆ as a simple form of data flow analysis for XML
tree nodes.

4.1.3 A Ruleset to Compile XQuery

The core of our XQuery-to-relational algebra compiler is described in terms of
inference rules that define the · Z⇒ · (read “compiles to”) function. In these rules,
a judgment of the form

Γ; loop ` e Z⇒ (q, ∆)

reads that, given

1You may want to read the � symbol as “step operator” there.
2This does not only apply to operators �, ε, and τ , but also, e.g., to a post-processing

procedure that serializes the overall query result back into XML.

80 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

(i) an environment Γ that provides a mapping for any variable $v that may
occur free in e to its algebraic equivalent (qv, ∆v) and

(ii) a relation loop that describes the iteration context of e,

the XQuery (sub-)expression e compiles to the algebraic expression q with an
associated set of live nodes ∆.

Our compiler is fully compositional: to translate any subexpression indepen-
dently of its surrounding, both, in- and output, of the · Z⇒ · function are repre-
sented in a loop-lifted manner, i.e., they adhere to the schema 〈iter , pos , item〉. We
invoke the compilation process with the top-level XQuery expression, an empty
environment Γ = ∅, and a singleton loop relation (loop ≡ iter

1), which indicates
that the top-level expression is not embedded in any iteration.

Our compilation process accepts the normalized XQuery Core dialect as its in-
put, which basically represents a subset of the XQuery surface language, with most
syntactic sugar removed. In accordance with the W3C Formal Semantics specifica-
tion [Draper05], the Pathfinder XQuery compiler transforms incoming queries into
XQuery Core before initiating the actual compilation. This transformation, e.g.,
trades where clauses in XQuery FLWOR expressions for the respective conditional
if-then-else and positional predicates for an explicit iteration over the context
set.

The output of the compiler is a single algebra query and a set of live nodes (in
the form of an algebraic expression, too) associated with it. The generated tuples
will typically be consumed by a post processing step that serializes the query result
back into XML.

4.1.4 Basic XQuery Expressions

Equipped with this means of notation, we can now formalize the loop-lifting idea
that we have already seen for constant subexpressions.

Constant Subexpressions

The informal derivation of loop-lifted sequence representations (page 76) directly
translates into the inference rule that handles literal values in XQuery:

Γ; loop ` c Z⇒
(
loop× pos item

1 c , ∅
) . (Const)

Since no nodes can be contained in the expression result of a literal atomic
value, the compiler output is associated with the empty set of live nodes ∅.

4.1. A RELATIONAL ALGEBRA FOR XQUERY 81

iter pos item
1 1 1
2 1 10
2 2 20

(a) Encoding
q1 of e1.

iter pos item
1 1 2
2 2 30

(b) Encoding
q2 of e2.

p ord iter pos item
1 1 1 1 1
2 2 1 1 2
1 1 2 1 10
2 1 2 2 20
3 2 2 1 30

(c) Temporary column
attachment.

iter pos item
1 1 1
1 2 2
2 1 10
2 2 20
2 3 30

(d) Encoding
of (e1, e2).

Figure 4.3: Sequence construction: a temporary ord column facilitates the estab-
lishment of the correct sequence order (temporary column p) over the expression
result (cf. Rule Seq).

4.1.5 Sequence Construction

Essentially, we compute the sequence construction operator (e1, e2) in terms of a
disjoint union of the relational encodings q1 and q2 of e1 and e2:

Γ; loop ` e1 Z⇒ (q1, ∆1) Γ; loop ` e2 Z⇒ (q2, ∆2)

Γ; loop ` (e1,e2) Z⇒(
πiter ,pos:p,item

(
%p:〈ord ,pos〉‖iter

((
ord
1 × q1

)
·∪

(
ord
2 × q2

)))
, ∆1 ∪∆2

) (Seq)

To ensure the correct logical ordering of the expression result (items coming
from e1 must appear before those from e2 in pos order), we temporarily extend
both operands q1 and q2 by a column ord , encoding the order of the arguments.
After the union, Rule Seq sets up the final pos column (named p first to avoid
name clashes) using the renumbering operator %p:〈ord ,pos〉‖iter , before the projection
operator π restores the 〈iter , pos , item〉 schema.

Note that this approach parallelly evaluates the sequence construction for all
iterations encoded in q1 and q2 at once. Figure 4.3 demonstrates how the resulting
algebra code is evaluated. Relation q1 (Figure 4.3(a)) encodes two sequences in
two iterations: the singleton sequence (1) in iteration 1 and the two-item sequence
(10, 20) in the second iteration. The second argument of the sequence construc-
tor are the two singletons (2) and (30) in iterations 1 and 2, respectively, as
displayed in Figure 4.3(b). The disjoint union followed by the renumbering opera-
tor in Rule Seq yields the intermediate table shown in Figure 4.3(c). The overall
expression result after column projection/renaming is the relation in Figure 4.3(d).

Note that the “append union” that systems typically employ to evaluate ·∪
will lead to a costly sort of the intermediate result to implement row numbering.
Assuming properly sorted input relations, however, we would be much better off
evaluating ·∪ as a “merge union”, which rendered the subsequent % into a no-cost

82 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

operation. We will have a closer look at optimizations of this kind in the next
chapter.

Variable Binding and Usage

We handle variable bindings expressed through XQuery’s let construct entirely
at query compilation time: to compile let $v := e1 return e2, we translate
e1 in the currently active context (consisting of the environment Γ and relation
loop) to yield the algebra code q1 and then use the enriched environment Γ +
{$v 7→ (q1, ∆1)} to compile e2:

Γ; loop ` e1 Z⇒ (q1, ∆1)
Γ + {$v 7→ (q1, ∆1)} ; loop ` e2 Z⇒ (q2, ∆2)

Γ; loop ` let $v := e1 return e2 Z⇒ (q2, ∆2)
. (Let)

A reference to a variable $v then simply compiles to a lookup in Γ:

{. . . , $v 7→ (qv, ∆v) , . . . } ; loop ` $v Z⇒ (qv, ∆v)
. (Var)

Note that the maintenance of Γ is entirely performed at compile time. Effec-
tively, this unfolds any let binding during the compilation process via Rules Let
and Var. Unused bindings will vanish from the compilation result without any ad-
ditional treatment. Such a strategy is likely to violate the XQuery semantics if node
constructors appear in the binding expression e1 of a let clause. In Section 4.4.3,
we will see why our compiler guarantees standards-compliance nevertheless.

We will now turn to the heart of the loop-lifting compilation strategy, the
translation of XQuery’s FLWOR clauses.

4.2 Relational FLWORs

The iteration primitive for-return constitutes a vital part of the XQuery lan-
guage. The arbitrary nesting of these FLWOR clauses introduces a notion of scopes
into the language. For instance, the query

s

(for $v0 in e0 return

s0 { e′0 ,

for $v1 in e1 return

s1

{
for $v1 in e1·0 return

s1·0 { e′1·0
) ,

(Q1)

4.2. RELATIONAL FLWORS 83

iter pos item
1 1 1
1 2 2
1 3 3

(a) q((1,2,3)).

iter pos item
1 1 1
2 1 2
3 1 3

(b) q0($v0).

iter pos item
1 1 10
2 1 10
3 1 10

(c) q0(10).

iter pos item
1 1 10
1 2 1
2 1 10
2 2 2
3 1 10
3 2 3

(d) q0((10,$v0)).

iter pos item
1 1 10
1 2 1
1 3 10
1 4 2
1 5 10
1 6 3

(e) Result in s.

Figure 4.4: Relational representation of intermediate results in Query Q2.

defines four variable scopes as indicated by the curly braces. Variable $v0 is visible
in scope s0, variable $v1 in scopes s1 and s1·0, and $v1·0 may be accessed in scope
s1·0 only. No variables are bound in the top-level scope s in this example. These
scopes coincide with the iteration scopes introduced by the respective for loops.
The iteration over expressions found in scope s0, e.g., is determined by the bindings
of variable v0.

It is important to see that FLWOR clauses may be nested in an arbitrary fashion.

s

s0 s1

s1·0

In general, this leads to a tree-shaped hierarchy of scopes, as illus-
trated on the right for Query Q1. We will use sx·y, x ∈ {0, 1, . . . }∗,
y ∈ {0, 1, . . . } in the following to identify the yth child of scope
sx. The loop-lifted representation of any expression result e is deter-
mined by the iteration scope sx it appears in and we will use qx(e) to
denote it. It is the task of the upcoming compilation rules (the back-
mapping step in Section 4.2.4 in particular) to keep all relational representations
consistent with their respective iteration scopes.

4.2.1 for-Bound Variables

To illustrate the consequences of our loop-lifting idea on XQuery FLWOR clauses,
consider the query

s

{
for $v0 in (1, 2, 3) return

s0 { (10, $v0) .
(Q2)

Figure 4.4 lines up the relational representations encountered for different
subexpressions during the evaluation of this query. The top-level scope s is iter-
ated only once, leading to a constant iter column in the relational representation
of the sequence (1, 2, 3) in this scope (q((1, 2, 3)) in Figure 4.4(a)).

We now want to successively bind variable $v0 to the items in this sequence,
i.e., $v0 describes a singleton sequence in three different iterations. The relation in

84 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

Figure 4.4(b) accounts for this fact with a constant pos column and three distinct
values in column iter . We can easily compute the representation of $v0 as follows:

q0($v0) ≡

×
pos
1

πiter :inner ,item

%inner :〈iter ,pos〉

q((1,2,3))

. (4.1)

We retain the values of the binding sequence (1, 2, 3) (to which $v0 shall be bound
successively). To establish a new iter column with a consecutive numbering, we
use the row numbering operator %. Column pos is then filled with a constant value
of 1, which we express as a Cartesian product with the singleton relation pos

1 .
The construction of the sequence (10, $v0) in scope s0 then yields the represen-

tation shown in Figure 4.4(d). A back-mapping step (see Section 4.2.4) leverages
the result into the top-level scope s (Figure 4.4(e)), establishing the overall query
result.

The General Case

To generalize this idea, consider a for-loop in its directly enclosing scope sx:

sx

...

for $vx·y in ex·y return

sx·y
{

e′x·y
...

(Q3)

Again, we derive qx·y($vx·y), the representation of the iteration variable in the inner
scope, from the representation qx(ex·y) of its binding sequence ex·y and employ
operators % and × for that task:

qx·y($vx·y) ≡

×
pos
1

πiter :inner ,item

%inner :〈iter ,pos〉

qx(ex·y)

. (4.2)

Positional Variables

Optionally, a second variable $px·y may be bound to the position of the iteration
variable $vx·y within its binding sequence ex·y:

sx

...

for $vx·y at $px·y in ex·y return

sx·y
{

e′x·y
...

4.2. RELATIONAL FLWORS 85

With the help of the % operator, we can easily establish the relational representa-
tion of such a positional variable based on the binding sequence ex·y: replace col-
umn item with a consecutive numbering within each iter group, then set columns
iter and pos as described above for the iteration variable $vx·y:

qx·y($px·y) ≡

×
pos
1

πiter :inner ,item

%inner :〈iter ,pos〉

%item:〈pos〉‖iter

πiter ,pos

qx(ex·y)

. (4.3)

We make both, the iteration variable $vx·y and the positional variable $px·y, ac-
cessible to the compilation of the loop body ex·y′ (see Rule Var) by adding them
to the variable environment Γ before compiling e′x·y.

4.2.2 Maintaining loop

The concept of loop-lifting requires the consistent maintenance of a relation loop,
containing the independent iterations of the current scope. The semantics of the
for construct prescribes the evaluation of its inner scope sx·y once for each binding
of the iteration variable $vx·y. Based on the encoding of the latter, qx·y($vx·y), we
define a new loop relation to compile the expression’s return body e′x·y:

loopx·y ≡
πiter

qx·y($vx·y)
. (4.4)

This kind of loop relation was used to derive the loop-lifted representation of the
constant 10 in earlier examples (cf. Figures 4.2(a) and 4.4(c)).

4.2.3 Free Variables in the return Clause

A variable introduced by means of an XQuery FLWOR clause in scope sx will be
accessible in any scope sx·x′ , x′ ∈ {0, 1, . . . }+ enclosed by sx. If scope sx·x′ is viewed
in isolation, such variables appear to be free.

As the compiled representation of any expression depends on the iteration scope
it appears in, any variable $w accessible in scope sx must be made compatible
with the enclosed scope sx·y upon compilation of the FLWOR clause Q3. We will
now derive qx·y($w) ($w’s representation in scope sx·y) from its relational encoding
in the enclosing scope sx. To understand this derivation, consider the following

86 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

iter pos item
1 1 1
2 1 2

(a) q0($a).

iter pos item
1 1 1
2 1 1
3 1 2
4 1 2

(b) q0·0($a).

iter pos item
1 1 10
2 1 20
3 1 10
4 1 20

(c) q0·0($b).

outer inner
1 1
1 2
2 3
2 4

(d) map(0,0·0).

Figure 4.5: Scope-dependent representation of variables $a and $b (Query Q4).
The connection between iteration scopes s0 and s0·0 is captured by relation
map(0,0·0).

evaluation of two nested for loops (note the reference to $a in the inner scope
s0·0):

s

for $a in (1, 2) return

s0

($a,
for $b in (10, 20) return

s0·0 { ($a, $b)
)

(Q4)

The first iteration of the outer loop binds $a to 1. Two evaluations of the
innermost scope s0·0 correspond to this iteration, with $b being successively bound
to 10 and 20. The second iteration of the outer loop involves another two eval-
uations of the innermost loop body, both with $a bound to 2. In effect, scope
s0·0 is iterated four times. Figures 4.5(a)–(c) illustrate the required relations for
variables $a and $b. Note how Figures 4.5(b) and 4.5(c) reflect that in iteration
3 of the inner loop body variable $a is bound to 2 while $b is bound to 10, as
desired.

The semantics of this nested iteration is captured by the relation map(0,0·0)
shown in Figure 4.5(d), where an entry 〈o, i〉 indicates that during iteration i of
the inner loop body in scope s0·0 the outer body (scope s0) is in iteration o. In
Figure 4.5(d), e.g., iterations 1 and 2 of the inner loop body (scope s0·0) correspond
to the first iteration over the outer scope s0; iterations 3 and 4 in s0·0 occur within
the second iteration over s0.

More generally, we introduce map(x,x·y) to relate iteration identifiers of a scope
sx·y to those of its directly enclosing scope sx. The iteration identifiers of scope sx·y
originate from the derivation of qx·y($vx·y), the relational encoding of the iteration
variable $vx·y (see Equation 4.2). Analogously to the derivation of qx·y($vx·y), we
compute relation map(x,x·y) based on qx(ex·y), the relational representation of the

4.2. RELATIONAL FLWORS 87

binding sequence ex·y:

map(x,x·y) ≡
πouter :iter ,inner

%inner :〈iter ,pos〉

qx(ex·y)

. (4.5)

With this connection between enclosing iteration scopes at hand, we can now
map variables to the inner scope of a for-loop and derive the representation of
any free variable $w in scope sx·y by means of an equi-join:

qx·y($w) ≡

πiter :inner ,pos,item

1iter=outer

qx($w) map(x,x·y)

. (4.6)

To make this representation available during the compilation of the for-body,
we insert the binding $w 7→ qx·y($w) into the variable environment Γ used to
compile the body (along with the bindings for the iteration and positional variables,
$vx·y and $px·y). Rule Var will then establish compatible representations for each
occurrence of a reference to variable $w.

4.2.4 Mapping Back

Based on the relational representations of variables $a and $b, the system is now
ready to compute the sequence construction ($a, $b) in the innermost loop body
(scope s0·0) of Query Q4, yielding the table shown in Figure 4.6(a). Note, however,
that the second sequence construction operation ($a, for $b in ...) in this
query requires this intermediate result to be compatible with the enclosing scope
s0 (i.e., as illustrated in Figure 4.6(b)). Hence, we need to map q0·0(($a, $b)) back
into s0.

In a sense, this back-mapping step implements the assembly of all item se-
quences from independent loop iterations into a single result sequence. Relation
map(x,x·y) again provides the necessary connection between two directly enclosing
scopes sx and sx·y and an equi-join with map(x,x·y) retrieves the required iteration
identifiers from the parent scope. A subsequent % operator brings all result items
into correct order:

πiter :inner ,pos:pos1,item

%pos1:〈iter ,pos〉‖outer

1iter=inner

qx·y(e) map(x,x·y)

.

This delivers the missing pieces to complete the evaluation of Query Q4. Fig-
ure 4.6 lines up the intermediate results involved: the result of back-mapping the

88 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

iter pos item
1 1 1
1 2 10
2 1 1
2 2 20
3 1 2
3 2 10
4 1 2
4 2 20

(a) q0·0(($a,$b)).

iter pos item
1 1 1
1 2 10
1 3 1
1 4 20
2 1 2
2 2 10
2 3 2
2 4 20

(b) Inner loop in s0.

iter pos item
1 1 1
2 1 2

(c) q0($a).

iter pos item
1 1 1
1 2 1
1 3 10
1 4 1
1 5 20
1 6 2
1 7 2
1 8 10
1 9 2
1 10 20

(d) Final result in s.

Figure 4.6: Intermediate and final results during the evaluation of Query Q4.

inner loop body into scope s0 (Figure 4.6(b)), made compatible with the repre-
sentation of variable $a in scope s0 (Figure 4.6(c)), and, finally, the overall query
result after mapping back the sequence construction result into the top-level scope
(Figure 4.6(d)).

4.2.5 Complete Compilation Rule for FLWOR Expressions

Inference rule For lines up the complete translation of XQuery for loops, also
ensuring the proper maintenance and propagation of the loop relation through the
compilation process:

1O {. . . , $vi 7→ (qvi
, ∆vi

) , . . . }; loop ` e1 Z⇒ (q1, ∆1)

2O qv ≡ pos
1 × πiter :inner ,item

(
%inner :〈iter ,pos〉(q1)

)
3O qp ≡ pos

1 × πiter :inner ,item

(
%inner :〈iter ,pos〉

(
%item:〈pos〉‖iter (πiter ,pos(q1))

))
4O loopv ≡ πiter(qv) map ≡ πouter :iter ,inner

(
%inner :〈iter ,pos〉(q1)

)
5O

Γv ≡ {. . . , $vi 7→ (πiter :inner ,pos,item (qvi
1iter=outer map) , ∆vi

) , . . . }
+ {$v 7→ (qv, ∆1)}+ {$p 7→ (qp, ∅)}

6O Γv; loopv ` e2 Z⇒ (q2, ∆2)

7O
{. . . , $vi 7→ (qvi

, ∆vi
) , . . . }; loop ` for $v at $p in e1 return e2 Z⇒(

πiter :outer ,pos:pos1 ,item

(
%pos1 :〈inner ,pos〉‖outer (q2 1iter=inner map)

)
, ∆2

)
(For)

The compilation procedure captured by this rule may be summarized as follows:

1O Compile the binding expression e1 in the current context.

2O Derive the relational representation of the iteration variable $v.

4.2. RELATIONAL FLWORS 89

3O If present in the query text, establish the representation of the positional
variable $p.

4O Set up relations loop and map to prepare the compilation of the loop body
e2.

5O The new variable environment Γ for the compilation of e2 consists of all
variables currently free (after mapping them to the scope of the loop body),
the iteration variable $v, and (optionally) the positional variable $p.

6O In this new context, invoke the compilation of the loop body e2.

7O Finally, map the compilation result of e2 back into the parent scope using
relation map.

4.2.6 Optional: The order by Clause

Rule For above will concatenate the result sequences for individual evaluations
of the return body in the order prescribed by the binding sequence e1 to form
the overall FLWOR expression result. Optionally, a user may explicitly request a
different arrangement of all subsequences by stating an order by clause. The
results of the independent evaluations of e2 in the loop

for $v at $p in e1 order by eo1, eo2, . . . , eon return e2 ,

for example, will be concatenated according to the lexicographic order described
by expressions eo1 , . . . , eon (with major ordering on eo1 ; expressions eoi

will be
evaluated for each binding of $v). Note that this only affects the assembly of the
return clause’s result sequences, but not the outcome of individual evaluations of
e2. In particular, the positional variable $p still indicates the association of the
binding variable $v with its position within the binding sequence e2.

It is the back-mapping step 7O that implements the assembly of result sequences
in Rule For. With only a slight extension to the map relation, we may seamlessly
integrate the handling of order by clauses into our compilation process. We
translate all sort specifiers eoi

analogously to the compilation of the loop body e2

itself and extend the relation map to collect the item columns of all eoi
, yielding

90 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

the relation map′(x,x·y) with schema 〈outer , inner , sort1, . . . , sortn〉:3

map′(x,x·y) ≡

map(x,x·y) qx·y(eo1)

1inner=iter

πouter ,inner ,sort1:item qx·y(eo2)

1inner=iter

πouter ,inner ,sort1,sort2:item

qx·y(eon)

1inner=iter

πouter ,inner ,sort1,...sortn:item

(4.7)

Based on map′, we can now derive the result’s position information (column
pos) in consistence with the order by clause. The result of the back-mapping step
7O in Rule For then reads (note the modified parameters to %):

πiter :outer ,pos:pos1,item

(
%pos1:〈sort1,...,sortn,pos〉‖outer (q2 1iter=inner map′)

)
.

4.3 Other Expression Types

To exemplify the loop-lifting concept for arbitrary XQuery Core constructs, we
will focus on arithmetics and conditionals (if-then-else clauses) in this section.
Section 4.4 will then discuss our support for operations on XML tree nodes (path
navigation and element construction), before we round up the compilation proce-
dure with a glimpse into an implementation of XQuery’s dynamic type semantics
(Section 4.5).

4.3.1 Arithmetics/Comparisons

During the compilation process, we map arithmetic operators (+, *, . . .) as well
as XQuery’s value comparison operators (eq, gt, . . .) to their readily available
implementation on the underlying back-end (⊕, ~, =#, =, . . .). The relational }
operators evaluate their XQuery counterpart for all iterations at once. We use the

3This algebra code assumes expressions eoi to be of type xs:anyAtomicType. The less re-
strictive type xs:anyAtomicType? [Boag05, § 3.8.3] is easily covered if the equi-joins in (4.7) are
replaced by left outer joins and the underlying database can handle null values consistent with
XQuery’s empty greatest or empty least specifiers.

4.3. OTHER EXPRESSION TYPES 91

following plan to evaluate the XQuery expression e1 ◦ e2:

q(e1 ◦ e2) ≡

πiter ,pos,item:res

}res:(item,item′)

1iter=iter ′

q1 πiter ′:iter ,item′:item

q2

. (4.8)

The relational join over iter columns pairs tuples that originate from the same
iteration (column renaming with π ensures uniqueness of column names before-
hand). Operator } then attaches the new column res with the result of the arith-
metic/comparison operation. Finally, column projection and renaming establish
the 〈iter , pos , item〉 schema used throughout the compilation.

Compilation rule Arith below expresses this translation in our notation of
inference rules (note that expressions ei cannot evaluate to nodes, hence, are as-
sociated with empty live node sets):

Γ; loop ` e1 Z⇒ (q1, ∅) Γ; loop ` e2 Z⇒ (q2, ∅) ◦ ∈ {+, *, eq, gt, . . . }
Γ; loop ` e1 ◦ e2 Z⇒(

πiter ,pos,item:res

(
}res:(item,item′) (q1 1iter=iter ′ (πiter ′:iter ,item′:item(q2)))

)
, ∅

) .

(Arith)
Observe that the equi-join to combine tuples with matching iter values will

drop any iteration where either operand evaluates to the empty sequence (i.e.,
where no tuple with the respective iter value exists in the relational encoding).
This elegantly complies with the XQuery semantics [Boag05] which demands the
result to be the empty sequence if either operand is the empty sequence.

4.3.2 Conditionals: if-then-else

To illustrate the loop-lifted evaluation of if-then-else clauses, consider the query

for $v in (3, 4, 5, 6) return

if ($v mod 2 eq 0)︸ ︷︷ ︸
e1

then "even"︸ ︷︷ ︸
e2

else "odd"︸ ︷︷ ︸
e3

, (Q5)

which is to return the sequence ("odd", "even", "odd", "even"). Figure 4.7 lines
up an evaluation trace of the compiled relational plan:

1O Use the current context to compile the condition e1. The resulting relational
encoding for our example is the table labeled e1 in Figure 4.7 (along with its

92 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

iter
1
2
3
4

loop

iter pos item
1 1 false
2 1 true
3 1 false
4 1 true

e1

1O

σitem

σ¬item

πiter

πiter

≡

≡

iter
2
4

loopthen

iter
1
3

loopelse

2O

×

×

pos item
1 "even"

e2

pos item
1 "odd"

e3

3O ·∪ ≡

iter pos item
1 1 "odd"
2 1 "even"
3 1 "odd"
4 1 "even"

q2 ·∪ q3

4O

Figure 4.7: Evaluation trace for Query Q5. Rule If establishes new loop relations
for the evaluation of the then and else bodies. Both bodies employ a Cartesian
product (Rule Const), subject to a disjoint union for the conditional’s result.

corresponding loop relation).4

2O Based on the outcome of the conditional expression e1, establish new loop
relations (loopthen and loopelse in Figure 4.7) and variable environments Γ
(not applicable to our example) for the compilation of the then and else

bodies e2 and e3.

3O Compile bodies e2 and e3 using the respective loop relations. In Query Q5,
both branches are constant subexpressions and thus compile into a cross
product between loop and their relational representation (cf. Rule Const).

4O The disjoint union of the resulting relations represents the conditional’s over-
all result, as illustrated on the right of Figure 4.7 for our example query.

Rule If captures this procedure in a single inference rule for if-then-else clauses
(circled numbers refer to the processing steps sketched above):

1O {. . . , $vi 7→ (qvi
, ∆vi

) , . . . } ; loop ` e1 Z⇒ (q1, ∅)
2O loopthen ≡ πiter (σitemq1) loopelse ≡ πiter (σ¬itemq1)

2OΓthen ≡ {. . . , $v 7→ (πiter ,pos,item (qvi
1iter=iter ′ (πiter ′:iter (loopthen))) , ∆vi

) , . . . }
2O Γelse ≡ {. . . , $v 7→ (πiter ,pos,item (qvi

1iter=iter ′ (πiter ′:iter (loopelse))) , ∆vi
) , . . . }

3O Γthen; loopthen ` e2 Z⇒ (q2, ∆2) Γelse; loopelse ` e3 Z⇒ (q3, ∆3)

4O
{. . . , $vi 7→ (qvi

, ∆vi
) , . . . } ; loop ` if (e1) then e2 else e3 Z⇒

(q2 ·∪ q3, ∆2 ∪∆3)
(If)

The condition e1 evaluates to a single item of type xs:boolean for all iterations.
Hence, its algebraic equivalent q1 must be associated with an empty set of live

4The normalized XQuery Core code will implicitly infer the condition’s effective boolean value
first in terms of fn:boolean () [Draper05, § 4.10]. In effect, the result of e1 will contain exactly
one item for each iteration in loop.

4.4. INTERFACING WITH XML/XPATH 93

nodes ∅. The results of e2 and e3, in contrast, both contribute to the overall
result. Thus, we associate the union of their live node sets, ∆2 ∪ ∆3, with the
overall result.

4.4 Interfacing with XML/XPath

So far, we have addressed most of the basic building blocks of the XQuery language
specification, including the consistent handling of for iteration primitives. In
this section, we will look into the integration of node-related features, i.e., the
evaluation of XPath location steps (Section 4.4.1) and XQuery’s node construction
facilities (Sections 4.4.2 and 4.4.3).

4.4.1 XPath Location Steps

The loop-lifting strategy is complementary to the evaluation of XPath. Efficient
means to handle XPath have been covered in Chapters 2 and 3, though other algo-
rithms could be plugged in equally well into our compilation procedure, including
those described by Bruno et al. [Bruno02] and Al-Khalifa et al. [Al-Khalifa02]).

We encapsulate the evaluation of XPath location steps into the operator �
that we assume to be appropriately supported by the underlying back-end (e.g., in
terms of the aforementioned algorithms). We define the semantics of� analogously
to those discussed in Section 3.4.1 for the loop-lifted staircase join. In fact, the
algorithm sketched there fits perfectly into our current context.

The Step Operator �

iter item
1 γ1,1
1 γ1,2...

...
1 γ1,s1

...
...

n γn,1...
...

n γn,sn

The step operator � consumes a context relation q(e) of schema
〈iter , item〉. As illustrated on the right, this relation encodes the con-
text sequences (γi,1, . . . , γi,si

) for n iterations in a single relation. The
order among context nodes within an iteration is insignificant to the
location step result. Dropping the pos column from the loop-lifted
sequence encoding thus yields a suitable input for �. In return, the
output of operator�α,ν will again be of schema 〈iter , item〉 and contain
the result set for the location step e/α::ν (axis α, node test ν).

Several implementations proposed for � will automatically avoid
the production of duplicates in the step result (e.g., staircase join). However,
we do not assume this property to be provided, but explicitly enforce duplicate
elimination in terms of the algebra operator δ.

In the XQuery language specification, location steps are required to return their
result in document order. In consistence with a loop-lifted sequence encoding, we

94 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

can easily enforce this order as the logical order of the expression result if we create
a new column pos , ordered according to the node surrogates γi in column item.
Hence, the algebraic subplan

q′(e/α::ν) ≡

%pos:〈item〉‖iter

δ

�α,ν

πiter ,item

q(e)

(4.9)

evaluates the location step e/α::ν in consistence with our loop-lifted compilation
strategy. However, before we translate this plan into a generic compilation rule,
we will slightly refine our notation and introduce the handling of live nodes first.

Live Node Sets: Multiple Tree Node Sources within a Single Query

To successfully complete its task, operator � requires access to the storage tables
that contain the detailed node information referenced by surrogates γi in �’s input
q(e). In Chapters 2 and 3, database table doc has played this role, hosting an
explicitly shredded XML instance. Here, we extend this idea to allow for the
processing of XPath location steps over multiple XML documents in a single query
as well as over transient XML fragments constructed at runtime within the query
itself.

In Section 4.1.1, we have added a column frag to our relational tree encoding
to prepare the ground for such multi-document support. The semantics of XPath
location steps demands that the evaluation of a location step may never escape the
XML document/fragment that holds the step’s context set, thus we can use column
frag to make this semantics explicit to the relational step evaluation. Speaking
in terms of the SQL-based XPath evaluation in Chapter 2, e.g., the conjunctive
predicate

AND v.frag = v′.frag

added to the query template sql(e) would ensure the semantically correct evalu-
ation of axes preceding and following (while mere pre/size predicates would
likely lead to an escape from the valid XML tree).

However, it would be even more beneficial if we could infer information about
fragments relevant to a particular expression evaluation already at compile time.
Queries could then be run against a subset of relation doc only or even use a distin-
guished base table for each XML instance. In the presence of node constructors,
the effect would be even more profound. Nodes constructed at runtime will lead
to transient document containers that lack all index support. Constraining the

4.4. INTERFACING WITH XML/XPATH 95

step evaluation to few of these containers only or—even more effective—to fully
indexed base relations would significantly improve runtime performance.

Our compiler covers these aspects in terms of the live node set ∆, associated
with the algebraic equivalent of any XQuery subexpression. We will instantiate a
new live node set

(i) for any call to the XQuery built-in function fn:doc () (a compilation rule
for this built-in will seed the respective base relation as a new live node set
into the translation process5) and

(ii) for any node construction operator occurring in the query (the generated
algebra code will produce a new, transient node container).

The inference rules for the remaining XQuery constructs will then maintain and
propagate the information on live node sets throughout the compilation process
and make it available to any XQuery subexpression encountered. For example,
compilation rule Seq associates the result of the sequence construction (e1, e2)

(with e1 Z⇒ (q1, ∆1) and e2 Z⇒ (q2, ∆2)) to the union ∆1 ∪∆2 of the two live node
sets involved (cf. page 81). Intuitively, node surrogates in the expression result
may reference entries from either live node set.

Combining Live Node Sets. The complete compilation rule set comprises
rules that establish new live node fragments (see above), propagate the live node
information of their arguments, or combine two live node sets in terms of the union
operator ∪. In effect, the live node set associated with each expression is the set
union of multiple, say k, node containers:

∆ = ∆1 ∪∆2 ∪ · · · ∪∆k . (4.10)

Each of the ∆i describes a single base relation in the system’s persistent document
storage or the result of a single element construction operator. Thus, two node
containers ∆i and ∆j will either host disjoint tree fragments or encode the same
base table/construction result:

∆i ∩∆j 6= ∅ iff ∆i = ∆j . (4.11)

This allows for an efficient computation of the set union in (4.10). Duplicates
do not need to be expensively removed tuple by tuple after joining the live node
sets. Rather, the system can rule out duplicates on the level of node containers

5The compilation rule for fn:doc () inherently depends on the specific document storage and
we will omit its explicit statement here. The MonetDB/XQuery system implements document
access as a low-level primitive added to the database kernel.

96 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

(whose number is usually small). In most cases, duplicate tree fragments may even
be removed at compile time. The deferral into the runtime system is, in fact, only
required if the built-in function fn:doc () is applied to a computed URI argument
(e.g., fn:doc (fn:concat ("auction", ".xml"))).

Compiling XPath Location Steps

Operator � represents the prototypical case where access is required to the live
node set ∆. This is why we introduce ∆ as a second argument to �:

q(e/α::ν) ≡

%pos:〈item〉‖iter

δ

�α,ν

∆e
πiter ,item

q(e)

. (4.12)

This completes the relational plan for the location step e/α::ν. In the following,
we will only omit the statement of ∆ as an argument to � if the live node set
information are clear from the context or irrelevant for the discussion.

From subplan 4.12, we conclude compilation rule Step as follows

Γ; loop ` e Z⇒ (qe, ∆e)

Γ; loop ` e/α::ν Z⇒
(
%pos:〈item〉‖iter

(
δ
(
(πiter ,item(qe))�α,ν ∆e

))
, ∆e

) . (Step)

XPath navigation will never escape the live node set ∆e that hosts the context
nodes in q(e). The result of the step evaluation will in turn be associated to ∆e.

Optimization Hooks in XPath Step Evaluation

The discussion above suggests two hooks with respect to the optimization of XPath
subexpressions that we will briefly sketch here.

XPath Step Bundling. It is typical for XQuery expressions to navigate through
the XML tree structure in terms of multiple, say k, location steps:

e/α1::ν1/α2::ν2/ · · · /αk::νk .

If compiled according to Rule Step, the evaluation of the above path expression
will repeatedly (see also the plan excerpt on the right)

4.4. INTERFACING WITH XML/XPATH 97

1O remove duplicates from the result of evaluating �αi,νi
as

requested by the XPath semantics,

2O establish a new pos column that brings the result into
document order (in terms of the row numbering operator
%), and then

3O drop column pos to turn the result into the context set
for the subsequent step operator �αi+1,νi+1

.

%pos:〈item〉‖iter2O

δ1O

�αi+1,νi+1

πiter ,item3O
%pos:〈item〉‖iter2O

δ1O

�αi,νi

Particularly the combination of bullets 2O and 3O seems wasted effort in that sit-
uation. Depending on the physical order guarantees of a system’s �

%pos:〈item〉‖iter

δ
�αk,νk

�α2,ν2

�α1,ν1

πiter ,item

q(e)

implementation, the assignment of row numbers may involve an ex-
pensive sort process of its argument. Avoiding this would surely be
desirable. But also the duplicate elimination step 1O may cause sig-
nificant performance penalties if the successive path step does not
exploit the duplicate-freeness.

Due to the definition of operator �—the output of any � may
directly be used as an input to a subsequent �—we can do bet-
ter: extending Rule Step to translate multi-step paths as a whole
(see plan excerpt on the left) avoids the application of any % and δ
operators except the ones that establish the final path result.

Though the avoidance of these two operators is the most visible effect of
bundling XPath location steps, the new operator trees may additionally trigger
rewrites in the DBMS optimizer that go even further: with the entire sequence of
step joins available as a whole, the optimizer may freely modify join order or—if
suitable support is available to the system (e.g., in terms of the TwigStack algo-
rithm [Bruno02])—compute the entire XPath expression as a whole.

The XPath evaluation techniques in Chapters 2 and 3 may benefit from the
rewrite as well. To complete its task, a region-based step evaluation must resolve
each context node’s surrogate γ (a preorder rank) to retrieve the remaining node
properties. We may avoid this additional lookup in the document relation if the
information is still at hand from a directly preceding step evaluation. In the
physical execution plan, this becomes apparent through a significantly reduced
number of accesses to the persistent document relation doc.

Linearity of �. The semantics of XPath binds the nodes processed for each
context node to the fragment that is hosting the context node. In effect, for a
context set e that is associated with a live node set of multiple tree fragments

98 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

∆1 ∪∆2 ∪ · · · ∪∆n, we may safely evaluate � on each fragment in separation:6

q(e)�α,ν (∆1 ∪∆2 ∪ · · · ∪∆n)
⇔(

q(e)�α,ν ∆1

)
∪

(
q(e)�α,ν ∆2

)
∪ · · · ∪

(
q(e)�α,ν ∆n

)
.

(4.13)

Rewriting step evaluation in the⇒ direction of this equivalence will be partic-
ularly efficient if nodes from a persistent document container are included in the
context set e. Hence, if we trade

q(e)�α,ν (doc1 ∪ doc2 ∪ · · · ∪ docn ∪∆trans)

for the equivalent expression(
q(e)�α,ν doc1

)
∪

(
q(e)�α,ν doc2

)
∪ · · · ∪

(
q(e)�α,ν docn

)
∪

(
q(e)�α,ν ∆trans

)
(where doci denotes persistent document relations and ∆trans summarizes all tran-
sient fragments constructed at runtime), the system will perform the bulk of the
work (usually |∆trans| � |doc|) on indexed base tables. In contrast, the union
operators in the original query prevented the use of base table indexes outright.

Property (4.13) coincides with the definition of linearity by Gluche et al.
[Gluche97]. The exploitation of the linearity property in OQL view definitions
allows for an efficient maintenance of materialized views there. The same obser-
vations may open the door for compiler optimizations that minimize those parts
of a query that need to operate on transient live nodes.

4.4.2 Element Construction

An important aspect of the XQuery language is its capability to group and re-
structure the XML trees retrieved during query processing. For this purpose, the
language has been equipped with node construction facilities that allow for the
construction of transient tree nodes on the fly. The element constructor

element { e1 } { e2 } ,

for example, instantiates a new element using the content expression e2 and the
tag name e1. More specifically, given an expression e1 that evaluates to a qual-
ified XML tag name t and a content sequence e2 = (v1, v2, . . . , vk) consisting
exclusively of nodes, i.e., e2 is an instance of node()*, the element constructor

1O creates a new element node r with tag name t and then

6We have omitted the projection step πiter ,item on q(e) here for ease of readability.

4.4. INTERFACING WITH XML/XPATH 99

a

b

c

d

b

e

0

1

2

3

4

5

5

1

0

1

0

0
iter pos item
1 1 1
1 2 4

(a) Old tree fragment with content
expression q($v).

r

b

c

b

6

7

8

9

3

1

0

0
iter pos item
1 1 6

(b) New tree fragment and element
construction result.

pre size level kindprop frag
0 5 0 elem a 0
1 1 1 elem b 0
2 0 2 elem c 0
3 1 1 elem d 0
4 0 2 elem b 0
5 0 1 elem e 0

old tree
fragment

pre size level kindprop frag
6 3 0 elem r 1
7 1 1 elem b 1
8 0 2 elem c 1
9 0 1 elem b 1

element
constr.
result

2O

1O

(c) Relational encodings of old and new tree frag-
ments (pre/size/level encoding).

Figure 4.8: Element construction and resulting tree fragment. The range encoding
(pre/size/level) reduces the renumbering overhead to copy subtrees.

2O copies the k subtrees rooted at the nodes vi and arranges the copies under
the common root r.

The new node r is then returned as the overall expression result. Note that both
steps generate nodes with a new, unique node identity, disjoint from both con-
struction arguments. Figure 4.8 uses the range encoding scheme (pre/size/level)
to give an example of the evaluation of the element constructor

let $v := e/descendant::b return

element { "r" } { $v } ,

for which we assume that e evaluates to the singleton sequence containing the
root node a of the tree depicted in Figure 4.8(a). After evaluating the path
e/descendant::b, variable $v will be bound to the sequence containing the two
element nodes with tag name b (preorder ranks 1 and 4, see Figure 4.8(a) for
its loop-lifted representation). Figure 4.8(b) shows the expected outcome of the
expression: the copies of the subtrees rooted at the two b now share the newly
constructed root node r.

Figure 4.8(c) illustrates how element construction is reflected in the associated
live node sets. The establishment of the new tree fragment turns out to be partic-
ularly easy to implement with an XML representation based on pre/size/level :

1O A new root node r is created for the new tree fragment and assigned the
next available preorder rank (6 in our case).

100 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

2O Nodes in the affected subtrees are then appended to the new tree fragment
with their size, kind , and prop properties unchanged. Properties level and
pre shift by a constant offset only; a system that infers preorder ranks from
the physical tuple order may not need to explicitly store the latter at all (cf.
MonetDB’s void column type [Boncz02]).

This procedure is easily expressible in an algebraic manner. In [Grust04c], e.g.,
we sketch an implementation of the same idea in SQL.

A Compilation Rule for element { }

Naturally, the required steps to implement element construction depend on the
underlying XML document representation. In order to formulate a compilation
rule for the task, we encapsulate these specifics into the operators ε (element
constructor), τ (text node constructor), etc. of our relational algebra. Given

(i) the encoding of the tag name e1 for each iteration (schema 〈iter , pos , item〉),

(ii) the content expression e2 in its loop-lifted representation, and

(iii) the live node set ∆2 associated with e2,

operator ε, e.g., evaluates the expression element { e1 } { e2 } and returns the
pair (qe, ∆e), consisting of qe, the relational encoding of the element construction
result, and ∆e, its associated live node fragment. With this definition of ε, the
derivation of Rule Elem becomes straightforward:

Γ; loop ` e1 Z⇒ (q1, ∅) Γ; loop ` e2 Z⇒ (q2, ∆2)
(qe, ∆e) ≡ ε(q1, q2, ∆2)

Γ; loop ` element { e1 } { e2 } Z⇒ (qe, ∆e)
. (Elem)

Observe that subexpression e1 evaluates to a tag name and therefore is not asso-
ciated with any live node fragment. Only newly constructed nodes can contribute
to the overall expression result and we record the new tree fragment ∆e as qe’s live
node set.

4.4.3 A Note on Side-Effects

Besides the challenges of their efficient implementation, the node construction
facilities bear some semantical peculiarities within the XQuery language. The
establishment of new node identities during the construction process introduces a
side-effect that disrupts the language’s referential transparency. To illustrate, the
query

let $v := <a/> return $v is $v (Q6)

4.4. INTERFACING WITH XML/XPATH 101

(evaluating to true()) is not equivalent to the “unfolded” expression

<a/> is <a/> .

obtained by replacing all occurrences of $v by its binding expression <a/>. While
the former expression constructs a single element node and binds variable $v to
it, the latter produces two distinct element instances and, hence, returns false()
as its result.

Side-Effects in Relational Query Plans

For a sound evaluation of arbitrary XQuery expressions, we obviously must make
our relational implementation aware of this semantical difference. Two different
approaches have proven their practicability in actual system setups:

Stateful XQuery Compilation. In the first place, the rule set we have de-
scribed leads to a compilation of XQuery expressions bottom-up. However, in-
spired by the monad-based information passing in functional programming lan-
guages [Wadler90], we may just as well use it to propagate additional state in-
formation through the compilation process. This state information is then made
available to the ε operator which in turn is responsible for the reproduction of
identical surrogates for nodes of the same identity.

This idea has resulted in the construction of an SQL-based XQuery evaluator,
for which we refer the reader to [Grust04c] for details.

× ×
pos item
1 "a"
tag name

pos item

content
(empty)

iter
1

loop

ε

πiter ′:iter ,item′:item

1iter=iter ′

=#res:(item,item′)

πiter ,pos,item:res

Figure 4.9: Plan DAG for Q6.

DAG Representation for Algebraic Plans.
MonetDB/XQuery, the implementation accompa-
nying this thesis, follows a different approach to
implement node construction in a semantically cor-
rect way. The Pathfinder compiler exploits the sig-
nificant amount of identical subplans within the al-
gebraic plan trees and thus records them as directed
acyclic graphs (DAGs) instead.

This way, node construction operators ε, τ , . . .
must be listed only once for each instance of the
respective functionality in the XQuery expression
text. The above query Q6, e.g., is compiled into
the plan DAG shown in Figure 4.9 on the right by
the Pathfinder compiler. Besides the two references
to variable $v, this DAG contains the construction
of element <a/> only once, as desired. We will learn
more about Pathfinder’s DAG representation and optimization later in Chapter 5.

102 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

4.5 Support for Dynamic Type Tests

Finally, we want to assess how to provide efficient support for XQuery’s type testing
facilities on a relational execution engine. The typeswitch clause in particular
allows for querying the dynamic type of any XQuery subexpression at runtime.
The expression

typeswitch (e)
case τ1 return e1

case τ2 return e2
...

case τn return en

default return edef

(Q7)

will successively test expression e for a subtype relationship with all types τi. For
the first test that succeeds, the respective expression ei is evaluated and its result
is returned as the overall query result. If no match can be found, the outcome is
determined by the default expression edef.

4.5.1 XQuery Subtype Semantics

With XML trees as the underlying data model, the evaluation of the typeswitch

expression Q7 involves the comparison of tree-structured data types. The task
of resolving the structural subtype relation τ1 <: τ2 (with types τ1 and τ2) is
usually performed as an inclusion test of their corresponding tree automata (see,
e.g., [Hosoya05]) or by reducing their corresponding regular expressions until the
relation can be decided trivially [Kempa03,Antimirov95]. The computational com-
plexity of these tests, however, rules out their actual application to high-volume
XML processing. Taking additional constraints of the XQuery surface language
into account, though, it turns out that we can reduce the subtype test to simple
relational algebra primitives, efficiently supported by existing back-ends.

The key to this approach is the restriction of the types τi in Q7 to sequence
types [Boag05]. In a nutshell, sequence types consist of two components: an item
type t that describes the type of each item in the sequence and a cardinality
c ∈ {1, ?, +, *}. The subtype relationship of sequence types may be tested for
both components in separation, which the XQuery Formal Semantics also refer
to as subtype matching [Draper05, § 8.3.1]. Besides the evaluation of these two
components, no further look into the structure of τi or the type τe of expression e
is required to decide whether e is an instance of τi (i.e., τe <: τi).

Each item type may only be derived from a single base type, either by restric-
tion (defined in terms of an xs:restriction element in XML Schema) or extension
(xs:extension in XML Schema, respectively) and the subtyping judgment <:item

4.5. SUPPORT FOR DYNAMIC TYPE TESTS 103

xs:integer

xs:double

xs:decimal

xs:string

xs:untypedAtomic

xs:anyAtomicType

user-defd. list ty.

xs:anySimpleType

xs:untyped

xs:anyType
user-defd. cplx. ty.

Figure 4.10: XQuery type hierarchy (excerpt) [Fernández05].

for XQuery item types strictly follows the derivation hierarchy in an XML Schema
specification. We can easily build up a derivation tree that describes this type
hierarchy T at query compilation time. In Figure 4.10, we list T for an excerpt
of XQuery’s built-in item types. User-defined types in XML Schema documents7

will contribute to the hierarchy tree in a straightforward fashion.

4.5.2 Sequence Type Matching on Relational Back-Ends

The resulting hierarchy tree is a data structure that we know well how to handle
efficiently by relational means: in Chapter 2 we discussed the encoding of (XML)
trees in terms of each node’s pre- and postorder ranks in great detail. Here, we
will use the same idea to elegantly back up type matching in our relational setup.

Pre- and Postorder Ranks for XQuery Item Types

To make user-defined types available to the query processor, their XML Schema
definitions must explicitly be referenced in the respective XQuery prolog. This
makes the entire type hierarchy T available to the system at query compilation
time and we annotate each type t with its pre- and postorder ranks preT (t) and
postT (t) to prepare the compilation of relational sequence type matching (note
that we are assigning ranks to types here, not XML tree nodes).

Now, if we have the preT and postT values available for each item type ti
of sequence item xi in e = (x1,x2, . . . ,xk), we can express <:item using ances-
tor/descendant relationships in T :

τe <:item t
⇔

∀i ∈ {1, . . . , k} : preT (ti) ≥ preT (t) ∧ postT (ti) ≤ postT (t) ,
(4.14)

i.e., “all item types ti in τe are a descendant of type t in the hierarchy T .”

7The XQuery directive import schema instructs the query compiler to load additional type
information from an XML Schema document.

104 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

To test this relationship, we might as well pick the minimum preorder rank
preT (ti) and the maximum postorder rank postT (ti) found for the items in e first:

τe <:item t
⇔

min
i∈{1,...,k}

(
preT (ti)

)
≥ preT (t) ∧ max

i∈{1,...,k}

(
postT (ti)

)
≤ postT (t) .

(4.15)

The computation of these aggregates is an easy task for a relational query en-
gine and we will use the grouping operator grpa:min/max b‖p to describe them in our
algebra.

Aggregates for Cardinality Tests

The use of aggregates blends equally well with the test of the cardinality constraint
c imposed by the sequence type τ . We can test τe <:card c by simply counting the
items in e:

τe <:card c ⇔

count (e) = 1 if c = 1

count (e) ≤ 1 if c = ?

count (e) ≥ 1 if c = +

true if c = *

. (4.16)

This translates the cardinality test into another aggregation over the input expres-
sion e.

Item Types for Loop-Lifted Sequences

Testing the item type relationship using Equation 4.15 in our relational setup re-
quires the explicit availability of properties preT (ti) and postT (ti) for each sequence
item xi. If we add both properties to the relational encoding of e, Equation 4.15

4.5. SUPPORT FOR DYNAMIC TYPE TESTS 105

directly translates into a relational plan:

q(τe <:item t) ≡

iter pos itempreT postT
...

...
...

...
...

q(e)

πiter ,preT ,postT

grpa:minpreT ,b:maxpostT‖iter

×

preT
′ postT

′

preT (t) postT (t)

=res1:(a,pre′
T)

<res2:(b,post ′
T)

?item:(res1,res2)

πiter ,item

×
pos
1

. (4.17)

The plan performs the required grouping for properties preT (ti) and postT (ti)
in a single step and for all sequences in all iterations (operator grp). The remaining
operators compare the aggregates to their counterparts in item type t, then re-
assemble the usual 〈iter , pos , item〉 column schema.

Note that the assumption about the availability of preT and postT blends well
with the semantics of XQuery. XML tree nodes, e.g., are generally assumed to be
untyped in XQuery. Only the explicit validation of a node v makes further type
information available to query processing. In relational terms: the relational code
for the XQuery primitive validate { v } will annotate the sequence encoding of v
with new columns preT and postT . An efficient means to implement this procedure
has been suggested, e.g., by Grust and Klinger [Grust04b].

To retain the compositionality of our translation, the compiler will use the
extended 〈iter , pos , item, preT , postT 〉 schema throughout the compilation process.
For non-validated expressions, columns preT and postT will be filled up with suit-
able constants as needed (e.g., xs:untyped or xs:untypedAtomic for XML tree
nodes).

Testing Cardinalities

We can handle the second component of XQuery sequence types in quite a similar
fashion. Equation 4.16 suggests the use of the aggregate count(e) to test e’s
conformance to the sequence type cardinality c. However, an important aspect
of our sequence encoding takes its toll here: if an expression e evaluates to the

106 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

empty sequence () in an iteration i, this fact will be represented in the loop-lifted
encoding as the absence of tuples with iter = i. Consequently, iterations with
count(e) = 0 will be missing in the aggregation result if τe <:card c is evaluated as
prescribed by Equation 4.16.

The information required to “fix” this problem is available in the form of the
loop relation that lists all values of iter valid in the current iteration scope. The
following plan, e.g., implements the test τe <:card 1, adding cnt = 0 to the aggre-
gation result for all iterations in e that evaluate to the empty sequence. Note how
the left branch of the disjoint union contributes those iterations that are in loop,
but not in the output of grp:

q(τe <:card 1) ≡

q(e)

πiter

grpcnt:count ‖iter

πiter

\
loop

×
cnt
0

·∪

=#item:(cnt,1)

πiter ,item

×
pos
1

. (4.18)

This idea of using loop to correctly handle the empty sequence () directly leads
to a compilation rule for the XQuery built-in function fn:count (), but also for
other XQuery aggregates (e.g., fn:sum (), fn:empty (), . . .).

Putting Things Together

The value of an XQuery expression e matches a sequence type τ if it satisfies τ ’s
constraints on both, τ ’s item type t (τe <:item t) and the sequence cardinality c
imposed by τ (τe <:card c). The conjunction of both judgments will, hence, make
a valid translation for XQuery subtype matching. An actual implementation will
usually wrap both aspects into a single subplan. The involved aggregates may
then, e.g., be determined by a single grp invocation, possibly saving a considerable
amount of computation.

We have not yet touched upon the optional restriction of node types to a given
tag name. An XQuery sequence e = (x1, . . . ,xk), e.g., matches the sequence type
element (n, t)c only if

4.6. XQUERY ON DB2 107

(i) the type annotation of all items xi matches the item type t (τe <:item t),

(ii) the number of items k in e is consistent with the cardinality c, and

(iii) all items xi in the sequence are element nodes with tag name n.

The third test on tag names seamlessly integrates into the implementation of
sequence type matching if we define the tailor-made aggregation function tag:

tag
i∈{1,...,k}

(xi) =

{
n if ∀i : prop(xi) = n
* otherwise

.

This translates the constraint on tag name n into the test tag(e) = n, which can be
easily added to a relational plan. The outcome is a type matching procedure that
handles all sequence type instances allowed by the XQuery language specification
in terms of simple value aggregates. Such aggregates are efficiently implemented
in most of the existing database systems.

4.6 XQuery on DB2

Loop-lifted XQuery compilation generates purely relational execution plans for
XQuery expressions of arbitrary nesting. This way, any relational database pro-
cessor can serve as an efficient host to XQuery. To back up this claim, we translated
the algebraic operators in Table 4.1 into SQL and ran a number of queries from
the XMark benchmark set on the DB2 instance from Chapter 2.

4.6.1 A Loop-Lifted XQuery-to-SQL Translation

The relational algebra listed in Table 4.1 is sufficiently simple to be implemented
on top of an SQL system. In [Grust04c], we devised a compilation procedure that
expresses the concept of loop-lifting entirely in SQL. We used exactly the same
translation procedure to pursue the studies on DB2 that we will describe in the
following. The rule set of this XQuery-to-SQL compiler suffices, e.g., to compile
all queries from the well-known XMark benchmark [Schmidt02] into their SQL
counterpart. We chose a number of them for further investigation on DB2.

As in Chapter 2, we let the system determine the appropriate index support
completely on its own. Before running our experiments, we provided the DB2
index advisor db2advis with a workload of all investigated queries and created
indexes as suggested by the advisor. Suggestions included those indexes that we
already found beneficial in Chapter 2. No further “wizardry” was applied to tune
our database server.

108 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

Despite the quite unusual style of SQL code that resulted from our compilation
process, DB2 did remarkably well in optimizing our queries. As a consequence of
their origin in XQuery, the generated plans exhibit a number of interesting opti-
mization opportunities. To assess their potential, we were able to make some of
these opportunities explicit in the SQL code shipped to our DB2 instance. Several
more advanced optimization hooks, however, require explicit support from the rela-
tional back-end. In the next chapter, we will thus look into the MonetDB/XQuery
system as a representative for such a system.

4.6.2 XPath Bundling and Use of OLAP Functionality

The output of our XQuery-to-SQL compiler can reach considerable size. If trans-
lated in strict accordance to the SQL compilation procedure listed in [Grust04c],
query Q1 from the XMark benchmark, e.g., results in an operator tree of 491
nodes as reported by DB2’s explain utility db2expln. The style of the generated
plans is quite different to the usual π−σ−1 pattern, posing a significant challenge
to any relational query optimizer.

XPath Location Step Bundling

In case of the same XMark query Q1 , the DB2 optimizer seemed to particularly
miss the chance to bundle adjacent XPath location steps. The seven steps in XMark
query Q1 led to no less than 115 accesses to the base relation doc for the loop-lifted
query.

We already discussed the effectiveness of bundled XPath evaluation in Sec-
tion 4.4.1. Such a bundling is easily expressible on the level of SQL and, in fact,
it cut down the number of accesses to the document container doc by almost a
factor of six if applied to the SQL code of Query Q1 . The respective figures are
lined up in Table 4.2.

Exploiting OLAP Functionalities

To implement XQuery’s tight constraints on document, sequence, and iteration
order, loop-lifted query plans make heavy use of the row numbering operator % to
impose logical order on the unordered back-end data model. A possible means to
express this operator in SQL is the use of functionalities from the SQL:1999 OLAP
amendment [Melton03], the ROW_NUMBER() function in particular (Section 4.1.2).
The ranking and partitioning functionalities provided by this operator make quite
an ideal match for our choice of sequence encoding and representation of iteration,
i.e., a single relation encodes the sequence value for all iterations of a for-loop.

4.6. XQUERY ON DB2 109

execution time [s] # doc
Optimization 114KB 293KB 1.1MB 3.3MB accesses

no optimization 2,132 12 hours — — 115
bundling XPath steps 0.003 0.006 0.106 0.566 20
use of OLAP functionality 0.030 0.219 1.03 9.18 13
OLAP and bundled XPath 0.002 0.002 0.002 0.004 11

Table 4.2: Effectiveness of optimizations for XMark query Q1 . The use of DB2’s
OLAP functionalities and the bundling of XPath location steps (Section 4.4.1) cut
down accesses to base relation doc quite significantly and reduced execution times
by orders of magnitude.

On the other hand, the availability of OLAP extensions is not a strict re-
quirement for SQL-based XQuery evaluation. In fact, the SQL-based loop-lifting
compiler we described in [Grust04c] does not rely on the availability of OLAP
functionality at all. However, Table 4.2 shows that their use has quite a sig-
nificant effect on query performance in comparison to the non-OLAP equivalent
(labeled “no optimization”). In the case of XMark query Q1 , the application of
ROW_NUMBER() to implement % accelerates query execution by orders of magnitude.
DB2’s query optimizer readily accepts the explicit statement of our renumbering
intents, observable in a significant speedup in query execution time.

Both optimizations together, the bundling of XPath location steps and the ex-
ploitation of OLAP functionalities, can speed up SQL-based XQuery execution by
several orders of magnitude. To demonstrate, we have listed the query execution
times for small document instances in Table 4.2 with and without both optimiza-
tions applied. Given the obvious benefit of the two, all remaining experiments
include both optimizations.

4.6.3 Live Node Sets: Compile-Time Information
for Accelerated Query Evaluation

The precise information about the base tables or transient node containers that
host intermediate node sequences can have a significant impact on the choice of
efficient access methods to the respective node properties. A disk-based database
system will almost certainly try to access persistent base tables with the help of
efficient indexes. Their use becomes infeasible, however, if the system is to access
computed node containers.

On the other hand, a system needs to ensure the consistent handling of the node
construction facilities in XQuery, the uniqueness of node identity in particular.

110 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

A possible means to guarantee this consistency is by simply collecting all XML
trees and fragments encountered during the compilation in a single document
container. Essentially, this container collects all side effects that occur during
element construction.

A similar approach has been followed, e.g., in the relational XQuery mapping
described by DeHaan et al. [DeHaan03], which actually collects sequences and
constructed nodes in a single relational view. The resulting union of multiple in-
termediate results, however, renders the resulting document encoding inaccessible
to persistent index structures, a price that becomes increasingly unaffordable if
the underlying repository is growing.

It is exactly this situation in which the execution engine can profit from the
tracking of live node set information in our compiler. The effect becomes directly
observable, e.g., for Query Q13 from the XMark benchmark:8

for $i in fn:doc ("auction.xml")/site/regions/australia/item

return

element item { (element name { $i/name/text() },

$i/description) }

(Q13)

To evaluate this query, the system eventually creates the name element nodes,
containing subtree copies of the nodes returned by $i/name/text(). Subsequently,
if it is to compute the path $i/description, the system may either

1O base its evaluation on the entire set of nodes encountered so far, i.e., on the
union containing the persistent doc table and the fragment ∆ obtained when
constructing the name elements (similar to the approach of [DeHaan03]) or

2O exploit the compiler’s live node set information and evaluate the step on the
persistent doc relation only.

Likewise, to compute the subtree copies for the second element constructor (ele-
ment item), the execution engine may optionally

3O benefit from the linearity of � (which we use to implement subtree copying)
and perform subtree copying on the two live node set components doc and
∆ in separation (cf. page 97).

Each of the evaluation strategies 2O and 3O further increases the use of efficient
indexed access to the persistent document relation doc. The effect is a significant
improvement in query performance, growing with the size of the respective XML
document instance. Table 4.3 lists the actual execution times we measured for
different XML instance sizes.

8In the original XMark Q13 query, the inner constructor creates an attribute node. Our
discussion is not affected by this adaptation.

4.6. XQUERY ON DB2 111

execution time [s]
Optimization 114KB 1.1MB 3.3MB 11MB

1O evaluation on document union 0.032 2.83 1,139 6,338
2O live node set exploitation 0.027 0.486 24.1 5,971
3O linearity of � 0.014 0.126 0.361 1.32

Table 4.3: Exploiting live node set information and the linearity of � significantly
reduces the cost to access node containers in XMark Q13 .

4.6.4 XMark on DB2

To summarize and assess the overall performance of loop-lifted XQuery evaluation
on DB2, we selected a number of queries from the XMark benchmark. After
compiling them into SQL by hand, we ran each of them on XML instances of
various sizes, with the total execution times documented in Figure 4.11.

Our test set focuses on the XQuery constructs we have discussed in the forego-
ing sections. All five queries contain XQuery FLWOR clauses to iterate over interme-
diate results and path expressions of various lengths to access nodes from the docu-
ment. Query Q1 is quite centered around XPath evaluation, while Queries Q2 and
Q13 additionally employ element constructors to establish their result. Queries Q6
and Q7 both exhibit path steps with recursive semantics and make use of the ag-
gregation function fn:count ().

All queries show a linear scaling over the entire range of document sizes. Exe-
cution times stay reasonable even for the 1.1GB XML instance, where the system
would still allow for interactive querying.

Effective Path Rewrites for Query Q1. Benchmark query Q1 is essentially
a measure for the system’s XPath performance for the path

/site/people/person[@id = "person0"] .

We have already found DB2 to be an efficient XPath processor for encoded XML
data. The outcome of Query Q1 , however, is still remarkable. Despite the com-
plexity of the resulting query plan (45 operator nodes in total), DB2 actually
detected the chance to evaluate this path in a backward fashion. Starting from the
highly selective predicate on the @id attribute (accessed via an index on attribute
values), the system processes the above path in a backward fashion from leaf to
root. DB2 figured out the superiority of this strategy for Query Q1 by purely
relational means. The same decision had turned out to be quite a challenge to
optimizers of native XML databases in the past [McHugh99].

112 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

101

102

103

104

105

106

101

102

103

104

105

106

0.11 0.29 1.1 3.3 11 34 111 335 1,118

XMark Q1
XMark Q2
XMark Q6
XMark Q7
XMark Q13

1

2

3

6

1
1

2
6

8
0

2
3
4

7
7
2

4

9

2
1

5
6

1
9
6 5

9
1

2
,4

8
7 7
,7

5
4 2
9
,8

7
8

2

4

2

6

1
6

4
0

1
2
9 3

8
5

1
,2

8
9

2

1
0

6

1
5

4
1

1
1
8

3
8
6 1

,1
6
5 3
,9

4
0

1
4

3
7

1
2
0 3

5
7

1
,3

0
9 3
,8

6
2 1
3
,7

9
3

4
8
,4

4
6

1
4
6
,0

7
4

XML document size [MB]

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 4.11: XQuery on DB2: the XQuery-to-SQL translation using our loop-
lifting strategy results in an acceptable query performance even on the “innocent”
SQL database.

SQL Support for Aggregate Functions. Queries Q6 and Q7 contain the
XQuery built-in function fn:count () with the primary purpose to aggregate a
large number of result nodes from the XML document tree. As such, they can
directly benefit from the efficient implementation of aggregates in the relational
system and we see interactive response times over the whole size range for both
queries. But, again, we also benefit from accelerated XPath performance. Both
queries make use of descendant-or-self XPath steps, a setup which our rela-
tional document encoding was particularly designed for.

4.7 Wrap-Up

We have already found relational database systems capable of serving as an XML
mass storage and acting as efficient processors for XQuery’s navigational sublan-
guage XPath. In this chapter, we added the missing pieces to embrace other core
XQuery functionalities in a purely relational fashion. This extended our relational
XML processing stack to full compliance with the XQuery language.

Three aspects of our work are essential for the implementation of a full XQuery
system and make our compiler outstand among related work in the field:

(i) The compilation procedure we describe is fully compositional, an invaluable
property if support for XQuery’s arbitrary expression nesting is requested.

4.7. WRAP-UP 113

(ii) We do not depend on the presence of XML Schema information or DTD infor-
mation (our compiler is schema-oblivious in the sense of [Krishnamurthy03]).

(iii) Our approach is truly relational. Unlike earlier work, we do not depend on
specific kernel extensions to make the approach perform well (although we
may benefit from them, e.g., in terms of staircase join).

4.7.1 Related Research

Given the large body of research work on relational XPath evaluation and the
positive performance results obtained therein, it seems quite surprising that only
few approaches have been published that succeeded in leveraging this performance
into the domain of XQuery. This observation is backed by the survey paper on
XML-to-SQL query translation by Krishnamurthy et al. [Krishnamurthy03]. In
fact, none of the approaches we are aware of is able to provide all the essentials
listed above.

SQL Generation in the Agora System

An early attempt to consistently translate XQuery expressions into SQL has been
published by Manolescu et al. [Manolescu01]. The Agora data integration system
maps XQuery expressions to SQL queries over a relational tree encoding. The re-
lational schema in use is an implementation of the edge mapping idea [Florescu99],
hence, this approach is schema-oblivious like ours.

Agora’s compilation procedure, however, remains limited to only a small subset
of the XQuery language. In fact, the authors think that it is impossible to correctly
translate nested XQuery expressions into single SQL queries.9 This is mainly
due to the lack of an explicit representation of order in their relational sequence
encoding. In contrast, due to loop-lifting which explicitly accounts for sequence
and iteration order, our compiler does not suffer from the same problem.

DeHaan et al.: A Translation Based on Dynamic Interval Encoding

The work by DeHaan et al. [DeHaan03] comes closest to what we have developed
here. Based on the dynamic interval encoding, an XML tree encoding that resem-
bles our range encoding scheme, the authors describe a compositional translation
from a subset of XQuery Core into a set of SQL view definitions. Quite similar to
our loop-lifted sequence representation, this translation assumes a value encoding
that lists the results of parallel loop evaluations in a single relation.

9“Note that in XQuery, order can appear at any level of nesting [. . .] therefore, correctly trans-
lating a nested order-conscious XQuery query by a single SQL query is impossible.” [Manolescu01]

114 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

Notwithstanding, the translation scheme lacks a clear distinction of the differ-
ent notions of order in the XQuery language. Since, for example, sequence and
document representations are mixed in a single relational view, the approach is
unable to separate sequence order from document order. Both order notions are
kept completely disjoint in our compiler, yet seamlessly integrate if sequence order
is explicitly derived from document order, e.g., after the evaluation of an XPath
location step.

We feel that the most important drawback of the work in [DeHaan03], however,
is the complexity and execution cost of the generated SQL view definitions. The
compilation of path expressions, for example, leads to nested, correlated queries,
a shortcoming that has also been identified by [Krishnamurthy03]. To evaluate
these queries, the RDBMS falls back to nested loops plans, which renders the
relational back-end a poor XQuery runtime environment. To achieve acceptable
performance, DeHaan et al. indeed propose modifications to the relational engine
that are specifically geared to support their dynamic interval encoding.

The XQuery Implementation in Microsoft SQL Server 2005

Modifications of the underlying engine are also essential to the relational XQuery
implementation in the latest release of Microsoft SQL Server�. To accelerate the
evaluation of the system’s XQuery functionalities, each XML-typed database col-
umn may optionally be paired with a primary XML index. This index is an
implementation of the ORDPATH tree encoding [O’Neil04] and, hence, provides
for schema-oblivious relational XML storage.

The compilation of XQuery expressions into relational execution plans on the
basis of this index depends on specific XML extension operators provided by the
execution engine of SQL Server [Pal05]. Most notable among these operators
are the system’s XPath implementation XmlOp Path and a direct equivalent to
XQuery for constructs in terms of the XmlOp Apply operator.

While the introduction of XmlOp Path mainly attributes to performance and
can be reversed without affecting the plans’ semantics (much like the addition of
staircase join in our setup), the XmlOp Apply operator is indispensable to the
semantically sound evaluation of XQuery FLWOR expressions in SQL Server 2005.
Given a binding sequence e1, the name of a variable v, and a return expression
e2, operator XmlOp Apply binds v to the items in e1 and successively evaluates
e2. As such, the operator interrupts the purely set-oriented execution process and
falls back to an iterated evaluation in the presence of XQuery for clauses.

In this way, SQL Server does not represent a truly relational XQuery processor
in the sense described here. Tailor-made kernel modifications are likely to break
the bulk-oriented execution paradigm of modern database systems, which proved
to be one of the essences of effective query optimization.

4.7. WRAP-UP 115

On the other hand, the implementation of Pal et al. is the only work we are
aware of that succeeded in hosting XQuery on a relational system both, efficiently
and in a semantically correct manner. Furthermore, SQL Server 2005 provides a
seamless integration with XML Schema documents [Pal06]. The implementation
of loop-lifted XQuery evaluation could surely benefit from a similar use of schema
information for relational XQuery optimization.

Expressiveness of Node Construction

The node construction facilities in XQuery are primarily meant as a means to
elegantly re-format a query’s result set into suitable XML fragments. As Le Page et
al. have found out, however, these operators also contribute to the expressiveness
of the XQuery language [Page05]. Though our compilation procedure does not
have any problems supporting this expressiveness, we saw for XMark query Q13
that performance can significantly degrade if computed XML fragments are queried
with XPath. Using live node set information, our compiler keeps accesses to such
computed fragments minimal, the problem per se, however, remains.

On the other hand, there are instances in which a query could be expressed
equivalently without the use of node constructors at all. This is where our compiler
could benefit from the work by Le Page et al. The rewrite technique in [Page05]
turns each node-constructing expression whose XML result contains only original
nodes (a “node-conservative” expression) into an equivalent expression that does
not construct new nodes. Current work is in progress in the Pathfinder project
to actually perform equivalent rewrites on the basis of our compiler’s relational
algebra output.

4.7.2 Outlook & Perspective

An encoding of XQuery item sequences formed the key to the work we have de-
scribed in this chapter: the loop-lifted encoding represents the items in an expres-
sion result e for all iterations it appears in in a single relation. The explicit repre-
sentation of sequence and iteration order makes this encoding flexible enough to
capture a significant fragment of the XQuery language by purely relational means.

Loop-Lifting in Other Domains

This flexibility suggests the use of loop-lifting in applications outside the domain of
XQuery as well. An instance that is increasingly gaining attention in the software
development community is the Linq (“language integrated query”) project in the
Microsoft .NET Framework [Meijer05]. As a universal means to query XML as

116 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

well as relational sources within the C# language, Linq is equipped with iteration
primitives much like XQuery.

To achieve maximum performance, the C# compiler strives to delegate most
of the operations expressed in Linq to its database back-end(s), where skillful
optimizers can rewrite the user input efficiently. The latest Linq prototype pro-
vided by Microsoft does quite well in this respect.10 Lacking fully compositional
means to handle iteration, however, we found the compiler frequently “escape” to
an evaluation in the C# runtime (“common language infrastructure”, CLI). This
is where the loop-lifting idea could step in: providing a generic model for iteration
by relational means, the techniques described in this chapter could lead to a fully
compositional implementation of Linq.

Unsupported XQuery Features

The discussion in this chapter omitted several XQuery Core constructs that may
nevertheless seamlessly be mapped to loop-lifted equivalents. In fact, the XQuery
compiler Pathfinder embraces most of these features in a strictly loop-lifted im-
plementation. However, we found a few XQuery Core functionalities that cannot
be straightforwardly mapped into loop-lifted plan equivalents.

The Built-In Function op:to (). This function, available at the surface lan-
guage in terms of the binary operator to, generates consecutive integer numbers
within a given value range. Such a generation of “artificial” values is against the
nature of the underlying database kernel. For an appropriate support of op:to (),
we expect to require explicit support from the DBMS back-end.

Recursive User-Defined Functions. Effectively, we handle user-defined func-
tions by expanding the function body into any reference to the function. This is
similar to the approach taken by Manolescu et al. [Manolescu01]. The allowance
of recursion in the XQuery language obviously prohibits this evaluation strategy
for recursively defined functions.

Past research on deductive databases has brought up a large body of literature
covering the efficient handling of recursive queries (see [Ramakrishnan95] for a
survey) and support for recursive SQL queries has long since found its way into
mainstream database implementations. An adoption of these facilities could allow
for the efficient coverage of recursive functions in a loop-lifted compilation. (Sup-
port for this functionality is planned for a future release of the Pathfinder XQuery
compiler. Until then, the compiler “escapes” to a 1:1 mapping of user-defined

10See http://msdn.microsoft.com/netframework/future/linq/ for a recent version.

http://msdn.microsoft.com/netframework/future/linq/

4.7. WRAP-UP 117

functions into procedure declarations in Pathfinder’s back-end interface language
MIL [Boncz99].)

Getting the Most out of Loop-Lifting

The relational algebra dialect emitted by our compiler is sufficiently simple to be
efficiently implemented on any relational back-end. The way the algebra operators
are combined in loop-lifted XQuery evaluation plans, however, is quite different
from the usual π−σ−1 query pattern found in classical database applications. As
such, generated query plans often will not receive optimal support on commodity
systems.

The execution plans do, however, show a number of characteristics that provide
promising hooks for XQuery optimizations. While such optimizations have tradi-
tionally been performed using specialized XQuery algebras, a back-end’s relational
query optimizer that is made aware of such characteristics is now enabled to effi-
ciently treat XQuery expressions in a purely relational fashion. In the upcoming
chapter, we will discuss our approach to the detection of joins and the optimization
with respect to order. Furthermore, we will see how loop-lifted XQuery plans may
serve as a promising platform to derive result size estimates for arbitrary XQuery
expressions.

118 CHAPTER 4. LOOP-LIFTING: FROM XPATH TO XQUERY

5
The Pathfinder XQuery Compiler

In the long standing research on database query optimization, it turned out that
the key to effective optimizations is the availability of a powerful algebraic rewrite
framework. On the one hand, loop-lifting provides the basics for such a framework
in the form of a simple relational algebra and thus makes well-established opti-
mization techniques from the relational domain readily accessible to the processing
of XQuery. On the other hand, the relational plans generated by our compiler can
reach considerable size. The use of joins to implement XQuery’s iteration primi-
tive for results in loop-lifted plans with characteristics that are quite uncommon
for relational systems. Finally, the prevalent notion of order in the XQuery source
language makes its consideration all the more interesting for relational query op-
timization. Under these premises, we can hardly expect existing optimizers to
implement loop-lifted query plans in the most efficient manner. Novel optimiza-
tion techniques are asked for, which is what we will look into now.

As part of the MonetDB/XQuery system, the Pathfinder XQuery compiler pro-
vides all the tools to handle loop-lifted evaluation plans efficiently. Though initially
driven by the execution of XQuery, our optimizations are universal by nature and
may prove equally beneficial in other application domains. We will present these
optimizations in the following order. The peephole-style plan analysis described
in Section 5.1 addresses the unusual shape and size of the loop-lifted plans and
paves the ground for the consideration of order in Section 5.2. Section 5.3 adds
an inference procedure that provides accurate cardinality forecasts for XQuery.

Together with our contributions from the previous chapters, these optimiza-
tions add up to the purely relational XQuery processor MonetDB/XQuery. Per-

119

120 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

formance experiments in Section 5.4 report on the system’s outstanding query
performance, which backs the overall viability of our approach. We look into
other people’s work in Section 5.5.

5.1 Logical Optimizations in Pathfinder

The compilation strategy we pursue assumes only a very restricted—and, hence,
easily implementable—dialect of a relational algebra. Yet, it fully accounts for
arbitrary expression nesting in XQuery. The price we pay, however, is the consid-
erable size of the resulting algebraic code. The twenty queries from the XMark
benchmark, e.g., amount to several thousand operators in their relational plan
trees—way beyond of what traditional optimizers are efficiently able to cope with.

5.1.1 DAGs for Loop-Lifted Query Plans

Fortunately, the emitted plan trees display a significant amount of sharing op-
portunities, particularly if the nesting depth of the original query is high. The
Pathfinder compiler exploits this fact and uses directed acyclic graphs (DAGs) as
a representation for relational plans instead. Though the size of these DAGs is
still quite remarkable (53 to 500 operators for XMark queries), this rewrite takes
Pathfinder’s execution plans into a manageable domain.

Besides the obvious reduction of algebraic plan sizes, we also found plan DAGs
to elegantly reflect the correct handling of side-effects in the XQuery language (cf.
Section 4.4.3). Pathfinder lists each occurrence of an XQuery node constructor
exactly once in the DAG. This way, we instantiate precisely as many new node
identities as demanded by the XQuery semantics.

The most striking benefit, however, is the possibility to easily track the data
flow in the algebraic DAG. Pathfinder performs data flow analysis in a novel,
peephole-style [McKeeman65] fashion, as described next.

5.1.2 A Peephole-Style Plan Analysis

The use of pattern matching on algebraic plan trees has proven quite a successful
approach to query optimization in classical database systems. The holistic view
that is required for the involved matching process, however, impedes its practical
application for the query sizes observed in relational XQuery evaluation plans. This
is why the Pathfinder compiler takes quite a different approach to the optimization
of loop-lifted query plans. A peephole-style inspection restricted to single operator
nodes makes the approach scale easily to the DAG sizes we consider.

5.1. LOGICAL OPTIMIZATIONS IN PATHFINDER 121

Property Description

icols : {a1, . . . , an} columns a1, . . . , an are required
to evaluate some upstream operator

keys : {a1, . . . , an} columns a1, . . . , an are key candidates
a.dom: α column a takes values from the domain α
a.const : v column a assumes the constant value v

Table 5.1: Properties of DAG operators and their respective subtrees.

To compensate for the now restricted view on the plan, a property inference
phase precedes the actual rewriting and carries additional information about the
vicinity of each plan node into the operator itself. The information we need for
rewriting is captured in a set of annotations that we infer for each operator during
a single DAG walk. The most important operator properties inspected by our
compiler are listed in Table 5.1. We will elaborate on their semantics and use in
the following. For a detailed discussion of peephole-style optimization, we refer
to [Grust05,Grust06].

Column Dependency Analysis with icols

To minimize the size of intermediate results in relational plans, it is usually desir-
able to drop irrelevant columns as early as possible from the execution pipeline,
a technique that is often referred to as projection pushdown [Jarke84]. In our
property-driven optimization framework, the icols information assigned to each
plan operator serves to achieve the same effect.

Inference of icols. For each operator ⊗, we record the set of strictly required
input columns (short: icols) within its property annotation, such that ⊗.icols =
{a1, a2, . . . } contains all columns ai that are strictly required to evaluate some
upstream operator of ⊗. If, in turn, ⊗ itself produces the values of an attribute
aj, this column will not be listed in the icols set of ⊗’s children in the DAG. The
icols information are propagated in a top-down traversal of the DAG. During the
traversal, some algebra operators add or remove columns from the propagation
set. To illustrate this process, we sketched the icols inference for some frequently
occurring plan operators in Figure 5.1.

We seed the inference of icols at the DAG’s root with icols = {pos , item}, as
those are the columns needed to serialize the overall query result back into XML.

Exploiting the Information on Strictly Required Columns. The early
introduction of projection operators into the plan DAG is the most apparent use

122 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

πa:b,c
icols: cs

icols: cs \ {a} ∪ {b, c}

(a) Projection operator π.

%a:〈b〉‖c icols: cs

icols: cs \ {a} ∪ {b, c}

(b) Row numbering.

grpa:count ‖ b
icols: cs

icols: {b}

(c) Aggregation.

Figure 5.1: Top-down inference of icols sets for the three selected algebra operators.
DAG annotations denoted by (cs : set of column names).

ab c b c

icols: cs

a/∈cs−→

(a) Literal table.

}a:〈b1,...,bn〉

q

q

icols: cs

a/∈cs−→

(b) Arithmetics.

%a:〈b1,...,bn〉‖p

q

q

icols: cs

a/∈cs−→

(c) Row numbering.

×
a
x

q

q

icols: cs

a/∈cs−→

(d) Cart. product.

Figure 5.2: Peephole-style rewrites based on the icols property that eliminate
operators from the DAG. Literal table in (d) contains exactly one tuple.

of the information on icols . With the help of the annotation, the rewrite decision
to do projections as early as possible now depends on the inspection of only a
single plan node. The same information may also be used, however, to eliminate
an algebraic operator altogether if its output is never inspected by any upstream
operator. There are several spots in our algebra where such optimizations might
apply. The peephole-style rewrite rules in Figure 5.2 illustrate a number of cases
where this idea becomes effective.

The output of our XQuery compilation turns out to be highly susceptible to
optimizations of this kind. For example, to evaluate a sequence of XPath location
steps, the generated plans establish a new pos column in each intermediate step
result. While this ensures the compositionality of our compilation procedure, the
new pos column will never be required by any subsequent location step. We already
found this opportunity appealing for XPath step bundling in Chapter 4. icols-
based rewrites using the rule in Figure 5.2(c) provide an efficient implementation
for XPath step bundling and may indeed lead to a significant plan reduction. In
case of the XPath-centric XMark query Q15 , e.g., the exploitation of icols cut
down the plan size from 100 to only 32 operators in Pathfinder.

We will unleash the full power of icols-based rewrites in Section 5.2, where we
look into plan optimizations that relate to order.

5.1. LOGICAL OPTIMIZATIONS IN PATHFINDER 123

Information on Key Columns and Value Domains

It is a common situation in loop-lifted XQuery evaluation plans that columns are
populated with (artificial) key values. This happens most notably in cases where
the row numbering operator % (or its unsorted counterpart #) establishes a new
column with unique row numbers. The keyness of such columns is easy to infer in
a bottom-up DAG walk and we record the respective information in the operator’s
keys property.

The propagation of the keys property is described by a number of inference
rules. Key joins, e.g., will always propagate keyness bottom-up:

a ∈ e1.keys b ∈ e2.keys

(e1 1a=b e2) .keys : e1.keys ∪ e2.keys
. (5.1)

The establishment of a new column numbering also marks the spot where
our compiler records the active domain of the values taken by the new column.
Obviously, the actual value of an expression is not known before query evaluation
time. We may, however, introduce abstract domain identifiers α, β, . . . instead
and assign them to a column a of an operator ⊗ in the DAG (e.g., ⊗.a.icols : α).
Furthermore, our compiler infers domain inclusion information. From an inclusion
α ⊆ β, we can then conclude the inclusion of the corresponding active domains.

Much like the keys information, dom is inferred bottom-up in the plan DAG.
To exemplify the procedure, the inference rule

e1.a.dom: α e2.b.dom: β β ⊆ α

(e1 1a=b e2) .a.dom = β (e1 1a=b e2) .b.dom = β
(5.2)

implemented in our compiler comprises the knowledge that each tuple in e2 will
always find a matching partner in e1 for the join 1a=b, since the active domain α
of e1.a includes β, the domain of e2.b. For a larger set of keys and dom derivation
rules, we refer the reader to [Grust05].

To illustrate the property derivation process, Figure 5.3 displays the DAG
annotations icols and keys for the (simplified) plan DAG1 of the query

for $a in doc ("auction.xml")/descendant::open_auction

where $a/initial lt 180

return $a .
(Q1)

Observe how we could, e.g., remove the row numbering operator %pos:〈item〉‖iter
marked with !O from the plan DAG, because the newly generated pos column is

1Algebra operators DOC and VAL implement the XQuery functions fn:doc () (access to the
document relation doc) and fn:data () (typed value extraction from XML nodes), respectively.

124 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

DOC
"auction.xml"

�
desc::open_auction

%pos:〈item〉‖iter

%inner :〈iter ,pos〉

πiter :inner ,item
pos
1

×

�
child::initial

%pos:〈item〉‖iter

VAL
item

σitem<180

πiter1 :iter

1
iter1=iter

πiter ,pos,item

1
iter=inner

%pos1 :〈inner ,pos〉‖outer

πiter :outer ,pos:pos1 ,item

πouter :iter ,inner

!O

icols: {iter , item}

icols: {iter , item}

icols: {iter , item, pos}
icols: {iter , inner , item};
keys: {inner};

icols: {outer , inner};
keys: {inner}

icols: {iter , item};
keys: {inner}

icols: {iter , pos, item}
icols: {iter , item}

icols: {iter , item}

icols: {iter , item}

icols: {iter}

icols: {iter1}

icols: {iter , pos, item}

icols: {iter , pos, item}

icols: {inner , pos, outer , item} icols: {pos1 , item}

icols: {pos, item}

Figure 5.3: DAG annotations icols and keys for Query Q1.

not among the operator’s icols . For space reasons, the plan in Figure 5.3 does not
include domain information (property dom). A second instance of the same plan
in Section 5.3 will provide this information.

Columns that Evaluate to a Constant Value

As the last DAG annotation mentioned in this section, property const identifies
columns that are guaranteed to assume a constant value v. Such columns may
be the effect of literal values in the original query (compiled via Rule Const)
or originate from the compilation procedure itself (e.g., the constant pos columns
established by Rule For). The inference of the column property const will propa-
gate such constants to their actual use in, e.g., value comparisons with } and may
avoid the need to materialize the column in the final execution plan.

5.1.3 Robust XQuery Join Detection

A further-reaching optimization that may be achieved in terms of peephole-style
plan rewriting has been described by Grust [Grust05]. This work particularly looks
into join situations in XQuery. For lack of an explicit join syntax in the XQuery

5.1. LOGICAL OPTIMIZATIONS IN PATHFINDER 125

iter1 pos1 item1
1 1 30
2 1 30
3 1 30
4 1 20
5 1 20
6 1 20

qu·v($u)

iter2 pos2 item2
1 1 10
2 1 20
3 1 30
4 1 10
5 1 20
6 1 30

qu·v($v)

1iter1=iter2

=#item:〈item1 ,item2 〉

σitem

πiter :iter1

×
pos item
1 "match"

(a) Loop-lifted plan for Q2.

iter1 pos1 item1
1 1 30
2 1 20

qu($u)

iter2 pos2 item2
1 1 10
2 1 20
3 1 30

qv($v)

1item1=item2

%iter :〈iter1 ,iter2 〉

πiter

×
pos item
1 "match"

(b) Equivalent join plan.

Figure 5.4: Relational evaluation of XQuery example Q2. (a) Loop-lifting effec-
tively establishes a Cartesian product of both operands. (b) The independent
representation of $u and $v in the join plan avoids this product instead.

language, join semantics is typically expressed in terms of nested FLWOR clauses or
equivalent path expressions. The where clause in the query

s

for $u in (30, 20) return

su

for $v in (1, 2, 3) return

su·v

{
where $u eq $v * 10
return "match" ,

(Q2)

for example, makes the nested for clauses encode a logical join over the input
sequences (30, 20) and (1, 2, 3).

A straightforward implementation of this query as a nested iteration, however,
seems far from efficient. Quite the contrary, the loop-lifted evaluation of Query Q2

will effectively compute the Cartesian product of the two input sequences as illus-
trated in the plan excerpt in Figure 5.4(a). With a relational database system in
the back, we obviously could do better. The independent evaluation of both join
operands followed by the value-based join 1item1=item2 avoids the computation of
the Cartesian product and makes the join accessible to the RDBMS instead (Fig-
ure 5.4(b)). Ideally, the relational kernel will back this plan with efficient hash or
merge join implementations.

The effectiveness of the plan rewrite in Figure 5.4 is high. In [Boncz06b],
we evaluated both plan variants for the join queries in the XMark benchmark

126 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

100 1, 000 10, 000 100, 000

100 1, 000 10, 000 100, 000

execution time [ms]

Q8

Q9

Q10

Q11

Q12

X
M

ar
k

B
en

ch
m

ar
k

Q
ue

ry 17,405

22,853

2,020

13,807

4,235

130

183

657

183

156
cross product
join plan

Figure 5.5: XQuery join optimization. Rewriting loop-lifted XQuery evaluation
plans into equivalent join plans significantly improves query performance, even on a
moderately sized XMark instance (11MB). Experiments conducted in [Boncz06b].

set (Queries Q8–Q12) using the 0.10.2 version of MonetDB/XQuery. Figure 5.5
documents a performance improvement of up to two orders of magnitude even on
an XML instance of moderate size (11MB). Given the quadratic complexity of
a nested loops evaluation, this indicates that the rewriting of join queries is an
absolute must for the support of large-sized XML documents.

However, a dependable detection of join scenarios in a given XQuery expression
constitutes quite a challenge to a system’s query optimizer. An analysis of the
input expression itself is only a half-hearted solution for the problem and turns
out to be rather fragile with respect to syntactical variations of the query. In fact,
none of the XQuery systems we investigated in [Boncz06b] was able to reliably
recognize all of the five join queries in XMark.

In contrast to that, the Pathfinder optimizer relies on the join detection tech-
nique proposed by Grust [Grust05]. It constitutes a peephole-style rewrite strategy
which detects join opportunities in loop-lifted XQuery plans in a purely algebraic
fashion. The key to the detection is the inference of an independence property
in the algebraic plan DAGs. To this end, the optimizer derives the degenerate
multivalued dependency ∅ � a1, . . . , an for a plan operator ⊗ whenever columns
a1, . . . , an are independent of all remaining columns in the output of ⊗. It is ex-
actly this independence that allowed us to compute the representations qu($u) and
qv($v) for $u and $v in Query Q2 in separation (cf. Figure 5.4(b)).

Once our compiler has recognized an independence of this kind, it makes the
situation explicit in the plan and introduces a Cartesian product ×. The resulting

5.2. THE IMPORTANCE OF ORDER 127

combination σ−=#−× is then easily realized as a relational join in a subsequent
step and rewritten accordingly. For further details, refer to [Grust05].

5.2 The Importance of Order

We have seen in the foregoing chapters that order is an integral part of the XQuery
semantics. The XPath accelerator encoding in Chapter 2, e.g., took special care
to implement document order in terms of the preorder rank pre(v), as did the
staircase join operator in Chapter 3 when it came to retrieving the result of an
XPath location step. Likewise, in Chapter 4, columns iter and pos of a loop-lifted
sequence representation implemented iteration and sequence order by relational
means. Indeed, all three notions of order are quite pervasive in the compilation
strategy we devise.

5.2.1 Order in Loop-Lifted XQuery

The pervasive presence of order constraints in our algebra code is reflected in the
frequent appearance of the row numbering operator % in the relational plan DAG,
a consequence of the inherently unordered data model of relational systems. In
the query execution plan, each such % operator will impose a specific physical
ordering on its input, such that loop-lifted XQuery plans will either (i) involve a
large number of explicit sort operators or (ii) enforce the propagation of a specific
ordering throughout the physical execution. Both situations obviously disrupt
the unordered evaluation model of the relational system and may seriously impair
performance.

Row Numbering: An Indicator for Order Constraints

On the plus side, the row numbering operator % makes order effects easily recog-
nizable in the logical plan DAGs inspected by our query optimizer. Hence, we will
use the occurrence of % as a reasonable indicator for order constraints in loop-lifted
XQuery plans and strive for its avoidance wherever possible.

We have already encountered one instance where a peephole-style optimization
was able to reduce the occurrences of order constraints: the exploitation of icols
information led to the removal of interleaving % operators in successive XPath lo-
cation steps (which we referred to as “XPath step bundling”). We have mentioned
the significant cut-down of the overall plan size for the XPath-centric XMark query
Q15 as a consequence of icols analysis on page 122. At closer look, the size reduc-
tion mainly results from the elimination of expensive % operators from the plan:
out of 27 % operators in Q15 , icols examination removed 25.

128 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

5.2.2 Order Indifference in XQuery

The avoidance of row numbers in intermediary path expression results corresponds
directly to the semantics of XPath: the sequence order within a context set is
immaterial to the outcome of an XPath location step. There are, however, far more
situations in XQuery where order does not affect the evaluation of an expression:

(i) the quantifiers some and every,

(ii) the existential semantics of general comparisons (=, <, . . .),

(iii) aggregate functions (fn:max (), fn:count (), . . .),

(iv) further built-in functions (fn:empty (), fn:exists (), . . .),

(v) FLWOR expressions whose result is explicitly re-ordered by an order by clause,
and, most notably,

(vi) the explicit relaxation of order constraints in terms of XQuery’s ordering
mode (keywords ordered { · } and unordered { · }) and the built-in function
fn:unordered ().

Order semantics is deeply wired into the XQuery language. Therefore, the indif-
ference of order in the above situations turns out to be hard to grasp in XQuery
itself [Grust06]. In fact, the W3C XQuery specifications explicitly omit a formal
description of order in their Formal Semantics [Draper05, § 4.8].

Algebraic Order Indifference

It turns out, though, that in all of the above cases, the indifference of order is
directly observable in loop-lifted algebraic code:

(i) if an expression is indifferent with respect to sequence order, its correspond-
ing code may populate column pos with arbitrary (though unique) values.
Likewise,

(ii) if an expression does not depend on iteration order, column iter may be filled
with an arbitrary unique numbering.

In these situations, we can make efficient use of the unsorted row numbering oper-
ator # in our algebra. Using this operator, we can instruct the database system to
behave precisely as we need it: #a introduces a new column a, filled with arbitrary
unique values. The operation is easy to perform: a simple numbering according
to the existing physical tuple order serves the purpose equally well as the re-use
of existing tuple identifiers (row ids) as the new column (cf. Section 4.1.2).

5.2. THE IMPORTANCE OF ORDER 129

Note that we may not simply drop the respective columns during the generation
of the plan. Since the “compiles to” function · Z⇒ · describes a fully compositional
procedure where expressions are allowed to nest arbitrarily, any compiled subex-
pression is assumed to consume and produce relations with columns iter and pos
in place as usual.

Compilation in Awareness of Order Indifference

The trade of costly row-numbering operators % for inexpensive # operators only
requires a minor modification to the rule set of Pathfinder. The prototypical
example is the compilation rule for fn:unordered () that literally implements the
disposal of sequence order and the population of column pos with arbitrary values
instead:

Γ; loop ` e Z⇒ (qe, ∆e)

Γ; loop ` fn:unordered (e) Z⇒ (#pos (πiter ,item(qe)) , ∆e)
. (Fn:Unordered)

As this rule “overwrites” the position information of qe, column pos is no longer
a required input column of qe (in the sense of Section 5.1.2). In effect, the icols
column dependency analysis will avoid the construction of pos in expression qe

outright, which is likely to trigger the removal of an instance of % downstream in
the algebraic plan.

Compilation rules for quantifiers, aggregates, and built-in functions disregard
position information in a similar fashion. In Section 4.5.2, we dropped sequence
order before aggregating type information in order to implement XQuery sequence
type matching (page 105). As mentioned before, the algebra code for XPath
location steps (see Rule Step) removes column pos from the context set before
evaluating the step operator �. All these cases will naturally lead to a disposal of
% in the algebraic plan DAGs downstream.

Exploiting XQuery’s ordering mode

In awareness of the performance improvements to gain,2 the W3C XQuery Candi-
date Recommendation provides an explicit means to relax the ordering constraints
of XQuery even further. In dependence of the ordering mode setting (controlled in
terms of the ordered { · } and unordered { · } clauses), an XQuery implementation
is free to

(i) return node sequences in any order as the result of XPath navigation expres-
sions and

2Quoting from [Boag05, § 3.9]: “For expressions where the ordering of the result is not sig-
nificant, a performance advantage may be realized by setting the ordering mode to unordered,
thereby granting the system flexibility to return the result in the order that it finds most efficient.”

130 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

ordering mode = unordered

{. . . , $vi 7→ (qvi
, ∆vi

) , . . . }; loop ` e1 Z⇒ (q1, ∆1) qi ≡ #inner(q1)

loop ≡ πiter :inner(qi) map ≡ πouter :iter ,inner(qi) qv ≡ pos
1 × πiter :inner ,item(qi)

qp ≡ pos
1 × πiter :inner ,item

(
%item:〈pos〉‖iterπinner ,iter ,pos(qi)

)
Γv ≡ {. . . , $vi 7→ (πiter :inner ,pos,item (qvi

1iter=outer map) , ∆vi
) , . . . }

+ {$v 7→ (qv, ∆1)}+ {$p 7→ (qp, ∅)}
Γv; loopv ` e2 Z⇒ (q2, ∆2)

{. . . , $vi 7→ (qvi
, ∆vi

) , . . . }; loop ` for $v at $p in e1 return e2 Z⇒(
πiter :outer ,pos:pos1 ,item

(
%pos1 :〈inner ,pos〉‖outer (q2 1iter=inner map)

)
, ∆2

)
(For#)

Figure 5.6: Compilation of for-loops if ordering mode = unordered.

(ii) iterate over a FLWOR body without adhering to the sequence order of the
binding sequence

if ordering mode is set to unordered. Our compiler acknowledges this opportunity
to let go of order by extending the respective compilation rules by a premise
specifying the setting of ordering mode. For instance, in Rule Step#

ordering mode = unordered Γ; loop ` e Z⇒ (qe, ∆e)

Γ; loop ` e/α::ν Z⇒
(
#pos

(
δ
(
(πiter ,item(qe))�α,ν ∆e

))
, ∆e

) , (Step#)

our compiler recognizes the indifference of order for the result of an XPath location
step in the unordered ordering mode. The use of # to establish the pos column
of the result makes this indifference explicit to the relational back-end.

Likewise, the sequence order of the binding sequence of an XQuery for con-
struct no longer determines iteration order if ordering mode = unordered. The
interaction between these two notions of order led to the application of % in Equa-
tion 4.2 (page 84) where we derived the relational encoding qx·y($vx·y) of a binding
variable $vx·y. If ordering mode is set to unordered, we may instead populate
column inner with arbitrary values and represent $vx·y as

qx·y($vx·y) ≡

×
pos
1

πiter :inner ,item

#inner

qx(ex·y)

. (5.3)

The same idea is incorporated in compilation rule For# that accounts for order-
indifferent for constructs in the implementation of Pathfinder (Figure 5.6).

5.2. THE IMPORTANCE OF ORDER 131

0

50

100

150

200

250

300

350

400

0

10

20

30

40

50

60

70

80

to
ta

l
al

ge
b
ra

op
er

at
or

s

row
n
u
m

b
erin

g
op

erators
(%

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

XMark Benchmark Query

?

7
5
/
1
3
8

4
5
/
9
1

2
3
1
/
3
8
5

1
8
5
/
3
2
5

7
1
/
1
3
2

2
3
/
5
3

4
3
/
7
9

1
3
5
/
2
2
7

2
2
1
/
3
7
1

3
1
2
/
5
0
0

1
4
0
/
2
3
4

1
8
9
/
3
1
6

5
0
/
8
7

4
9
/
8
6

3
2
/
1
0
0 6
5
/
1
4
9

5
5
/
9
7

6
4
/
1
0
1

8
7
/
1
4
2

2
5
1
/
3
9
2

?

3
/
1
8

5
/
1
6

1
3
/
4
8

3
/
3
5

0
/
1
5

2
/
1
1

2
/
1
1

5
/
3
0

8
/
4
9

2
6
/
8
7

5
/
3
0 5
/
3
6

6
/
1
7

4
/
1
4

2
/
2
7 4
/
3
2

4
/
1
6

4
/
1
4

6
/
2
2

3
/
3
0

total ops before opt.
total ops after opt.
% ops before opt.
% ops after opt.

Figure 5.7: Effect of order-aware plan rewrites. Total number of DAG operators
before/after optimization and respective number of row numbering operators (note
the different scales on the y-axis).

5.2.3 A Performance Advantage can be Realized

The directly observable effect of the exploitation of such order indifferences is the
avoidance of row numbering operators in the logical plan DAGs. The impact is
quite significant: rewriting cuts down the number of % operators in the 20 XMark
queries by more than 80% on average. To illustrate, we compiled all 20 queries with
and without order-related optimizations in effect and recorded the total number
of operators as well as the number of row numbering operators % only. Figure 5.7
compares these numbers before and after order-sensitive plan rewrites. The logical
optimizer clearly serves the purpose it was designed for.

An impact on query execution times, however, will hardly be visible, unless
physical evaluation plans take explicit advantage of the relaxation of order con-
straints, as discussed next.

5.2.4 Physical Optimization and Order Awareness

While the occurrence of % operators gives us a reasonable indicator for order con-
straints on the logical algebra level, the actual tuple ordering is ultimately de-
termined when Pathfinder converts the algebra DAG into a physical execution
plan. To keep the required sort operations at a minimum, the compiler carefully
inspects physical order properties during the generation of the physical plan. This
way, our planner realizes the performance gain that we prepared before when we
substituted % for #.

132 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

Our approach is quite similar to the one taken in System R [Selinger79].
Pathfinder’s execution plan generator enumerates available candidate plans in a
bottom-up fashion, each of them annotated with an expected execution cost as
well as with information on the physical orderings that the plan guarantees. Of all
plans, only the cheapest possible plan is retained for each physical ordering. The
planner will instantly exclude the others from the generation process following the
principles of dynamic programming.

Given the importance of order for the evaluation of XQuery, we exercise specific
care to make this compilation phase effective. To this end, Pathfinder considers
a number of physical operators in the MonetDB back-end that provide extended
guarantees with respect to order. Most notably, we incorporated new implemen-
tations for the disjoint union ·∪, row numbering %, and sorting operators into the
system.

Disjoint Union. In addition to the usual AppendUnion which simply pastes its
input relations one after another, MonetDB’s MergeUnion accounts for the typical
use of the ·∪ operation in loop-lifted XQuery plans. Parameterized with a physical
ordering O that must be provided by both input subplans e1 and e2, MergeUnion
processes both tuple streams in a parallel fashion. The output contains all tuples
from e1 and e2 and retains the order defined by O. Furthermore, tuples from e1

will precede entries from e2 in the result if both are indistinguishable with respect
to O.

Among other useful applications, MergeUnion seamlessly integrates into our
compilation of XQuery’s sequence construction operator (·,·). As mentioned in
Section 4.1.5, the use of MergeUnion for the disjoint union in Rule Seq avoids
the expensive sort required to implement the subsequent row numbering with %
(assuming properly sorted input relations).

Row Numbering. An obvious approach to implement the row numbering oper-
ator %a:〈b1,...,bn〉 ‖ p(q) is to physically sort the entire input relation q according to the
ordering 〈p, b1, . . . , bn〉 (with the partitioning attribute p as the primary sort key).
The MergeRowNumber operator then fills column a with a counter that starts at 1,
is incremented at each tuple and reset to 1 whenever a new p value is encountered.

MonetDB’s alternative, HashRowNumber, creates a hash table on column p and
initializes a counter in each bucket with the value 1. Then, for each tuple in q,
the counter is looked up, emitted into the result, and incremented by 1. This
implementation requires a less restrictive ordering on the input relation q, where
we only demand all tuples with the same value in the partitioning attribute p to
be ordered according to 〈b1, . . . , bn〉. This generalization of order conditions (de-
noted 〈b1, . . . , bn ‖ p〉) turns out to have other valuable applications in the Mon-

5.3. CARDINALITY FORECASTS FOR LOOP-LIFTED PLANS 133

etDB/XQuery system as well, for which we refer to [Boncz05a].

Sorting. Instead of applying a full StandardSort to enforce a certain ordering
of a relation q, there are many situations in loop-lifted evaluation plans where
RefineSort provides a sufficient alternative. This MonetDB operator exploits
the knowledge that the input relation is already sorted on a major subset of the
required order and implements the refinement without fully blocking the processing
pipeline.

5.3 Cardinality Forecasts for Loop-Lifted Plans

We have assumed the presence of a sound cost model for algebraic query plans in
the previous section. Such cost models have been studied extensively for relational
query languages and plug in quite seamlessly into the plan generator of Pathfinder.

The crux of these cost models, however, is their dependence on accurate car-
dinality forecasts for the involved query expressions. The derivation of such in-
formation is well understood in the relational domain. The domain of XQuery,
however, still lacks a convincing means to estimate the cardinality of arbitrary
XQuery (sub-)expressions. Existing work in the domain, if any, remains limited
to a subset of XPath.

The compilation procedure we devise translates XQuery expressions of arbi-
trary shape into purely relational query plans. As such, the adaption of estimation
techniques from that domain seems a promising leverage point to achieve mean-
ingful cardinality forecasts for relational XQuery evaluation plans. The approach
we discuss here is twofold:

(i) Statistical guide.
In order to maintain statistical information on XML documents, we introduce
statistical guides. A statistical guide is a strong DataGuide in the sense
of [Goldman97], annotated with statistics on the underlying data.

(ii) Cardinality forecasts.
In Section 5.3.2, we will extend the property framework of our peephole
optimizer to embrace the derivation of cardinality forecasts for algebraic plans
in a seamless fashion.

Both techniques are currently under development in the MonetDB/XQuery system
and are expected to significantly improve the accuracy of cost estimations in the
XQuery compiler Pathfinder.

134 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

document-node()
n0

open_auctions
n12

open_auction
n13

annotation
n14 bidder

n17

initial
n22

increase
n18

date
n19

personref
n20

time
n21

1200

2

1 1 1
1

C1

1 V1

(a) Statistical guide.

of children

p
ro

b
a
b
il
it
y

1 3 5 7 9 11

(b) Children histogram C1.

initial (type xs:double)

p
ro

b
a
b
il
it
y

0 200 400

(c) Typed value histogram V1.

Figure 5.8: Statistical guide for a 12MB XMark instance (excerpt). The edge
n13 → n17 is annotated with the children histogram C1, node n22 with the value
histogram V1.

5.3.1 Statistical Guide

The difficulty of predicting cardinalities for XQuery expressions is caused by the
possibility to simultaneously query a document’s shape and content in XQuery.
We acknowledge this fact by means of a statistical guide that summarizes structural
information in terms of child element distributions and also records the distribution
of typed values associated with the nodes in an XML tree (as defined by the W3C
XQuery Data Model [Fernández05]). A statistical guide (see Figure 5.8 for an
example) implements a strong DataGuide in the sense of [Goldman97]. As such
it is easily constructed in a single tree traversal, e.g., during XML document
shredding.

We capture structural information by edge annotations in the statistical guide.
A guide edge corresponds to multiple edges in the input document. By default, we
annotate guide edges with the average number of edges sharing a common parent
node in the document. To exemplify, in the document summarized in Figure 5.8,
an open_auction element (n13) contains two child elements tagged annotation

(n14) on average. For selected guide edges, such annotations may be refined in
terms of a children histogram that reflects the actual children distribution more
accurately. The edge n13 → n17, for example, has been refined by the children
histogram C1 (Figure 5.8(b)).

5.3. CARDINALITY FORECASTS FOR LOOP-LIFTED PLANS 135

Selectivity estimations for value-based predicates are supported in terms of
typed value histograms that the database administrator may decide to set up for
specific nodes in the statistical guide. The histogram V1 in Figure 5.8(c) sketches
the value distribution for node n22 (tag initial) in our example guide (assuming
the corresponding nodes in the document are of type xs:double).

Observe that the statistical guide itself takes the shape of a tree. As such,
it smoothly integrates with our storage of XML documents and could, e.g., be
maintained in terms of a pre/post encoding. As Goldman et al. [Goldman97] point
out, the size of strong DataGuides usually remains small even for highly irregular
XML trees. For data-centric XQuery applications, we can even expect that the
statistical guide easily fits into main memory, where it is efficiently accessible to
the query compiler.

5.3.2 Cardinality Forecasts

In line with the property-driven optimization process we discussed in Section 5.1,
we introduce cardinality estimates in terms of the additional property card , which,
annotated to an operator ⊗, represents a forecast of the cardinality of the output
relation of ⊗.

Guide Nodes and Cardinality Inference

For the inference of card , we rely on the presence of the statistical guide as well
as a further new concept, guide nodes (recorded for a column c in terms of the
annotation c.guide). A guide node property c.guide: ni indicates that column c
contains surrogates of nodes that correspond to node ni in the statistical guide
(recall the ni node identifiers in Figure 5.8).

To illustrate the inference process for both properties, Figure 5.9 shows the
annotated plan DAG for Query Q1 in Section 5.1.2:

for $a in doc ("auction.xml")/descendant::open_auction

where $a/initial lt 180

return $a .
(Q1)

Guide Nodes. In the DAG in Figure 5.9, operator DOC 1O implements the ac-
cess to the persistent document storage and returns a singleton 〈iter , pos , item〉
relation in which column item carries the surrogate of the document node of
"auction.xml". For this relation, we record a reference to the root n0 of the
statistical guide in item.guide.

Guide node annotations are usually propagated bottom-up in the operator
DAG (e.g., item.guide: n13 from 2O to 3O). The guide annotation changes whenever

136 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

DOC
"auction.xml"

�
desc::open_auction

%pos:〈item〉‖iter

%inner :〈iter ,pos〉

πiter :inner ,item
pos
1

×

�
child::initial

%pos:〈item〉‖iter

VAL
item

σitem<180

πiter1 :iter

1
iter1=iter

πiter ,pos,item

1
iter=inner

%pos1 :〈inner ,pos〉‖outer

πiter :outer ,pos:pos1 ,item

πouter :iter ,inner

item.guide: n0; card : 1
1O

item.guide: n13; card : 1200 2O

keys: { inner }; inner .dom: β
item.guide: n13; card : 1200

3O

iter .dom: γ; γ ⊆ β
item.guide: n22; card : 1200

4O

item.hist : V1

iter .dom: γ; γ ⊆ β; card : 1200

5OV1

iter .dom: δ
δ ⊆ γ ⊆ β; card : 969

6O

iter .dom: δ; iter1 .dom: δ
item.guide: n13; δ ⊆ β; card : 969

7O

iter .dom: δ; inner .dom: δ
item.guide: n13; δ ⊆ β; card : 969

8O

Figure 5.9: Plan DAG for query Q1, annotated with inferred properties, guide
nodes (property guide), and expected cardinalities (card) for a 12MB XMark
instance (annotations refer to Figure 5.8).

a staircase join operator is encountered during the propagation. If � performs a
step along axis α, we also step along α in the guide to keep the guide property up
to date. In Figure 5.9, the location step descendant::open_auction makes n13

the new guide node when moving from 1O to 2O. In this case, we may infer from
the edge annotations in the statistical guide that � at 2O will yield 1200 nodes
(thus, card : 1200).

Cardinality Inference. The guide node-based cardinality forecasts are accom-
panied by cardinality inference rules that extend the rule set we sketched in Sec-
tion 5.1.2. Typically, these rules rely on further plan properties to infer accurate
cardinality estimates. Quite similar to Rule 5.2 (which we used to propagate do-
main information across a join), the rule

a ∈ e1.keys e1.a.dom: α e2.b.dom: β β ⊆ α e2.card : c2

(e1 1a=b e2) .card : c2

(5.4)

5.4. MONETDB/XQUERY 137

incorporates the knowledge that each tuple in e2 will find exactly one join partner
in e1 for the join 1a=b, since column a is key in e1 and contains all values of column
b in e2 (due to β ⊆ α). In the DAG of Figure 5.9, we used this rule to propagate
card across the key joins at 7O and 8O.

Typed Value Access. The where clause in Query Q1 uses the value compar-
ison operator lt to compare an XML tree node (the result of the subexpression
$a/initial) to the integer 180. In such situations, atomization is implicitly per-
formed to extract the typed value of the involved node.

In the plan DAG in Figure 5.9, operator VAL at 5O marks the spot where the
system trades nodes for atomic values (of type xs:double here). Column item
of the output relation will thus contain the 1200 typed values that correspond to
the initial nodes (guide node n22) of the operand of VALitem . At 5O, we will
remove the guide annotation n22 from the item column and annotate the typed
value histogram V1 associated with n22 to column item (property hist) instead.
This process is captured by the inference rule

e.a.guide: n n.hist : Vn

(VALa e) .a.hist : Vn

, (5.5)

where n.hist : Vn denotes that node n in the statistical guide has been refined with
the typed value histogram Vn.

The value distributions provided by a column’s hist annotation may then be
used to estimate predicate selectivities in the classical relational style (e.g., at 6O)
to properly maintain our card forecast. In the example in Figure 5.9, we ultimately
estimate that 696 open_auction elements (item.guide: n13) will be returned by
Query Q1. The actual evaluation of Q1 yields 986 nodes—the forecast is thus not
too far off.

Experiments [Sakr06] indicate that the use of loop-lifted query plans consti-
tutes a highly flexible and accurate approach to result size estimation for XQuery
(sub-)expressions. The technique is currently under implementation in the XQuery
compiler Pathfinder.

5.4 MonetDB/XQuery:

A Fast and Scalable XQuery Processor

The tailor-made optimizations for loop-lifted XQuery evaluation plans contributed
the final pieces to build up an efficient and standards-compliant XQuery processor
based on relational database technology. The construction of such a system is

138 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

XQuery

Pathfinder
Compiler

MIL

XQuery Runtime

MonetDB Kernel

XML

Figure 5.10: Simplified architecture of the MonetDB/XQuery system.

what we did in the context of this work in order to assess the viability of our
purely relational approach.

The outcome is MonetDB/XQuery, one of the fastest and most scalable XQuery
implementations in existence at the time of this writing. The system is backed
by the MonetDB database kernel, a purely relational system tuned to exploit the
capabilities of modern computing hardware [Boncz02]. Version 4.10.2 is the latest
issue of the open-source kernel that comprises more than a decade of database re-
search and development carried out at the Centrum voor Wiskunde en Informatica
(CWI) in Amsterdam, The Netherlands.

XQuery support is provided by the Pathfinder compiler whose internals we
described in this work. A small runtime extension module adds an implementation
of staircase join to the kernel as well as a set of features that facilitate the shredding,
handling, and serialization of XML documents. In addition to an implementation
of the core XQuery functionalities, Pathfinder provides the schema import, static
typing, full axis, module and serialization features described in Section 5.2 of the
W3C XQuery Candidate Recommendation [Boag05]. Support for the XQuery
Update Facility [Chamberlin06] is currently under implementation.

5.4.1 System Architecture

The implementation of MonetDB/XQuery follows the architecture illustrated in
Figure 5.10. Pathfinder uses the loop-lifting technique to compile the user input
into relational algebra and optimizes it for execution on MonetDB. The resulting
plan is then emitted to the MonetDB server in terms of a MIL3 program, where it
is executed with the help of the XQuery runtime module. A serialization routine
assembles the result into XML before it is shipped back to the user.

3MIL stands for MonetDB Interpreter Language [Boncz99].

5.4. MONETDB/XQUERY 139

102

103

104

105

106

107

102

103

104

105

106

107

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q10

Q11
Q12

Q13
Q14

Q15
Q16

Q17
Q18

Q19
Q20

6
8
8

1
0
2
1

6
2
5
7

2
2
3
4

4
2
4

1
3

3
9

6
3
5
4

7
3
5
1 3

9
5
6
8

3
5
6
4
2
1

6
1
1
9
5

4
6
7

6
2
1
1

2
0
0

2
3
7

8
8
4

3
2
9

4
0
3
8

3
1
7
0

1.1 GB

XMark Benchmark Query

ex
ec

ut
io

n
ti

m
e

[m
s]

Figure 5.11: MonetDB/XQuery performance. Execution times for the 20 XMark
queries based on an 1.1GB XML instance.

The compiler is designed to be re-targetable: any relational system that sup-
ports the algebra dialect listed in Chapter 4 may serve as a suitable back-end to
Pathfinder. Our current development work includes the emission of code for the
upcoming version 5 of MonetDB [Kersten05], MonetDB/X100 [Boncz05d], and
Idefix [Grün06].

5.4.2 Overall Query Performance

The XMark benchmark [Schmidt02] is a widely accepted means to assess the per-
formance and capabilities of high-volume XQuery processors. We used version
0.10.2 of the MonetDB/XQuery system to run the 20 XMark queries on docu-
ments of sizes ranging from 11MB to 11GB. All test queries were run multiple
times and execution times averaged. The system in use was a 2× 3.2GHz Intel
Xeon system, equipped with 8GB of primary storage. We ran the MonetDB ker-
nel off a 140GB ext3 file system, using the version 2.6.5 Linux kernel as shipped
with SuSE Enterprise Server 9. The performance results we report indicate the
system’s raw query execution time. They do not include query compilation time
(≈ 50 milli-seconds on average) and result serialization.

The system had no problems loading all documents we provided. Figure 5.11
documents the execution times we observed on a document instance of 1.1GB size
(XMark scale factor 10). MonetDB/XQuery was able to evaluate most of the 20
queries on this document size in interactive time, the only outlier being the join
query Q11 which we will look into shortly (Section 5.4.4). A large share of the
queries returned after only sub-second evaluation times.

140 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

0%

50 %

100%

150%

200%

250%

1,000%

10,000 %

0%

50 %

100%

150%

200%

250%

1,000 %

10,000 %
sp

ee
d
u
p

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q10

Q11
Q12

Q13
Q14

Q15
Q16

Q17
Q18

Q19
Q20

O

O

O O O

O O O

O

O

O O

O

O

O O O
O

O O

O 1.1 MB
11 MB
111 MB
1.1 GB
11 GB

Figure 5.12: Observed impact of order indifference (speedup) on the XMark bench-
mark query set. The reduced sort overhead leads to performance improvements of
up to four orders of magnitude.

Our experiments clearly show that the use of relational technology is a promis-
ing approach to process XQuery on high-volume data. Comparative experiments
undertaken in [Boncz06b], in fact, conclude that MonetDB/XQuery is among the
fastest XQuery processors currently in existence.

5.4.3 Order Awareness in Pathfinder

The Pathfinder compiler is fully aware of the order-related optimizations we dis-
cussed in Section 5.2. To assess their effect on the actual query performance of
MonetDB/XQuery, we ran the 20 XMark queries with and without order-sensitive
optimizations in effect. Figure 5.12 documents the speedup we observed on XML
document instances ranging from 1.1MB to 11GB serialized size. A speedup of
100% in this figure indicates that Pathfinder was able to generate algebraic code
that executed twice as fast due to the exploitation of order indifference.

For the majority of the queries, the observed speedup falls into the range of 0
to 200%. This demonstrates quite clearly how much processing time the system
spends on unnecessary sort operations in the original plans. In [Grust06], we
conducted a detailed study of where time really goes during the evaluation of
loop-lifted XQuery plans. For the unmodified instance of Query Q11 , e.g., almost
half of the query evaluation time was dedicated to sort operations.

Queries Q6 and Q7 show speedups of several orders of magnitude (note the log-
arithmic scale above the gap in the y-axis). In Section 4.4.1, we briefly mentioned

5.4. MONETDB/XQUERY 141

0.1

1

10

100

1000

0.1

1

10

100

1000

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q10

Q11
Q12

Q13
Q14

Q15
Q16

Q17
Q18

Q19
Q20

11 MB 111 MB 1.1GB 11 GB

XMark Benchmark Query

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e

Figure 5.13: MonetDB/XQuery scalability with respect to document size. Execu-
tion times are normalized to the elapsed time on the 111MB document instance.

that XPath step bundling may lead to additional rewrites due to now adjacent step
operators in the algebraic plan (page 97). Such opportunities arise in the plans
for Queries Q6 and Q7 . In the initial plan, a % operator separated the two step
operators �descendant-or-self::node() and �child::ν . After removing the operator, the
now adjacent steps could be merged into �descendant::ν .

5.4.4 Scalability with Respect to Data Volumes

Our prime motivation to employ relational databases for XML data processing
was their outstanding scalability in modern implementations. Obviously, we want
to assess whether MonetDB/XQuery meets our expectations of being a scalable
XQuery platform.

To this end, we normalized the execution times observed on documents from
11MB to 11GB size to the elapsed time on the 111MB instance. If our system
reaches linear scalability with respect to document size, we expect the observed
execution times to increase by a factor of 10 whenever the underlying document
size increases by the same factor. Ideally, the measurements in Figure 5.13 are
expected to arrange along the horizontal dotted lines, each of which mark a tenfold
increase in execution time.

For the majority of the benchmark queries this is in fact true. The only trou-
blemakers are the two join queries Q11 and Q12 , both of which observe quadratic
scaling with respect to document size. The cause for this behavior is quite easy to
comprehend if we look into the query text of Q11 and Q12 .

142 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

Both of the queries make use of the inequality predicate

where $p/profile/@income > 5000 * $i/text()

to relate person elements to auction items they could afford. The result set of
this relation is huge: 120 thousand to 120 billion tuples are produced for the
join on the 11MB and 11GB document instances, respectively. Though the final
outcome of this query is small (due to a subsequent aggregation with fn:count ()),
a quadratic complexity is inherent to both queries. Any XQuery system is bound
to exhibit this complexity for Queries Q11 and Q12 .

Queries Q6 , Q7 , Q15 , and Q16 , in contrast, even show a sub-linear scal-
ing. We benefit from one of the strengths of relational database technology here.
Queries Q6 and Q7 take advantage of efficient implementations for aggregation
in MonetDB/XQuery (XQuery function fn:count ()). All four queries exploit
the presence of name indexes in the system. They allow for the application of
name test pushdowns which we already found effective for the performance of our
MonetDB-based staircase join implementation in Chapter 3.

Queries Q8–Q10 and Q20 failed to meet the linear scalability goal only for the
multi-gigabyte documents. This is due to an insufficient amount of swap space on
the test machine we used and is not a problem inherent to our approach.

5.4.5 XQuery on High Data Volumes

Table 5.2 concludes our experimental assessment of MonetDB/XQuery with a
lineup of the XMark execution times we measured for document sizes up to 11GB.
Even in the area of multi-gigabyte XML instances, we see response times that allow
for interactive querying. MonetDB/XQuery clearly proves the viability of our
purely relational approach. Only minimal modifications to the relational system
itself were required to push the limits of high-volume XML processing beyond the
gigabyte limit.

5.5 Research in the Neighborhood

A close look into the specifics of both, loop-lifted query evaluation plans and our
source language XQuery, revealed a number of powerful leverage points for rela-
tional query optimization in Pathfinder. This turned the purely relational Mon-
etDB/XQuery system into one of the fastest XQuery processors available today.
Several approaches in the literature are related to the ideas we described here.

5.5. RESEARCH IN THE NEIGHBORHOOD 143

XMark execution time [ms]

Query 11MB 34MB 111MB 335MB 1.1GB 3.3GB 11GB

Q1 15 23 66 201 688 2235 7046
Q2 23 42 124 318 1021 3164 10262
Q3 109 235 726 1929 6257 20377 73044
Q4 23 62 197 647 2234 7000 22128
Q5 16 21 45 124 424 1643 5216
Q6 7 7 7 8 13 29 101
Q7 9 9 11 17 39 101 367
Q8 45 88 327 1269 6354 63816 241688
Q9 63 108 346 1431 7351 77125 452255
Q10 318 838 2885 11057 39568 – –
Q11 77 299 2505 19673 356421 – –
Q12 59 170 1266 10299 61195 – –
Q13 23 30 55 136 467 1451 5830
Q14 81 218 664 2095 6211 17906 170311
Q15 25 29 41 77 200 563 1866
Q16 28 32 48 89 237 673 2236
Q17 24 38 96 273 884 4184 14293
Q18 14 19 37 98 329 1162 8392
Q19 40 77 243 683 4038 9862 97651
Q20 72 101 230 990 3170 10070 –

Table 5.2: MonetDB/XQuery performance for XMark queries Q1–Q20 .

5.5.1 Algebraic Optimization for XQuery

The availability of a query optimizer is crucial to the efficiency of any mature
database management system. This is why most of the existing XML databases
rely on algebraic means to rephrase queries such that they execute most efficiently.
The Natix system by Moerkotte et al. [Fiebig02, Brantner05], the Galax system
by Fernández et al. [Re06], and the Timber system by Jagadish et al. [Jagadish02,
Jagadish01] are representatives of such systems.

All of these implementations, however, use algebra dialects that have specifi-
cally been crafted for the XML/XQuery domain. XQuery FLWOR expressions, for
instance, have direct equivalents in the algebras used by Natix and Galax (map
operators). Path expressions are translated into tree patterns in Galax and Tim-
ber. Quite in contrast to that, our approach is a purely relational one, without
the need for explicit XQuery extensions. As such, well-proven techniques from
existing systems are directly applicable to Pathfinder’s optimizer and vice versa.

144 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

Relational Optimization

A comprehensive list of relational optimization techniques can be found in the
survey article of Jarke and Koch [Jarke84]. The rewrite strategies suggested there
include the pushdown of projection operators across “constructive” algebra op-
erators (joins, Cartesian products), an idea for which we found an efficient and
novel implementation for DAG-shaped plans. In turn, the pushdown of selections
described by [Jarke84] is not yet generally addressed in the Pathfinder compiler.
Its implementation might yield additional performance advantages in the future.

An important aspect of the plans we consider is the significant amount of
sharing in the plans’ DAG representation. But though a physical implementation
of shared subplans in terms of the split operator has long since been proposed
by Graefe [Graefe93], the problem of optimizing DAG-shaped plans still remains
largely unaddressed. Only recently, the thesis of Neumann [Neumann05] took a
close look into that matter, which would certainly facilitate the optimization of
loop-lifted plan DAGs.

XQuery Join Detection

We have stressed the importance of a reliable join detection for XQuery process-
ing. Yet, it seems quite surprising that until now no convincing approach has been
published to recognize join situations in XQuery in a robust algebraic manner. Sev-
eral existing implementations apparently do make use of joins for efficient XQuery
evaluation (as described, e.g., for FluX [Koch04] and System RX [Beyer05]). The
detection of joins, however, seems primarily driven by syntactical analyses of the
input query itself. As such, the detection tends to be highly fragile with respect
to variations in the input query. In fact, in the experiments we performed in the
course of [Boncz06b], we found existing systems only recognize few of the five join
queries in the XMark benchmark set.

5.5.2 Order Awareness

The tight ordering constraints of the XQuery language manifest in the frequent
use of expensive row numbering operators in loop-lifted XQuery evaluation plans.
In return, the XQuery implementation MonetDB/XQuery can significantly benefit
from the lack of explicit order requirements in (parts of) the query. We are not
aware of any other XQuery implementation that exploits this optimization hook
to the extent described here. In fact, with the exception of Saxon [Kay], we have
found no traces of order indifference in other open-source XQuery engines. The
built-in function fn:unordered (), e.g., is commonly implemented as the identity
function.

5.5. RESEARCH IN THE NEIGHBORHOOD 145

The Galax system incorporates a limited degree of order awareness in terms
of the duptidy automaton described by Fernández et al. [Fernández04]. The au-
tomaton analyzes a sequence of path steps with respect to the guaranteed order
properties of its result sequence. The inference, however, assumes a fixed (and
rather näıve) evaluation strategy for each axis and is hardly extendible to further
constructs in the XQuery language.

The inference of physical order properties in Pathfinder resembles the concept
of interesting orders in the System R optimizer [Selinger79]. In addition, we in-
troduced the less restrictive ordering criterion 〈a1, . . . , an‖p〉 to adequately exploit
MonetDB’s HashRowNumber operator. This is quite similar to the secondary order-
ings described by Wang and Cherniack [Wang03]. Neumann and Moerkotte [Neu-
mann04] propose an order propagation framework that generalizes optimizations
referring to ordering and grouping even further.

5.5.3 XQuery Cardinality Forecasts

Goldman and Widom [Goldman97] have already suggested the use of DataGuides
as statistical summaries for XML documents, which we introduced into our com-
piler in terms of the statistical guide. Later work in this field mainly focused
on minimizing the space requirements of such metadata—most notably path trees,
Markov tables [Aboulnaga01], and Bloom histograms [Wang04]. These efforts take
a rather small subset of XPath into account, namely rooted paths of child steps
only. In contrast, our derivation process based on an algebraic query representation
addresses cardinality forecasts for arbitrary XQuery expressions. We think that
the accuracy of such forecasts easily outweighs the space requirements of the sta-
tistical guide. The experimental studies in [Goldman97] support our assumption
that DataGuides typically remain small even for large XML documents.

The extraction of relevant paths in [Marian03] resembles our notion of guide
nodes—though for a completely different purpose. In [Marian03], the proposed
technique leads to a projection of XML documents at document loading time in
order to minimize the runtime main memory requirements of Galax. Relevant
paths are inferred by simulating the query at compile time. In contrast to our
work, Galax simulates the evaluation of an XQuery Core expression itself (not
an algebraic equivalent) and in absence of any schema information (such as our
statistical guide).

5.5.4 Further Optimization Hooks

Others have suggested the inclusion of schema information into the process of
optimizing XQuery expressions (e.g., [Pal05, Koch04]). The exploitation of such
information is orthogonal to the techniques described here. As such, schema-based

146 CHAPTER 5. THE PATHFINDER XQUERY COMPILER

optimization may well be included into the optimization procedure of Pathfinder.
The compiler’s schema import facilities already provide for a significant share of
the implementation needs required for that task.

6
Wrap-Up

Relational database systems constitute one of the best understood and engineered
data management systems available today. Their core data model, tables of tu-
ples, is simple and thus efficient to implement. The availability of indexes allows
for a particularly fast execution of the predominant operations on tables: search-
ing and scanning. The same systems can act as highly efficient tree processors if
we carefully exploit the strengths of relational database technology for that pur-
pose. Tuples, e.g., may take the role of nodes, index scans suitably implement tree
navigation, whereas joins imitate the iteration over sequences.

The need for such tree processors accumulates in the search for efficient imple-
mentations of XQuery, the emerging query language for XML document trees. In
this thesis, we have confirmed the viability of a purely relational XQuery imple-
mentation. The MonetDB/XQuery system that is the outcome of this work is, in
fact, among the fastest XQuery processors available today. We will now summa-
rize the contributions that led to this successful implementation, all embodied in
the system’s XQuery compiler Pathfinder.

6.1 Summary

The outline of this thesis was inspired by the relational XQuery processing stack
shown in Figure 6.1. Three key contributions leveraged the maturity of relational
database systems into the domain of XQuery:

(i) the XPath accelerator tree encoding provides the isomorphism between the

147

148 CHAPTER 6. WRAP-UP

RDBMS

Tree Encoding (XPath Accel.)

XPath Axes (Staircase Join)

Compiler (loop-lifting)

XQuery

Figure 6.1: Relational XQuery Processing Stack.

relational data model and XML,

(ii) a novel algebra operator, staircase join, implements XPath navigation on
such encoded data at unprecedented speed, and finally

(iii) the loop-lifting technique compiles arbitrary XQuery expressions into a purely
relational algebra dialect.

A novel approach to relational query optimization completes the system to meet
the desired performance goal.

6.1.1 Relational Tree Encodings

The foundation of our work is the XPath accelerator tree encoding proposed by
Grust [Grust02]. In this encoding, each node’s pre- and postorder ranks serve
as a highly efficient mapping of the XML tree structure to tuples in a relational
table doc. XPath location steps from arbitrary context nodes then translate into
simple range queries over doc, efficiently implementable with existing indexing
techniques.

Range Encoding as an Alternative. The XML tree structure couples the
fundamental node properties pre, post , size, and level . As a consequence, the
XPath accelerator encoding may easily be rephrased in terms of property sets
equivalent to pre/post . Though equal to its predecessor at first sight, we proved
that the range encoding (pre/size/level) slightly outperforms XPath accelerator
for recursive XPath axes. Furthermore, the novel encoding simplifies the relational
implementation of updates and node construction, which makes it our preferred
relational storage means used in MonetDB/XQuery.

6.1. SUMMARY 149

Partitioned B-Trees for Efficient Step Evaluation. Range-encoded tree
data are quite a perfect fit for the concept of partitioned B-trees described by
Graefe [Graefe03]. The use of column level as low-selectivity prefix of a partitioned
B-tree, e.g., compensates for the omission of an explicit parent pointer in the
relational schema of the range encoding. Name and kind tests become highly
efficient if the index is prefixed with the kind and/or prop fields.

Single Record Scans for Early-Out Semantics. The use of single record
scans in relational query plans elegantly mirrors XQuery’s early-out semantics. We
found the same concept to provide an efficient implementation of parent steps on
range-encoded tree data. The tools required for this optimized evaluation strategy
are readily available in existing implementations.

A thorough experimental study confirmed the efficiency of the tree encoding for
relational XPath evaluation.

6.1.2 XPath Evaluation with Staircase Join

We have presented a novel join operator, staircase join, that provides outstanding
XPath performance on encoded tree data. Staircase join encapsulates compre-
hensive knowledge on the data’s underlying tree structure in a single operator.
As such, it may be easily plugged into any RDBMS kernel to efficiently back the
evaluation of XPath location steps. The effectiveness of staircase join is due to
three specific techniques incorporated in the operator: pruning, partitioning, and
skipping.

Pruning. The context sequence of an XPath location step may contain nodes
that will not directly contribute to the step result due to their overlapping query
regions. Staircase join will remove such nodes from the context before the actual
join processing, while fully retaining the possibility of a pipelined join execution.

Partitioning. Even after pruning, partially overlapping regions may still lead
to the production of duplicate result nodes. By partitioning the pre/post plane
using the preorder ranks of the remaining context nodes, staircase join ensures a
duplicate-free result sequence, sorted in document order.

Skipping. Based on a careful examination of the tree origin of the encoded data,
we concluded the emptiness of certain regions in the pre/post plane. With this
knowledge in mind, we tuned staircase join to skip over the unpopulated space
during join processing. The effectiveness of this technique is high. On actual

150 CHAPTER 6. WRAP-UP

query workloads, we found staircase join save more than 90% of processing work
by skipping empty pre/post regions.

Any relational database may benefit from staircase join to speed up XPath eval-
uation. To prove this claim, we implemented staircase join in the disk-based
PostgreSQL system as well as in the main memory database kernel MonetDB.
The outcome was an outstanding XPath performance on both systems.

6.1.3 Loop-Lifting: A Relational Approach to Iteration

To bridge the semantical gap between the set-oriented processing model of rela-
tional databases and XQuery which operates on sequences of items, we introduced
loop-lifting, a novel compilation approach to XQuery. The semantical correctness
of this compilation procedure is ensured by our careful choice of a relational rep-
resentation of sequences and iteration.

Loop-Lifted FLWOR Compilation. The functional-style semantics of iteration
in FLWOR clauses allows for the independent (or parallel) evaluation of the body
of an XQuery for clause. We expressed this independence in terms of the iter
column in our relational sequence encoding, which allows for a fully set-oriented
evaluation of the for iteration primitive. The same column captures XQuery’s
concept of iteration order, while we implemented sequence order in terms of the
column pos of the 〈iter , pos , item〉 sequence encoding.

Efficient Handling of Live Node Sets. As part of the relational translation
process, our compiler infers additional information about the origin of the XML
tree nodes in the result. The exploitation of this live node set information led
to a significant speedup in query execution times as observed in experiments on
IBM DB2.

Relational Implementation of Dynamic Typing in XQuery. The compi-
lation procedure we devise covers the relational implementation of runtime tests
on XQuery types, a feature that was even considered untranslatable for purely
relational back-ends in the past [Manolescu01]. Our implementation is based on
aggregation, a feature that existing RDBMSs know well how to evaluate efficiently.

The loop-lifted compilation makes XQuery accessible to any relational system. To
demonstrate, we ran a subset of the XMark benchmark set on the SQL system
DB2, a setup that readily provides scalability to gigabyte-sized XML instances.

6.1. SUMMARY 151

6.1.4 Query Optimization for Loop-Lifted XQuery Plans

The loop-lifted compilation of XQuery results in query plans whose shape is quite
different from the usual π−σ−1 pattern typical for relational systems. A novel set
of query optimization techniques accounts for that fact. Though initially designed
for loop-lifted XQuery evaluation plans, the techniques are universal by nature
and may prove efficient in other contexts as well.

Peephole-Style Plan Analysis. The sheer size of loop-lifted query plans de-
feats the use of a classical pattern-driven optimization process. In a single plan
traversal, the query optimizer in Pathfinder infers a set of relevant plan annota-
tions to prepare for the analysis of the plan. Plan nodes may then be looked at
from a peephole view to guide an efficient and scalable rewrite process.

Order-Aware Optimization. Frequent occurrences of the relational row num-
bering operator % make the prevalence of order in XQuery shine through in
loop-lifted XQuery evaluation plans. The Pathfinder compiler carefully consid-
ers order constraints (including the lack thereof) during its optimization phase.
To our knowledge, we presented the first XQuery implementation that actually
draws advantage from the indifference of order in XQuery’s unordered { · } and
fn:unordered () clauses.

Reliable Cardinality Forecasts for XQuery. In preparation of a reliable cost
model for loop-lifted XQuery evaluation plans, we have introduced a dependable
means to derive result size estimates for arbitrary XQuery expressions. The deriva-
tion process depends on the availability of a statistical guide and a new notion of
guide nodes. In contrast to existing approaches, which provide estimates only for
a simple subset of XPath expressions, the technique we have presented applies to
XQuery expressions of arbitrary shape.

6.1.5 MonetDB/XQuery: The Proof of Our Claim

We have shown that relational databases may back the evaluation of XQuery in a
standards-compliant manner. To prove our claim that the approach is also viable
in practice, we constructed a complete XQuery implementation on the basis of the
MonetDB RDBMS kernel. The system is available now, both, for real use and as
a research and experimentation platform under an open-source license.1

In Chapter 5, we used this system for a detailed study of the performance of
loop-lifted XQuery evaluation. We confirmed an unprecedented scalability with

1http://www.monetdb-xquery.org/

http://www.monetdb-xquery.org/

152 CHAPTER 6. WRAP-UP

110MB 1.1GB 11GB
Query MXQ Galax XHive BDB MXQ XHive BDB MXQ

Q1 0.12 0.72 1.29 0.51 1.3 9.9 5.9 14
Q2 0.19 0.31 1.75 1.38 1.8 33.0 43.1 19
Q3 1.20 1.76 5.66 3.55 11.5 25.1 37.1 176
Q4 0.42 2.91 1.00 4.07 4.5 18.1 43.3 44
Q5 0.08 0.63 0.90 1.05 0.8 20.7 11.4 10
Q6 0.00 13.29 10.17 13.23 0.0 178.1 – 0.1
Q7 0.01 30.01 24.84 14.70 0.1 278.4 – 0.6
Q8 0.47 2.12 3.51 9316.72 9.6 49.1 – 223
Q9 0.52 – 12280.66 – 11.8 – – 460
Q10 5.18 18.61 442.37 – 62.8 – – 2413
Q11 3.62 – 19927.29 – 367.7 – – –
Q12 2.11 – 5100.19 – 121.1 – – –
Q13 0.10 0.66 1.03 0.79 0.9 12.9 8.1 8
Q14 0.93 99.53 11.16 14.18 7.5 110.2 – 452
Q15 0.07 0.20 0.49 1.37 0.4 10.6 28.5 3
Q16 0.08 0.46 0.52 1.52 0.5 10.9 17.6 4
Q17 0.15 0.82 0.85 2.08 1.4 11.8 34.1 31
Q18 0.05 0.73 0.64 2.09 0.5 14.8 21.7 7
Q19 0.38 14.73 12.15 6.74 7.0 254.5 135.6 128
Q20 0.62 2.98 1.40 3.42 7.0 24.6 37.4 70

Table 6.1: XMark query performance (elapsed time in seconds) of four different
XQuery implementations: MonetDB/XQuery (MXQ), Galax, X-Hive, and Berke-
ley DB XML (BDB). Results obtained in the course of our work in [Boncz06b].

interactive response times up to and beyond the multi-gigabyte XML document
range. Our experiments reflect the effectiveness of the relational XQuery evalua-
tion techniques we have described in this thesis.

In [Boncz06b], we conducted a comparative assessment of MonetDB/XQuery
and three other XQuery systems currently available: (i) Galax 0.5.0 [Fernández03],
(ii) X-Hive/DB 6.0 [X-Hive/DB], and (iii) Berkeley DB XML 2.2 [BDB]. They all
had to compete against version 0.10.2 of MonetDB/XQuery on a 1.6GHz AMD
Opteron system with 8GB RAM. In Table 6.1, we lined up the query execution
times observed for document sizes ranging from 110MB to 11GB (XMark scale
factors 1 to 100). In this setup, MonetDB/XQuery clearly outclasses its competi-
tors and reinforces its role as one of the fastest XQuery implementations currently
in existence.

6.2. ONGOING AND FUTURE WORK 153

6.2 Ongoing and Future Work

We have developed a complete stack of novel techniques that allow for XQuery
evaluation by highly scalable relational means. Yet, this thesis marks the beginning
rather than the end of research on relational XQuery processing. In a joint effort,
the research groups at the Technische Universität München, the University of
Twente, and the CWI Amsterdam are actively pursuing the further development
of the MonetDB/XQuery system and its query compiler Pathfinder.

6.2.1 Alternative Back-Ends for Pathfinder

The Pathfinder compiler has been designed in a platform-independent manner,
with an intermediate algebra representation that makes only minimal assumptions
about the underlying back-end. In the future, we plan to extend Pathfinder’s
support to database systems other than MonetDB. From a research perspective,
two major challenges will arise in this context.

Pipelined Execution. MonetDB performs full materialization of intermediate
query results, whereas other back-ends will typically strive for a pipelined execu-
tion. To deal with DAG-shaped plans, a pipelining back-end will have to provide
a split operator that caches its tuple stream if two consumers read the data at
a different pace. Since the difference in reading pace determines the degree of
materialization required to implement split, we strive for an equalization of the
consumption rate among all parents of a split operator to ensure maximum per-
formance.

Advanced Index Usage. For lack of B-tree support in the MonetDB system,
many of the efficient access techniques discussed in Chapters 2 and 3 are not
readily accessible in MonetDB/XQuery. Hence, their exploitation has not yet
been addressed in the Pathfinder compiler. The incorporation of additional XPath
evaluation techniques (e.g., [Bruno02,Al-Khalifa02]) may add another challenge.

6.2.2 Further Optimization Hooks

Though quite effective in the implementation of MonetDB/XQuery, the optimizer
of Pathfinder is still in an early stage. A number of optimization opportunities are
sitting in wait to further improve the system’s performance.

Cost Models for Loop-Lifted Plan DAGs. Probably the largest shortcoming
of the current system is the provisional implementation of its cost model. One of the

154 CHAPTER 6. WRAP-UP

building blocks for the re-implementation of this component will be the cardinality
derivation procedure we have described in Chapter 5. We are currently developing
the missing pieces for an accurate cost model in Pathfinder based on the findings
of Manegold [Manegold02].

Schema-Based Algebra Optimization. The MonetDB/XQuery system car-
ries out efficient XML processing in a purely schema-oblivious fashion. The draw-
back of this approach is that the system does not benefit from additional optimiza-
tion hooks that arise from the presence of schema information. The examination
of such information could trigger advanced rewrite rules in the query optimizer of
Pathfinder.

6.2.3 Exploring New Fields of Knowledge

The Pathfinder system has long since surpassed mere XQuery support. Since its
first public release, Pathfinder has indeed found its way into unexpected fields of
knowledge, such as a distributed peer-to-peer query processing system [Zhang05],
the XIRAF system developed at the Dutch Forensic Institute [Alink05], and the
Tijah text retrieval system in the course of the MultimediaN project [Flokstra].

Acknowledgments

The cornerstone for Pathfinder was laid about five years ago in Konstanz, when
Torsten Grust and I created its first source file: XQuery.y. Since then, Torsten
has coached me through the very effective and fruitful development of Pathfinder,
for which I’d like to express my sincere thanks. We had never anticipated at that
time, though, that our little piece of software would soon grow into a system that
would start to spread all over the world, finding its way into research as well as
industry projects.

Actually, our original intent of the Pathfinder software was to build a very
low-footprint XQuery implementation, meant for embedded devices and handheld
PCs. However, we realized quite early that our strengths rather lie in the field of
large-scale databases and the idea of relational XQuery processing began to grow.
Ironically, Pathfinder is currently making its way back into embedded devices:
in an industry-sponsored project at the CWI, MonetDB/XQuery has successfully
been ported to be used in electronic entertainment devices.

About a year after I had started to work on Pathfinder, Maurice van Keulen
joined the team when he was in Konstanz for a one-year sabbatical. The outcome
of this joint effort was not only the development of staircase join. What is more,
Maurice also spread the word on Pathfinder to the Netherlands and brought us in
contact with the folks from the CWI, whom we first met at VLDB 2003 in Berlin.
Thanks Maurice!

Headed by Martin Kersten—whom I am also grateful for volunteering to review
my thesis—, the MonetDB group pushed (in a positive sense!) and supported us
to turn MonetDB/XQuery into what it is today. Most notable in this context are
Peter Boncz and Stefan Manegold who spent a lot of effort to make our software
a success.

At the same time, Jan Rittinger got more and more involved in the project as
a student. Not only his Bachelor and Master’s theses contributed significantly to
Pathfinder. In the summer of 2004, he spent a half-year internship at the CWI in
Amsterdam, where he implemented the final pieces to get the MonetDB/XQuery
system up and running. The file that hosts most of the code from that time,
milprint_summer.c, has actually become a synonym for a whole development era
in the Pathfinder project.

155

156 ACKNOWLEDGMENTS

There are numerous other people, without whom this thesis would not have
been possible. Most of my work on Pathfinder was done at the University of
Konstanz, where my supervisor Marc Scholl gave me all the freedom and support
I could imagine. Several students from Konstanz contributed directly or indirectly
to this work.

Last but not least, I would like to dedicate this thesis to my little daughter
Mia and thank my wife Sabine and my family for their constant support.

Bibliography

[Aboulnaga01] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton.
Estimating the Selectivity of XML Path Expressions for Internet Scale Ap-
plications. In Proc. of the 27th Int’l Conference on Very Large Databases
(VLDB), pages 591–600. Rome, Italy, September 2001.

[Al-Khalifa02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu,
Nick Koudas, and Divesh Srivastava. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In Proc. of the 18th Int’L Conference on Data
Engineering (ICDE). San Jose, CA, USA, February 2002.

[Alink05] Wouter Alink. XIRAF—an XML Information Retrieval Approach to
Digital Forensics . Master’s thesis, University of Twente, 2005.

[Amagasa03] Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura.
QRS: A Robust Numbering Scheme for XML Documents. In Proc. of the
19th Int’l Conference on Data Engineering (ICDE), pages 705–707. Bangalore,
India, March 2003.

[Antimirov95] Valentin M. Antimirov. Rewriting Regular Inequalities. In Proc.
of the 10th Int’l Symposium on Fundamentals of Computation Theory (FCT),
pages 116–125. Dresden, Germany, August 1995.

[Bayer77] Rudolf Bayer and Karl Unterauer. Prefix B-Trees. ACM Transactions
on Database Systems (TODS), 2(1), pages 11–26, March 1977.

[BDB] Berkeley DB XML. http://www.sleepycat.com/products/bdbxml.

html.

[Beyer05] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Jim Kleewein,
George Lapis, Guy Lohman, Bob Lyle, Fatma Özcan, Hamid Pirahesh, Nor-
men Seemann, Tuong Truong, Bert Van der Linden, Brian Vickery, and Chun
Zhang. System RX: One Part Relational, One Part XML. In Proc. of the 2005
ACM SIGMOD Int’l Conference on Management of Data, pages 347–358. Bal-
timore, MD, USA, June 2005.

157

http://www.sleepycat.com/products/bdbxml.html
http://www.sleepycat.com/products/bdbxml.html

158 BIBLIOGRAPHY

[Boag05] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language.
World Wide Web Consortium Candidate Recommendation, September 2005.
http://www.w3.org/TR/xquery/.

[Boncz99] Peter A. Boncz and Martin L. Kersten. MIL Primitives for Querying a
Fragmented World. The VLDB Journal , 8(2), pages 101–119, October 1999.

[Boncz02] Peter A. Boncz. Monet: A Next-Generation DBMS Kernel for Query-
Intensive Applications . Ph.D. thesis, Universiteit van Amsterdam, May 2002.

[Boncz05a] Peter Boncz, Torsten Grust, Stefan Manegold, Jan Rittinger, and Jens
Teubner. Pathfinder: Relational XQuery over Multi-Gigabyte XML Inputs in
Interactive Time. Technical Report INS-E0503, CWI, Amsterdam, March
2005.

[Boncz05b] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Loop-Lifted Staircase Join: From XPath to
XQuery. Technical Report INS-E0510, CWI, Amsterdam, March 2005.

[Boncz05c] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Pathfinder: XQuery—The Relational Way.
In Proc. of the 31st Int’l Conference on Very Large Databases (VLDB), pages
1322–1325. Trondheim, Norway, September 2005.

[Boncz05d] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. of the 2nd Int’l Conference on In-
novative Data Systems Research (CIDR), pages 225–237. Asilomar, CA, USA,
January 2005.

[Boncz06a] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Sjoerd Mullender, Jan Rittinger, and Jens Teubner. MonetDB/XQuery–
Consistent & Efficient Updates on the Pre/Post Plane. In Proc. of the 10th
Int’l Conference on Extending Database Technology (EDBT), pages 1190–1193.
Munich, Germany, March 2006.

[Boncz06b] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Proces-
sor Powered by a Relational Engine. In Proc. of the 2006 ACM SIGMOD Int’l
Conference on Management of Data. Chicago, IL, USA, June 2006.

[Brantner05] Matthias Brantner, Carl-Christian Kanne, Sven Helmer, and Guido
Moerkotte. Full-fledged Algebraic XPath Processing in Natix. In Proc. of the

http://www.w3.org/TR/xquery/

BIBLIOGRAPHY 159

21st Int’L Conference on Data Engineering (ICDE), pages 705–716. Tokyo,
Japan, April 2005.

[Bruno02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig
Joins: Optimal XML Pattern Matching. In Proc. of the 2002 ACM SIGMOD
Int’l Conference on Management of Data, pages 310–321. Madison, WI, USA,
2002.

[Chamberlin06] Don Chamberlin, Daniela Florescu, and Jonathan Robie. XQuery
Update Facility. World Wide Web Consortium Working Draft, January 2006.
http://www.w3.org/TR/xqupdate/.

[Chan04] Chee-Yong Chan and Wenfei Fan. Taming XPath Queries by Minimizing
Wildcard Steps. In Proc. of the 30th Int’l Conference on Very Large Databases
(VLDB), pages 156–167. Toronto, Canada, September 2004.

[Cohen02] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling Dynamic XML
Trees. In Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 271–281. Madison, WI, USA,
June 2002.

[DeHaan03] David DeHaan, David Toman, Mariano P. Consens, and M. Tamer
Özsu. A Comprehensive XQuery to SQL Translation using Dynamic Interval
Encoding. In Proc. of the 2003 ACM SIGMOD Int’l Conference on Manage-
ment of Data, pages 623–634. San Diego, CA, USA, June 2003.

[Deutsch99] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistruc-
tured Data with STORED. In Proc. of the 1999 ACM SIGMOD Int’l Confer-
ence on Management of Data, pages 431–442. Philadelphia, PA, USA, June
1999.

[Draper05] Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Mal-
hotra, Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. World Wide Web Consor-
tium Candidate Recommendation, September 2005. http://www.w3.org/TR/
xquery-semantics/.

[Fernández03] Mary F. Fernández, Jérôme Siméon, Byron Choi, Amélie Marian,
and Gargi Sur. Implementing XQuery 1.0: The Galax Experience. In Proc. of
the 29th Int’l Conference on Very Large Databases (VLDB), pages 1077–1080.
Berlin, Germany, September 2003.

http://www.w3.org/TR/xqupdate/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/

160 BIBLIOGRAPHY

[Fernández04] Mary Fernández, Jan Hidders, Philippe Michiels, Jérôme Siméon,
and Roel Vercammen. Automata for Avoiding Unneccessary Ordering Oper-
ations in XPath Evaluation Plans. Technical Report UA 04-02, University of
Antwerp, 2004.

[Fernández05] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, and Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model. World
Wide Web Consortium Candidate Recommendation, September 2005. http:

//www.w3.org/TR/xpath-datamodel/.

[Fiebig02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Mo-
erkotte, Julia Neumann, and Robert Schiele. Anatomy of a native XML base
management system. The VLDB Journal , 11(4), pages 292–314, December
2002.

[Finkel74] Raphael A. Finkel and Jon Louis Bentley. Quad Trees: A Data Struc-
ture for Retrieval on Composite Keys. Acta Informatica, 4, pages 1–9, 1974.

[Flokstra] Jan Flokstra, Henning Rode, Djoerd van Hiemstra, and Roel van Os.
MultimediaN—Semantic Multimedia Access. http://www.multimedian.nl/.

[Florescu99] Daniela Florescu and Donald Kossmann. Storing and Querying XML
Data Using an RDBMS. IEEE Data Engineering Bulletin, 22(3), pages 27–34,
September 1999.

[Gluche97] Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H.
Scholl. Incremental Updates for Materialized OQL Views. In Proc. of the
5th Int’l Conference on Deductive and Object-Oriented Databases (DOOD’97),
pages 52–66. Montreux, Switzerland, December 1997.

[Goldman97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query
Formulation and Optimization. In Proc. of the 23rd Int’l Conference on Very
Large Databases (VLDB), pages 436–445. Athens, Greece, August 1997.

[Gottlob05] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algo-
rithms for Processing XPath Queries. ACM Transactions on Database Systems
(TODS), 30(2), pages 444–491, June 2005.

[Graefe93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys , 25(2), pages 73–170, June 1993.

[Graefe03] Goetz Graefe. Sorting and Indexing with Partitioned B-Trees. In Proc.
of the 1st Int’l Conference on Innovative Data Systems Research (CIDR).
Asilomar, CA, USA, January 2003.

http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://www.multimedian.nl/

BIBLIOGRAPHY 161

[Grün06] Christian Grün, Alexander Holupirek, Marc Kramis, Marc H. Scholl,
and Marcel Waldvogel. Pushing XPath Accelerator to its Limits, 2006. (Under
submission).

[Grust02] Torsten Grust. Accelerating XPath Location Steps. In Proc. of the
2002 ACM SIGMOD Int’l Conference on Management of Data, pages 109–
120. Madison, WI, USA, June 2002.

[Grust03a] Torsten Grust and Maurice van Keulen. Tree Awareness for Relational
DBMS Kernels: Staircase Join. In Henk Blanken, Torsten Grabs, Hans-Jörg
Schek, Ralf Schenkel, and Gerhard Weikum (editors), Intelligent Search on
XML Data, Lecture Notes in Computer Science. Springer Verlag, September
2003.

[Grust03b] Torsten Grust, Maurice van Keulen, and Jens Teubner. Bridging the
Gap Between Relational and Native XML Storage with Staircase Join. In
Proc. of the 15th GI Workshop on Foundations of Database Systems , pages
85–89. Tangermünde, Germany, June 2003.

[Grust03c] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. In Proc. of the 29th
Int’l Conference on Very Large Databases (VLDB), pages 524–535. Berlin,
Germany, September 2003.

[Grust04a] Torsten Grust, Jan Hidders, Philippe Michiels, Roel Vercammen, and
Maurice van Keulen. Supporting Positional Predicates in Efficient XPath Axis
Evaluation for DOM Data Structures. Technical Report UA 2004-05, Univer-
sity of Antwerp, 2004.

[Grust04b] Torsten Grust and Stefan Klinger. Schema Validation and Type An-
notation for Encoded Trees. In Proc. of the ACM SIGMOD/PODS 1st Int’l
Workshop on XQuery Implementation, Experience and Perspectives (XIME-
P). Paris, France, June 2004.

[Grust04c] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts.
In Proc. of the 30th Int’l Conference on Very Large Databases (VLDB), pages
252–263. Toronto, Canada, September 2004.

[Grust04d] Torsten Grust and Jens Teubner. Relational Algebra: Mother
Tongue—XQuery: Fluent. In Proc. of the 1st Twente Data Management Work-
shop (TDM), pages 7–14. Enschede, The Netherlands, June 2004.

162 BIBLIOGRAPHY

[Grust04e] Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating
XPath evaluation in any RDBMS. ACM Transactions on Database Systems
(TODS), 29(1), pages 91–131, March 2004.

[Grust05] Torsten Grust. Purely Relational FLWORs. In Proc. of the ACM SIG-
MOD/PODS 2nd Int’l Workshop on XQuery Implementation, Experience and
Perspectives (XIME-P). Maryland, MD, USA, June 2005.

[Grust06] Torsten Grust, Jan Rittinger, and Jens Teubner. eXrQuy: Order Indif-
ference in XQuery, 2006. (Under submission).

[Guttman84] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial
Searching. In Proc. of the 1984 ACM SIGMOD Int’l Conference on Manage-
ment of Data, pages 47–57. Boston, MA, USA, June 1984.

[Helmer02] Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. Optimized
Translation of XPath into Algebraic Expressions. In Proc. of the 3rd Int’l
Conference on Web Information Systems Engineering (WISE), pages 215–224.
IEEE Computer Society, Singapore, December 2002.

[Hosoya05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular
Expression Types for XML. ACM Transactions on Programming Languages
and Systems (TOPLAS), 27(1), pages 46–90, March 2005.

[Int05] Intel Corporation. IA-32 Intel® Architecture Optimization Reference
Manual , June 2005.

[Jagadish01] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and
Keith Thompson. TAX: A Tree Algebra for XML. In Database Program-
ming Languages (DBPL), 8th Int’l Workshop, pages 149–164. Frascati, Italy,
September 2001.

[Jagadish02] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S.
Lakshmanan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh
Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A
Native XML Database. The VLDB Journal , 11(4), pages 274–291, December
2002.

[Jarke84] Matthias Jarke and Jürgen Koch. Query Optimization in Database Sys-
tems. ACM Computing Surveys , 16(2), pages 111–152, June 1984.

[Kay] Michael Kay. The Saxon XSLT and XQuery Processor. http://saxon.sf.
net/.

http://saxon.sf.net/
http://saxon.sf.net/

BIBLIOGRAPHY 163

[Kempa03] Martin Kempa and Volker Linnemann. Type Checking in XOBE. In
Proc. of the 2003 BTW Conference (Datenbanksysteme für Business, Tech-
nologie und Web), pages 227–246. Leipzig, Germany, February 2003.

[Kepser04] Stephan Kepser. A Simple Proof for the Turing-Completeness of XSLT
and XQuery. In Proc. of the Extreme Markup Languages 2004 . Montréal,
Quebec, Canada, August 2004.

[Kersten05] Martin L. Kersten and Stefan Manegold. Cracking the Database Store.
In Proc. of the 2nd Int’l Conference on Innovative Data Systems Research
(CIDR), pages 213–224. Asilomar, CA, USA, January 2005.

[Kha02] Dao Dinh Kha, Masatoshi Yoshikawa, and Shunsuke Uemura. A Struc-
tural Numbering Scheme for XML Data. In XML-Based Data Management
and Multimedia Engineering—EDBT 2002 Workshops , pages 91–108. Prague,
Czech Republic, March 2002.

[Koch04] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. Schema-based Scheduling of Event Processors and Buffer Mini-
mization for Queries on Structured Data Streams. In Proc. of the 30th Int’l
Conference on Very Large Databases (VLDB). Toronto, Canada, September
2004.

[Krishnamurthy03] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F.
Naughton. XML–SQL Query Translation Literature: The State of the Art and
Open Problems. In Proc. of the 1st Int’l XML Database Symposium (XSym),
pages 1–18. Berlin, Germany, September 2003.

[Lee96] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra.
Index Structures for Structured Documents. In Proc. of the 1st Int’l Conference
on Digital Libraries (DL), pages 91–99. Bethesda, MD, USA, 1996.

[Ley] Michael Ley. Computer Science Bibliography. http://dblp.uni-trier.

de/.

[Li01] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for
Regular Path Expressions. In Proc. of the 27th Int’l Conference on Very Large
Databases (VLDB), pages 361–370. Rome, Italy, September 2001.

[Makins95] Marian Makins (editor). Collins English dictionary . HarperCollins
Publishers, Glasgow, UK, 3rd edition, 1995. ISBN 0 00 470677-3.

[Manegold02] Stefan Manegold. Understanding, Modeling, and Improving Main-
Memory Database Performance. Ph.D. thesis, Universiteit van Amsterdam,
December 2002.

http://dblp.uni-trier.de/
http://dblp.uni-trier.de/

164 BIBLIOGRAPHY

[Manolescu01] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. An-
swering XML Queries over Heterogeneous Data Sources. In Proc. of the 27th
Int’l Conference on Very Large Databases (VLDB), pages 241–250. Rome,
Italy, September 2001.

[Marian03] Amélie Marian and Jérôme Siméon. Projecting XML Documents. In
Proc. of the 29th Int’l Conference on Very Large Databases (VLDB), pages
213–224. Berlin, Germany, September 2003.

[Mayer04a] Sabine Mayer. Enhancing the Tree Awareness of a Relational DBMS:
Adding Staircase Join to PostgreSQL. Master’s thesis, University of Konstanz,
February 2004. http://www.ub.uni-konstanz.de/kops/volltexte/2004/

1166/.

[Mayer04b] Sabine Mayer, Torsten Grust, Maurice van Keulen, and Jens Teubner.
An Injection with Tree Awareness: Adding Staircase Join to PostgreSQL. In
Proc. of the 30th Int’l Conference on Very Large Databases (VLDB), pages
1305–1308. Toronto, Canada, September 2004.

[McHugh99] Jason McHugh and Jennifer Widom. Query Optimization for XML.
In Proc. of the 25th Int’l Conference on Very Large Databases (VLDB), pages
315–326. Edinburgh, Scotland, UK, September 1999.

[McKeeman65] William M. McKeeman. Peephole Optimization. Communications
of the ACM , 8(7), pages 443–444, July 1965.

[Meijer05] Erik Meijer and Brian Beckman. XLinq: XML Programming Refac-
tored (The Return Of The Monoids). In Proc. of the 2005 XML Conference
& Exposition. Atlanta, GA, USA, November 2005.

[Melton03] Jim Melton. Advanced SQL:1999: Understanding Object-Relational
and Other Advanced Features . Morgan Kaufmann Publishers, Amsterdam,
2003. ISBN 1-55860-677-7.

[Neumann04] Thomas Neumann and Guido Moerkotte. A Combined Framework
for Grouping and Order Optimization. In Proc. of the 30th Int’l Conference on
Very Large Databases (VLDB), pages 960–971. Toronto, Canada, September
2004.

[Neumann05] Thomas Neumann. Efficient Generation and Execution of DAG-
Structured Query Graphs . Ph.D. thesis, Universität Mannheim, July 2005.

[Nicola05] Matthias Nicola and Bert van der Linden. Native XML Support in
DB2 Universal Database. In Proc. of the 31st Int’l Conference on Very Large
Databases (VLDB), pages 1164–1174. Trondheim, Norway, September 2005.

http://www.ub.uni-konstanz.de/kops/volltexte/2004/1166/
http://www.ub.uni-konstanz.de/kops/volltexte/2004/1166/

BIBLIOGRAPHY 165

[Nievergelt84] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The
Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transac-
tions on Database Systems (TODS), 9(1), pages 38–71, 1984.

[Olteanu02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath:
Looking Forward. In XML-Based Data Management and Multimedia Engineer-
ing, EDBT 2002 Workshops, Revised Papers , pages 109–127. Prague, Czech
Republic, March 2002.

[O’Neil04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri,
Gideon Schaller, and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node
Labels. In Proc. of the 2004 ACM SIGMOD Int’l Conference on Management
of Data, pages 903–908. Paris, France, June 2004.

[Page05] Wim Le Page, Jan Hidders, Jan Paredaens, Roel Vercammen, and
Philippe Michiels. On the Expressive Power of Node Construction in XQuery.
In Proc. of the 8th Int’l Workshop on the Web and Databases (WebDB 2005),
pages 85–90. Baltimore, MD, USA, June 2005.

[Pal04] Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giak-
oumakis, and Vasili Zolotov. Indexing XML Data Stored in a Relational
Database. In Proc. of the 30th Int’l Conference on Very Large Databases
(VLDB), pages 1134–1145. Toronto, Canada, September 2004.

[Pal05] Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon Schaller,
Wei Yu, Dragan Tomic, Adrian Baras, Brandon Berg, Denis Churin, and Eu-
gene Kogan. XQuery Implementation in a Relational Database System. In
Proc. of the 31st Int’l Conference on Very Large Databases (VLDB), pages
1175–1186. Trondheim, Norway, September 2005.

[Pal06] Shankar Pal, Dragan Tomic, Brandon Berg, and Joe Xavier. Managing
Collections of XML Schemas in Microsoft SQL Server 2005. In Proc. of the
10th Int’l Conference on Extending Database Technology (EDBT), pages 1102–
1105. Munich, Germany, March 2006.

[PIR] Georgetown University Medical Center PIR. Integrated Protein Classifica-
tion Database. http://pir.georgetown.edu/iproclass/.

[PostgreSQL] PostgreSQL. http://www.postgresql.org/.

[Ramakrishnan95] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of De-
ductive Database Systems. Journal of Logic Programming , 23(2), pages 125–
149, May 1995.

http://pir.georgetown.edu/iproclass/
http://www.postgresql.org/

166 BIBLIOGRAPHY

[Re06] Christopher Re, Jérôme Siméon, and Mary F. Fernández. A Complete and
Efficient Algebraic Compiler for XQuery. In Proc. of the 22nd Int’L Conference
on Data Engineering (ICDE). Atlanta, GA, USA, April 2006.

[Rode03] Henning Rode. Methods and Cost Models for XPath Query Processing
in Main Memory Databases . Master’s thesis, University of Konstanz, October
2003. http://www.ub.uni-konstanz.de/kops/volltexte/2004/1195/.

[Ross02] Kenneth A. Ross. Conjunctive Selection Conditions in Main Memory. In
Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 109–120. Madison, WI, USA, June 2002.

[Sakr06] Sherif Sakr, Jens Teubner, and Torsten Grust. Dependable Cardinality
Forecasts in an Algebraic XQuery Compiler, 2006. (In preparation).

[SAX] SAX—Simple API for XML. http://www.saxproject.org/.

[Schmidt00] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer, and Flo-
rian Waas. Efficient Relational Storage and Retrieval of XML Documents. In
The World Wide Web and Databases (WebDB), 3rd Int’l Workshop, pages
137–150. Dallas, TX, USA, May 2000.

[Schmidt02] Albrecht R. Schmidt, Florian Waas, Martin L. Kersten, Michael J.
Carey, Ioana Manolescu, and Ralph Busse. XMark: A Benchmark for XML
Data Management. In Proc. of the 28th Int’l Conference on Very Large
Databases (VLDB), pages 974–985. Hong Kong, China, August 2002.

[Selinger79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, and Thomas G. Price. Access Path Selection in a Relational
Database Management System. In Proc. of the 1979 ACM SIGMOD Int’l
Conference on Management of Data, pages 23–34. Boston, MA, USA, 1979.

[Shanmugasundaram99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang,
Gang He, David J. DeWitt, and Jeffrey F. Naughton. Relational Databases
for Querying XML Documents: Limitations and Opportunities. In Proc. of
the 25th Int’l Conference on Very Large Databases (VLDB), pages 302–314.
Morgan Kaufmann, Edinburgh, Scotland, UK, September 1999.

[SQL06] Microsoft Corporation. SQL Server Language Reference: Transact-SQL,
March 2006.

[Tatarinov02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmuga-
sundaram, Eugene Shekita, and Chun Zhang. Storing and Querying Ordered

http://www.ub.uni-konstanz.de/kops/volltexte/2004/1195/
http://www.saxproject.org/

BIBLIOGRAPHY 167

XML Using a Relational Database System. In Proc. of the 2002 ACM SIG-
MOD Int’l Conference on Management of Data, pages 204–215. Madison, WI,
USA, 2002.

[Wadler90] Philip Wadler. Comprehending Monads. In Proc. of the 1990 ACM
Conference on LISP and Functional Programming , pages 61–78. Nice, France,
June 1990.

[Wang03] Xiaoyu Wang and Mitch Cherniack. Avoiding Sorting and Grouping
in Processing Queries. In Proc. of the 29th Int’l Conference on Very Large
Databases (VLDB), pages 826–837. Berlin, Germany, September 2003.

[Wang04] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom Histogram: Path
Selectivity Estimation for XML Data with Updates. In Proc. of the 30th
Int’l Conference on Very Large Databases (VLDB), pages 240–251. Toronto,
Canada, September 2004.

[X-Hive/DB] X-Hive/DB. http://www.x-hive.com/products/db/.

[Yergeau03] Y. Yergeau. UTF-8, a Transformation Format of ISO 10646, Novem-
ber 2003. http://www.ietf.org/rfc/rfc3629.txt, request for Comments
(RFC) 3629.

[Zhang01] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy
Lohman. On Supporting Containment Queries in Relational Database Man-
agement Systems. In Proc. of the 2001 ACM SIGMOD Int’l Conference on
Management of Data, pages 425–436. Santa Barbara, CA, USA, 2001.

[Zhang05] Jennie Zhang. P2P Query Processing on Top of MonetDB/XQuery. In
Dutch-Belgian Database Day (DBDBD). October 2005.

http://www.x-hive.com/products/db/
http://www.ietf.org/rfc/rfc3629.txt

	Abstract
	Introduction
	Database Technology for XML
	Native XML Databases
	Relational Back-Ends

	Contributions of this Thesis

	Relational XML Storage
	XPath Accelerator Encoding
	Pre- and Postorder Ranks
	XPath Axis Conditions
	Illustrating XPath Accelerator: The pre/post Plane
	SQL-Based XPath Evaluation
	Index Support for XPath Accelerator
	Techniques to Reduce the Search Space
	Range Encoding: An Alternative to pre/post
	A Word on Updates

	XPath on Commodity RDBMSs
	DB2 Runs XPath
	XPath Accelerator on PostgreSQL

	Related Work
	Fixed-Length Encodings
	Variable-Length Encodings
	Relational Database Support

	XPath Evaluation with Staircase Join
	Re-Inspecting XPath Accelerator
	Node Distribution in the pre/post Plane

	Staircase Join
	Pruning
	Empty Regions in the pre/post Plane
	Partitioning
	A Further Increase of Tree Awareness: Skipping

	Implementation Considerations
	A Disk-Based Staircase Join Implementation
	Main Memory-Related Adaptions

	Tree Awareness Beyond Staircase Join
	Loop-Lifting Staircase Join
	Support for Non-Recursive Axes
	Staircase Join Without Staircase Join
	Tree Awareness in Other Domains

	Related Work
	Path Evaluation on RDBMSs
	Tree Properties in XPath

	Loop-Lifting: From XPath to XQuery
	A Relational Algebra for XQuery
	Relational Sequence Encoding
	An Algebra for XQuery
	A Ruleset to Compile XQuery
	Basic XQuery Expressions
	Sequence Construction

	Relational FLWORs
	for-Bound Variables
	Maintaining loop
	Free Variables in the return Clause
	Mapping Back
	Complete Compilation Rule for FLWOR Expressions
	Optional: The order by Clause

	Other Expression Types
	Arithmetics/Comparisons
	Conditionals: if-then-else

	Interfacing with XML/XPath
	XPath Location Steps
	Element Construction
	A Note on Side-Effects

	Support for Dynamic Type Tests
	XQuery Subtype Semantics
	Sequence Type Matching on Relational Back-Ends

	XQuery on DB2
	A Loop-Lifted XQuery-to-SQL Translation
	XPath Bundling and Use of OLAP Functionality
	Live Node Sets: Compile-Time Information for Accelerated Query Evaluation
	XMark on DB2

	Wrap-Up
	Related Research
	Outlook & Perspective

	The Pathfinder XQuery Compiler
	Logical Optimizations in Pathfinder
	DAGs for Loop-Lifted Query Plans
	A Peephole-Style Plan Analysis
	Robust XQuery Join Detection

	The Importance of Order
	Order in Loop-Lifted XQuery
	Order Indifference in XQuery
	A Performance Advantage can be Realized
	Physical Optimization and Order Awareness

	Cardinality Forecasts for Loop-Lifted Plans
	Statistical Guide
	Cardinality Forecasts

	MonetDB/XQuery
	System Architecture
	Overall Query Performance
	Order Awareness in Pathfinder
	Scalability with Respect to Data Volumes
	XQuery on High Data Volumes

	Research in the Neighborhood
	Algebraic Optimization for XQuery
	Order Awareness
	XQuery Cardinality Forecasts
	Further Optimization Hooks

	Wrap-Up
	Summary
	Relational Tree Encodings
	XPath Evaluation with Staircase Join
	Loop-Lifting: A Relational Approach to Iteration
	Query Optimization for Loop-Lifted XQuery Plans
	MonetDB/XQuery: The Proof of Our Claim

	Ongoing and Future Work
	Alternative Back-Ends for Pathfinder
	Further Optimization Hooks
	Exploring New Fields of Knowledge

	Acknowledgments

